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Recent advances in Post-Selection Inference have shown that conditional testing is relevant and tractable in
high-dimensions. In the Gaussian linear model, further works have derived unconditional test statistics such
as the Kac—Rice Pivot for general penalized problems. In order to test the global null, a prominent offspring
of this breakthrough is the Spacing test that accounts the relative separation between the first two knots of
the celebrated least-angle regression (LARS) algorithm. However, no results have been shown regarding the
distribution of these test statistics under the alternative. For the first time, this paper addresses this important
issue for the Spacing test and shows that it is unconditionally unbiased. Furthermore, we provide the first
extension of the Spacing test to the frame of unknown noise variance.

More precisely, we investigate the power of the Spacing test for LARS and prove that it is unbiased: its
power is always greater or equal to the significance level «. In particular, we describe the power of this
test under various scenarii: we prove that its rejection region is optimal when the predictors are orthogonal;
as the level o goes to zero, we show that the probability of getting a true positive is much greater than «;
and we give a detailed description of its power in the case of two predictors. Moreover, we numerically
investigate a comparison between the Spacing test for LARS, the Pearson’s chi-squared test (goodness of
fit) and a numerical testing procedure based on the maximal correlation.

When the noise variance is unknown, our analysis unleashes a new test statistic that can be computed in
cubic time in the population size and which we refer to as the 7-Spacing test for LARS. The #-Spacing test
involves the first two knots of the LARS algorithm and we give its distribution under the null hypothesis.
Interestingly, numerical experiments witness that the 7-Spacing test for LARS enjoys the same aforemen-
tioned properties as the Spacing test.
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1. Introduction

A major development in modern statistics has been brought by the idea that one can recover
a high-dimensional target B* from few linear observations Y by £-minimization as soon as
the target vector is “sparse” in a well-chosen basis. Undoubtedly, the notion of “sparsity” has
encountered a large echo among the statistical community and many successful applications
rely on £1-minimization, one may consult [8§-10,13,27] for some seminal works, [7,15] for a
review and references therein. More precisely, some of the most popular estimators in high-
dimensional statistics remain the Lasso [27] and the Dantzig selector [8]. A large amount of
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interest has been dedicated to the estimation, prediction or support recovery problems using these
estimators. This body of work has been developed around sufficient conditions on the design
matrix X (such that Restricted Isometry Property [9], Restricted Eigenvalue [5], Compatibility
[7,28], Universal Distortion [4,11], H 1 [17], or Irrepresentability [13], to name but a few)
that enclose the spectral properties of the design matrix on the set of (almost) sparse vectors.
Using one of these properties, one can exploits the Karush—Kuhn-Tucker conditions to get oracle
inequalities or a control on the support recovery error.

Aside from those issues some recent works have been focused on hypothesis testing using
penalized problems, see, for instance, [18,19,25,26] and references therein. Compared to the
sparse recovery problems, very little work has been done in statistical testing in high dimensions.
As a matter of fact, one of the main difficulty is that there is no tractable distribution of sparse
estimators (even under the aforementioned standard conditions of high-dimensional statistics).
A successful approach is then to take into account the influence of each predictor in the regression
problem. More precisely, some recent works in Post-Selection Inference have shown that the
selection events can be explicitly expressed as closed convex polytopes depending simply on the
signs and the indices of the nonzero coefficients of the solutions of standard procedures in high-
dimensional statistics (typically the solutions of the Lasso). Furthermore, an important advance
has been brought by a useful parametrization of these convex polytopes under the Gaussian linear
model, see for instance the book [16]. In detection testing, this is done by the first two “knots”
of the least-angle regression algorithm (LARS for short) which is intimately related to the dual
program of the £ -minimization problem, see, for example, [12].

1.1. Hypothesis testing using LARS

The usual frame of the regression problems in high-dimensions is the following. Given an out-
come vector Y € R", a matrix of predictor variables (or design matrix) X € R"*? and a variance—
covariance matrix X such that

Y=XB"+¢& with & ~ N, (0, T),

we are concerned with testing whether 8* is equal to some known f; or not. Notice that the
response variable Y does not depend directly on * but rather on XS*. We understand that a de-
tection test may be interested in discerning between two hypothesis on the target vector, namely

Hp : “B* € By + ker(X)” against M, : “B* ¢ B + ker(X)”,

where ker(X) denotes the kernel of the design matrix X. It can be equivalently formulated (sub-
tracting Xf;) as a detection test whose null hypothesis is given by

Hp: “B* e ker(X)” against Hj:“B* ¢ ker(X)”.
To this end, we consider the vector of correlations

U:=X"Y~N,(u" R),
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where u* := X T Xg* and R := X T £ X. Observe that the hypotheses Hy and H; can be equiva-
lently written as

Hp: “u*=0" against Hy:“u*#0",

and remark that the knowledge of the noise variance—covariance matrix X is equivalent to the
knowledge of the correlations variance—covariance matrix R.

1.2. The spacing test for LARS

The test statistic we are considering was introduced in a larger context of penalization problems
by the pioneering works in [25,26]. As mentioned by the authors of [26], the general test statistic
“may seem complicated”. However, it can be greatly simplified in the frame of the standard
regression problems under a very mild assumption, namely

Viell.pll.  Ri=X/ZX;=:(X;,Xj)s=1. (H)

Note that this assumption is not very restrictive because the columns X; of X can always be
scaled to get (H). In this case, the entries of 8* are scaled but nor Hy neither H; are changed.
Hence, without loss of generality, we admit to invoke an innocuous normalization on the columns
of the design matrix. Remark also that (H) is satisfied under the stronger assumption

»=1d, and Viel[l,pl, X 113=1. (H Lasso)

Moreover, observe that, almost surely, there exists a unique (7, &) € [1, p]l x {1} such that
&U; = ||U|lco- Under Assumption (H), the test statistic, referred to as Spacing test for LARS,
simplifies to

5= 200 (Pivot)
D(A2)

where @ is the cumulative distribution function of the standard normal distribution, ® = 1 — &
its complement, A| := £U; the largest knot in the Lasso path [12] and

hy = \/ U; —f?j;U; y =Uj ~|—ARJ-;U; ’

I<j#i<p

with a vV b := max(a,b) and U; denotes the ith entry of the vector U. Under Assump-
tion (H Lasso), one has R = X' X and A, simplifies to the second largest knot in the Lasso
path. Interestingly, the authors of [26] have shown that the test statistic S is uniformly distributed
on [0, 1] under the null hypothesis Hj,

S ~ Unif([0, 1]).
Moreover, they derived the following rejection region

Reject, :={S <o},
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for all @ € (0, 1). In other words, the observed value of the test statistic S is the p-value of the
Spacing test for LARS.

Remark that the statistic 1 — S is uniformly distributed on [0, 1], as well as many other trans-
formations of the test statistic S. It may appear that the choice of rejection region Reject, is
somehow arbitrary. Nevertheless, one can empirically witness (see Figure 1 for instance) that
the Spacing test for LARS is an interesting test statistic that may take smaller values under the
alternative hypothesis. However, no theoretical guarantees have been shown regarding its power.
Furthermore, the Spacing test for LARS relies on the assumption that the variance—covariance
matrix ¥ of the noise is known and it should be interesting to bypass this limitation. To the best
of our knowledge, this paper is the first to address these issues.

1.3. Power of the spacing test for LARS

Recall that the Spacing test for LARS rejects H in favor of H; when {S < «} occurs, where S
is defined by (Pivot). We assume that the noise variance—covariance matrix ¥ is known. We also
assume that the columns (X i)le of the matrix X are normalized with respect to Assumption
(H) and satisfy Vi # j, [(X;, X ;)| < 1. The first result shows that the Spacing test for LARS is
unbiased.

Theorem 1. Let « € (0, 1) be a significance level. Assume that the variance—covariance matrix
X of the noise is known and assume that Assumption (H) holds. Then, the Spacing test for LARS
is unbiased: its power under the alternative is always greater or equal to the significance level «.

Under mild assumptions, this theorem ensures that the probability of getting a true positive is
greater or equal to the probability of a false positive. Moreover, in the limit case when the signif-
icance level « goes to zero, this result is refined by Theorem 5: the probability of a true positive
is much greater than the probability of getting a false positive. As a matter of fact, we prove that
the cumulative distribution function of S has a vertical tangent at the origin under the alternative
hypothesis. The reader may consult Figure 1 which represents the empirical distribution function
of § that exactly describes the uniform law.

A proof of Theorem 1 can be found in Section 2.3. Interestingly, our proof is based on Ander-
son’s inequality [1] for symmetric convex sets. Moreover, we derive a simple and short proof of
the distribution of the test statistic (Pivot) under the null, see Corollary 1 of Proposition 4.

Theorem 1 has a stronger version in the case of orthogonal designs, for example, when the
variance—covariance matrix ¥ is Id, and X T X =Id p (which implies that n > p).

Theorem 2 (Orthogonal design). Assume that R = 1d,, then, under any alternative in Hy,
the density function of S is decreasing. Hence, for all significance level a € (0, 1), the region
Reject, ={S < «} is the most powerful region among all possible regions.

This theorem may be seen as an evidence in favor of the choice of the rejection region as
Reject, = {S < a}. A proof of Theorem 2 can be found in Section 2.4.
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Figure 1. On each figure, empirical distribution function of 15000 p-values coming from various sce-
narii. 5000 p-values drawn under the null (red), 5000 p-values of S under the alternative (green) and 5000
p-values of T under the alternative (blue). At the top, the level of sparsity s is equal to 2. At the bottom,
the sparsity s is 5. In both cases, from left to right, (n, p) = (50, 100), (100, 200) and (100, 500).

1.4. Extension to unknown variance

Interestingly, we can derive from our analysis a studentization of the test statistic (Pivot). Indeed,
we consider the test statistic
_ 1=Fpa(T)
1 —TFpn_1(T2)’

where 2 < rank(X) =: m < n and F,,_; denote the cumulative distribution function of the ¢-
distribution with m — 1 degrees of freedom. Note that 77, T, are statistics that can be computed
in cubic time (cost of one Singular Value Decomposition (SVD) of the design matrix) from the
first knots of the LARS algorithm, see Algorithm 1. In the sequel, for each i € [1, p]l, we may
denote by X_; € R"*(P=1 the sub-matrix of X where the ith column X; has been deleted.

Theorem 3 (t-Spacing test for LARS). Assume that the variance—covariance matrix % is
o21d, where o > 0 is unknown and that foralli # j € [1, p1l, one has || X;|l»= 1, |(Xi, Xl <1
and the matrix X _; has rank m := rank(X) > 2. Then, under the null Hy, the statistic T de-
scribed by Algorithm 1 is uniformly distributed on [0, 1].

In particular, we derive a detection test of significance level o considering the rejection region
Reject, = {T < a}. A proof of Theorem 3 can be found in Section 3. One can empirically witness



470 J.-M. Azais, Y. De Castro and S. Mourareau

Algorithm 1: #-Spacing test

Data: An observation Y € R” and a design matrix X € R"*? of rank m > 2.
Result: A p-value T € (0, 1).

Compute the first LARS knot \1;
1. Set U := XTY;
2. Find (7, &) € [1, p]l x {&1} such that £U; = ||U || and set A1 := £U;;
Compute the second LARS knot X\»;
3. SetR:=X"X;
U;j—R;;U; —Uj+R;U;
4. Set )L2 = \/1Sj?éfSP{ {7§R{j; 1;§R§; }’

Compute the variance estimator 6

5. SetR_; := XLA(HX - X;X;)X,; with ITy the orthogonal projection onto the range

of X;
6. Compute R:l}, the pseudoinverse of R_;;
n vIiR~lv_;
7. Set6? = —=7— Where

Vo= U1 = RyU, ... Uiy — R-1)iUp, Ui gy — R41)i U, - Up — Ry Up);

Compute the p-value T

8. SetT:=A1/6 and T := A, /5;

9. Set T := % where we denote by IF,,_1 the cumulative distribution function

of the ¢-distribution with m — 1 degree(s) of freedom.

(see Figure 1, for instance) that the #-Spacing test for LARS is an interesting test statistic that may
take smaller values under the alternative hypothesis.

Observe that Algorithm 1 requires the computation of one SVD at Step 6. We deduce that its
computational cost is O(p>) which is reasonable in high-dimensional statistics.

Remark 1. In this article, we limit our attention to the hypothesis £ = o%Id, though one
may generalize Theorem 3 to weaker hypotheses ¥ = 02X, where %, is any known variance—
covariance matrix and the variance level o2 is unknown.

Remark 2. Consider now that the variance estimation was performed including not only the
residuals but the full vector U and define the corresponding test statistic 7. In that case, accord-
ing to simulations displayed on Figure 2, the test T’ seems biased for small values of (n, p) and
is anyway less powerful than 7. One may argue that the situation is comparable to the ordinary
regression model where the Fisher test is uniformly most powerful among unbiased tests.



Power of the spacing test for LARS

1

471

P

/

1

0.9

08

07

06

05

04

03

0.2

0.1

0.9

08

07

06

05

0.4

03

0.2

0.1

0
0

01 02 03 04 05 06 07 08 09

1

0
0

01 02 03 04 05 06 07 08 09

1

0
0

01 02 03 04 05 06 07 08 09 1

/
/
/ /

%

o

_—

Y
/. /
e

= 0
0 01 02 03 04 05 06 07 08 09 1 0

0
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2. Empirical distribution function of 9000 p-values coming from various scenarii: orange, red and
blue lines correspond respectively, to 7 under the null, 7 under the alternative and 7’ under the alternative
(see Remark 2 for a definition). At the top, the sparsity s is equal to 2. At the bottom, the sparsity s is 5. In
both cases, from left to right, (n, p) = (10, 50), (50, 100) and (100, 500).

1.5. Empirical distributions of the p-values

Figure 1 shows the empirical distribution of a sample of 15000 p-values constructed from stan-
dard regression problems under the global null and under the alternative for the pivots § and T'.
Design matrices X and the mean (under the alternative) have been drawn uniformly at random
from the following cases:

e X is a design matrix of size 50 x 100, 100 x 200 or 100 x 500 with i.i.d. (0, 1) entries.
e Bhasii.d. N (0, 1) (small mean), N'(0,4) (medium mean) or N'(y/2log p, 1) (high mean)
entries.

Under the null, the agreement with uniform is very strong. Moreover, the Spacing test for
LARS is empirically more powerful than the t-Spacing test for LARS and both seem to be un-
biased. However, in a context of very high-dimensional regression, the t-Spacing test for LARS
is very similar to the Spacing test for LARS due to standard results on Student and chi-squared
distribution.

Note that Section 4 presents a comprehensive study of the two dimensional case from both the-
oretical and numerical point of views, and a numerical investigation of the power of the Spacing
test under various alternatives and against others testing procedures.
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1.6. Previous works

Our test can be also referred to as the Kac—Rice test as introduced in the broader frame of pe-
nalization problems in the seminal paper [26]. The interested reader may consult Theorem 1 in
[26] where the general “Kac—Rice pivot” is defined. Note that various important results on this
subject have been obtained recently and we do not pursue on a comprehensive study here. The
interested reader may consult Chapter 6 of the captivating book [16].

The statistic Kac—Rice pivot given in [26] has been used for model selection and confidence
intervals on the target entries. In the frame of Lasso, the optimality of these approaches is dis-
cussed in [18,25]. Interestingly, the Spacing test is a nonasymptotic version of the covariance
test [19,25], and is asymptotically equivalent to it. Note they have been intensively commented
among the literature, see [6,20,21] for instance. Finally, we point that the settings for the power
proof results (especially the orthogonal regressors case and the group variable selection case)
are resemblant of some of the post-dating work [22] in group forward Post Selection Inference.
However, the case of unknown variance is new (see Theorem 3) and has not been addressed in
the literature.

1.7. Organization of the paper

The next section is devoted to the proof of the main results on the power of the Spacing test. In
particular, the reader may find the exact formulation of Theorem 5 mentioned in the Introduction.
Section 3 addresses the issue of extending the Spacing test for LARS to the unknown variance
frame and introduces an exact studentization of the testing procedure. Section 4.1 presents a fine
description of the Spacing test for LARS’ power in the case of two predictors while the end of
Section 4 gives a numerical comparison with the Pearson’s chi-squared test (goodness of fit) and
the maximal correlation test (i.e., the numerical testing procedure based on A where the rejection
threshold/quantile has been set by MCQMC method).

2. Power of the spacing test for LARS

2.1. Model and notation

Recall that the vector of correlations U = X 'Y enjoys

N, (0, R), under the null hypothesis,
U=(U,....Up) ~ : . .
N, (,u , R), under the alternative hypothesis,
where R = X" ¥ X and p* = X " XB*. Indeed, observe that
{n* =0} & {Hop:“p* € ker(X)”}.

It is well known (see, for instance, the book [16]) that the first knot A of the LARS algorithm
enjoys A1 = ||U||co. Assume that the columns of X are pairwise different. It implies that, with
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probability one, there exists a unique pair (7, €) with 7 € [1, p]l , € = 1 and such that
eU; = || U]l oo- 2.1
Observe that the events &;  := {eU; = ||U ||} are almost surely disjoint, and note that
P
=3 ) e,
i=1e=+1

where 1 denotes the indicator function. Write, for all (i, j) € [[1, p]]z, Uj=R;;U; + Uj-, the

regression of U; onto U;. Recall that the residuals U ; are independent of U;. Denote, for all
i €1, p]land e = +1, '

i i
)\;’8 _ \/ { Uj v —Uj }
I<jsti<p I—¢eRj; 1+¢€Rj;

Furthermore, remark that &; = {Ag’g < eU;}. Indeed, for all i ## j € [[1, p]l,

{(—eU; <Uj<elU;)= {—SU,'(l +¢eRji) <U; — R;;U; <eU;(1 —ERji)}

Ut —U!
= J \% J <eUiyt.
l—SRji 1+8Rji

Hence, define the random variable A, as

)4
Ay = Z A5,

i=1e==%1
We deduce that
p
i,&
G122 = 3 (05 22
i=1e==%1

Denote by ¢ the probability density function of the standard normal distribution.

Lemma 1. For each i € [[1, p]] and ¢ = £1, the random variable A;"g has a density p}’f;. The
2
joint density of (1, L2) is given by

V(b o) eR:, pl mwl,ez)—zz (€1 —end) Pl @)Lzt (23)
i=1 e=£1 g

Proof. One can check that )\é’s has a density, the reader may also consult Ylvisaker’s theorem,
see Theorem 1.22 in [3], for example.
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Observe that for all (i, €) € [1, p]l x {Z1}, the random variable )\2’8 is a deterministic function
of the random variables U ; for j # i and hence it is independent of eU;. We get that the density
w* '

U35 of (eU;, )»3’8) with respect to Lebesgue measure is given by
eUi, 2’

function p

VG, e) €1, pll x {(£1), Y, ) €RY, pl (61, €2) =ty —enf) Pl (€2).
(Ui, Ay7) Ay
Invoke (2.2) to complete the proof. O

Lemma 2. For the study the distribution of S, we can assume, without loss of generality, that
the expectations } are non-negative.

Proof. Let u* € R? and consider the linear map 7 : R? — R” that changes the signs of the
coordinates of U with negative expectation. Set

U:=TW)={4U;:i€<ll,pl},

where for all i € [1, p]l, #; is the sign of u}. Each coordinate of U has non-negative expectation
and the variance—covariance matrix of U is now R with R;, j=ttjRij.

Let us check, with obvious notation, that the test statistic S enjoys S(U) = S(U). Indeed, it
holds that the first knot A satisfies A1 (U) = A1 (U), Ei,s(l}) =& 1,¢(U) and one can note that

Tt U — RetiUs = 13U+ — 13 Rt Us = 13U
Ui =1U; — Rijt; Ui = 1;U; — 11 R;j1;U; = 1;U",

and
i i
et;U; —etjU;
1—1ttjRij  1+1t;Rij’

W)=\ Wie j(0)  with W ;(0) =

J#i
One may check that, whatever the signs #;,¢; are, it holds Wi,g,j(lj) = Wi ¢;e),j(U). Thus
ALE (@) = 2549 (U) implying A2(0) = 2 (V). 0

2.2. Piecewise calculus of the power

We have the following useful proposition giving an exact expression of the power of Spacing test
for LARS as weigthed sum of Gaussian mesures of disjoint cones. Denote by C; . the cone

Cig:= {(ul,...,up) e RP suchthat Vj #1, uj|< 8u,'},

recall that ® = 1 — & is the complement of the standard normal cumulative distribution function
and define by ®~! its inverse function.

Proposition 4. For all o € (0, 1), define

ha(€) := d~H(ad(0)) — €. (2.4)
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Then it holds,

P.-{S <a}=aF, {Z Z explentha (sU,)]]l{Uecle}} (2.5)

i=1e=+1
where £+ denotes the expectation under the Gaussian distribution N, (u*, R).
Proof. Let o € (0, 1). Note that
(S<al={nzd @)= (dG1)/a)}.
Using (2.2), the change of variable g1 = ®~!(®(£;)/a) and (2.3), it holds

(@) /)

PofS<a)=Y" 3 / " dtip(er—en) / dtap’, (€2)
i=1 e=%1 (%) 0 2
p 400 q1
¢(q1) .

=a dgi (b —eu; / deapt, (62)
2 _Z/o W17 Jy dr,
i=1e==%1
P +00 0 q1 *

=a)y / R ) —w?)/ deap!’. (6)
X 0 2
i=1e=%l
L +00 tr—an [T u

— ER; L1 =41 .

—ey Y [ e [ atarlt,
i=1e==%1
P

*(H—1 T

=a) Y Eplexplens (@7 (a®EUn) — eUn)[L )]

i=1e==%1

p
— Z Eus[exp[en] (@7 (a@(eU)) — eUi) [Lwec,.]-

as claimed. O

Remark 3. Note the numerical evaluation of (2.5) can be performed using a n-dimensional inte-
gral, see Section 4.

Corollary 1. Under Hy, the statistics S defined by (Pivot) follows a uniform distribution on
(0, 1].

Proof. The null hypothesis is equivalent to u* = 0 and, from (2.5), we recover that

p
PolS<at=a) > FoCie)=a,

i=1e=%1
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i.e. the level of Spacing test for LARS is «. This proves that, under Hy, the test statistics S
satisfies

S ~ Unif([0, 1]),

as claimed. O

2.3. Distribution under the alternative

This section is devoted to the proof of Theorem 1.

Step 1: By a standard approximation argument, one may assume that R is a regular matrix.
Indeed, if R is singular we can approximate it by a sequence (R,;),>0 of regular matrices with
bounded variance. If for each of these matrices we have P+ {S < o} > « then the result will pass
to R by dominated convergence in (2.5). Furthermore, using Lemma 2, we may also assume that
Vi e[, pll, u; = 0.

Recall that C; . is the cone

Cie:= {(ul,...,u,,) € RP suchthat Vj #1, |uj|< £ul~}

and denote by y the non-degenerate Gaussian measure associated with the multivariate normal
distribution NV, (0, R).
Step 2: We start from (2.5) to get that

1 P
EPM*{S <a}=FE;» :Z exp[su;ha (EUi)]ILC,-,g }
i=1e=%1

Il
e

M~

>1+ Emi [sM;ha(sU,')]ch,,g}.

i=1e=%1

Perform an integration using the fibers Fy ; . := {u; = €€} N C; . to obtain that

1 400 P . .
PSsalz +f0 3 eutha (Vo (€. i, ) de,

i=1e==%1

where o, (¢, i, ¢) is the integral of the density function ¢+ of the multivariate normal distribu-
tion A, (1*, R) on the fiber Fy ; ;.

Step 3: Let £ > 0 and a > 0. Consider the hypercube Hy :=[—Z, £]” and denote by Hy — au*
its translation by vector —au*. Invoke Anderson’s inequality (see Lemma 4) to get that

av>y(He—ap*) :=P{N,(0,R) € Hy —ap*},

is a non-increasing function on the domain a > 0. In particular, its derivative at point a =1 is
non-positive. It reads as

1
lin%) —(y(He — (1 +nu*) —y(He — 1*)) <0,

n—>0n
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Figure 3. Illustration of (2.6) in dimension 2. Passing to the limit, contribution of triangles (dashed lines)

vanish and the derivative in a = 1 is equal to the sum of each face with a weight E;Ll.* corresponding to its
orientation.

and this quantity is simply, by Step 4,

p p
D ufous(8i, =) =Y ploys(L,i, +1) <0. (2.6)

i=1

Finally, the positivity of 4, (£) (see Lemma 5) completes the proof.
Step 4: In the context of Step 3, computation on y (Hy — apn*) gives that

d
v (He—ap’) = f o Yae <z>dz—Z i / o Pan (2)d2

P
:Z Z —epjogu (L, i,€),

i=1e==%1

where, for all a > 0, we denote by o,,+({, 1, &) the integral of the density function ¢+ of the
multivariate normal distribution \V},, (au*, R) on the fiber Fy ; ¢

This computation might also be illustrated via finite difference method, one may see Figure 3
for instance.

2.4. Orthogonal case

In this section, we give the proof of Theorem 2.
Invoke (2.3) to get that, under Hj,

V(b L) eR: Pl zz)-Z Y ol —end)pl . (@)1=t
i=1e==%1 h2
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Recall that 7 € [[1, p]l is defined by (2.1). Since R = Id,, remark that

A2 =max |Uj|.
j#t

Furthermore, observe that )J = i’_l almost surely. It implies that for all i € [1, p]],

Denote by p " their common value. As a consequence, it holds

p
Vil &) €R: pl L () Z )+ (01 + 1] ))pA, (£2)Tj0<ty<t1)-

It implies that, conditionally to A, = £, the random variable ® (1) admits the density

P

P(@ipamts) (V) = (const) 3 Jcosh(ST W) g, - @D
i=1

Since ®~1(v) remains in the positive domain, the functions into the sum above are non-
increasing and strictly decreasing for the index i such that u} > 0. We have clearly the same
result for the expression equivalent to (2.7) given the conditional density of S.

Deconditionning we obtain that the density of S is a mixture of non-increasing functions,
thus non-increasing. In addition, the deconditioning formula gives positive weights to decreasing
functions thus, in fact, the density is decreasing.

2.5. Asymptotic case
Theorem 5. Under H,, it holds
oFlIP’,ﬁ{S <a}— +oo,
as o goes to zero, where u* = (XTX),B* and P+ denotes the law ofXTY ~ ./\fp (u*, R).

Proof. Recall that H is equivalent to u* # 0. Without loss of generality, assume p} > 0 and
note that

p
o 'Pue{S <o) =Eu{ Y D exp[ufha(eUn|Lyec, )

i=1e==%l1

> B {exp[uiha (UD | Lwee, 3} =: Ar1(@).
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Moreover, observe that
Vx eR, hy(x) = +00,

as a > 0 goes to zero. In particular, it yields
Vx € R, exp[u’{ha (x)] — 400,

as @ > 0 goes to zero. Eventually, let («,),eN be any sequence of positive reals that goes to zero
as n tends to co. Invoke Fatou’s lemma to get that

lim o, 'Pu{S <a,} > lim Apj(an)
n—oo

n—oo

> liminf B, {exp[iiha (UD]Lwee, )}
> B, {liminfexp[uiha (U] Lvec )

which concludes the proof. g

3. Studentization of the spacing test for LARS

In this section, we give the proof of Theorem 3.

3.1. Model and notation

Assume that the variance—covariance matrix ¥ of the Gaussian noise & is o21d, where the
standard deviation o > 0 is unknown. Assume also that the columns (X ,-)le of the design matrix
X enjoy || X;|l2= 1 and denote by U := X 'Y the correlation vector satisfying

N, (0,%R), under the null hypothesis,

U=U Yoy U, ~ . .
(“ 2 :N »(n*, o?R), under the alternative hypothesis,

where R = X " X and u* = RB*. Observe that the knots of the LARS algorithm are given by
p .
e
()L], )\.2) = Z Z (SU,', )\.2 ):ﬂ'{sU,->)L;’8}'
i=1e==£1

For each i € [[1, p]l, we denote by X_; € R?*(P~1 the sub-matrix of X where the ith column
X; has been deleted. Also, we denote by U_; € R? -1 (resp. u* ;) the sub-vector of U (resp. u*)
where the ith entry has been deleted. Observe that the regression of U_; onto U; reads

U_i={R) U +V,
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where (R;)_; € RP —1 denotes the sub-vector of the ith column R; of the matrix R where the ith
entry has been deleted. Observe that the vector V_; € RP~! is a Gaussian vector independent of
U; such that

Voi~ Npoi (1 — (R)—ipef, 0*R_;), 3.1

where R_; == X Ii(l'[ x — X; X IT )X _; denotes its variance—covariance matrix with ITx the or-
thogonal projection onto the range of X. Observe that [1x has rank m by assumption and
it follows that R_; has rank m — 1. Denote R:l.l/

R:l.l/zR_l-R:l.l/2 is the orthogonal projection onto the range of R_; (i.e., R:il

root of the Moore—Penrose pseudoinverse of R_;).

? the only symmetric matrix such that

/% is the square

3.2. Estimation of the variance

An estimation of the variance o is given by

A

. —i
o .

-1/2
RS PVan
m—1
Indeed, Equation (3.1) gives that, under Hy, it holds

—1/2
IRSVoil3

2
- = m—1),
g x( )

where x2(m — 1) is the chi-squared distribution with m — 1 degree(s) of freedom. Since V_; is
independent of U;, note that eU; and 6; are independent. Furthermore, since V_; is Gaussian,
remark that its norm and its direction are independent so that V_;/4; and 6; are independent.
Recall that

= \/ {Uj_RjiUiv—Uj+RjiUi}
1<jmi<pl 17 ERji L+eR;i

and V_; := (U1 —RiU;, ..., Ui-1 = Ri—1)iUi, Uit1 = Ri+1)i Ui, ..., Up — Rp; U;). Eventually,
remark that
i

eU; = and o are mutually independent. (3.2)

Q|3
™

3.3. Distribution of the test statistic

Let (i, e) bein [1, p]] x {#1}. Recall that eU; and k;"g are independent. In view of (3.2), observe
that
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are independent and, under Hy, the random variable Tli’g a Student random variable with m — 1
degree(s) of freedom. Define (77, T3) as

P eU; )Lé,s
(T1, 7o) = 21: Xﬂ::l<a_ a_i>1{eu,->ng}’ 3.3)
i=1e=
and recall that the events {eU; = ||U || o} = {eU; > Aé’g} are almost surely disjoint.

Lemma 3. Under Hy, for eachi € [[1, p]l and ¢ = 1, Tzi’s = )\;’8/61- has a density p(;zm. Under
Hy, the joint density of (T1, T») is given by

p
V(e £2) € R, P 1y (11 12) = Lj0<py <) tm—1 (1) Z Z P(;i,g(lz), (34
i=le=+l °

where t,,—1 denotes the probability density function of the t-distribution with m — 1 degree(s) of
freedom.

Proof. One can check that Tzi ** has a density, the reader may also consult Ylvisaker’s theorem,
see Theorem 1.22 in [3], for example. Observe that f_or all (i,¢e) € [[1, p]l x {£1}, the random

variable TZ"S is independent of the random variable le . The result follows by (3.3). U
Recall that
T 1 —mel(Tl)’
1 =Fpu-1(T2)

where [F;,,_1 denote the cumulative distribution function of the ¢-distribution with m — 1 degrees
of freedom. The expression of the joint density (3.4) shows that, conditionally to 7>, the random
variable T is distributed as a Student distribution conditioned to be greater than 75. As a conse-
quence, the conditional distribution of 7 is uniformly distributed on [0, 1]. We deduce that T is
uniformly distributed on [0, 1], as claimed.

4. Numerical experiments on the power

4.1. Overture: A theoretical analysis of the two dimensional case

In this section, we assume that p = 2 and ¥ = Id;. Define

R=R(p)— (/1) ’f) , @.1)

with p = Cov(U1, U;) € [—1, 1]. Define the rejection region R, by

P{S <a}=:P{U = (U, Uz) € Ra}.
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6

4

2
0.05

Figure 4. An illustration of region R(—)'—Ols U R(—)'—ozs in (dark) blue and region R, 015 UR,

yellow for p =0, p =0.5 and p = —0.7 (from left to right).

in (bright)

Note R, is symmetric about the origin and it is the non-convex disjoint union of four convex
regions (see Figure 4 for instance), namely

RIS ={U1 = @7 (@/2)} N {8 (U1 + p) + pU; < U < ga(UD(1 — p) + pUy },
RE2={U2= @7 (/D)) N {—ga(U2)(1 + p) + pUs < U < go(U2)(1 = p) + pUs
Ryt ={-U1= 0 " (@/2)} N {—ga (U = p) + pU1 < Uz < gu(=U1)(1 + p) + pU, }.
Ry ={-Ur= @ ' (@/2)} N {=gu(=U)(1 = p) + pUs < U1 < go(=U2)(1 + p) + pUs},

where gq(x) := &1 (d(x) /@) = @1 (1 — 1220 forall x e R.

Remark 4. Observe this decomposition holds in any dimension p. The region R, given by
P{S <a} =P{U € R,} is symmetric about the origin and is the non-convex disjoint union of 27
convex regions of R”.

Note Anderson’s inequality (see Lemma 4) is sufficient to establish that the Gaussian measure
of symmetric convex set is monotonic. Unfortunately, the region R, is not convex. However,
when p = 2, using an appropriate fibration, one may find a collection of sets (more general
than R,) satisfying a kind of generalization of Anderson’s inequality. This is the object of the
following proposition.

Proposition 6. For u € R and ¢ = %1, define the non-centered diagonals
AL ={@x, )€ Ry =¢x +u}.

Let T be a set of R? which is symmetric with respect to the two diagonals Ag ' and Ay U and
satisfies for all u and &

TNA is an interval. 4.2)
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Set
W (1, o) =P{N ((1. 12). R(p)) € T}

Then the function Y (u, v), which is obviously symmetric with respect to centered diagonals Aa' !

and Ay s non-increasing along every half diagonal. More precisely, for every u € R and z > 0,
the two functions

> Vu/2—z,u/2+2)=V(Wu/2+z,u/2 —2), “4.3)
> VYu/2+z,—u/24+2)=Vwu/2—z,—u/2 —2), “4.4)

are non-increasing.
Remark 5. Note the result remains true if we multiply the matrix R(p) by a scalar.
Proof. The proof is given in Appendix B.1. (I

Corollary 2. Va € (0, 1), R, satisfies the hypothesis of Proposition 6 so the power of the Spac-
ing test for LARS is non-decreasing along the diagonals A, in the sense that is has exactly the
same properties as those of the function ¥ given by (4.3) and (4.4). In particular:

e Spacing test for LARS is unbiased,
e Foreach u e R2, the function t — P, (S < ) is non-increasing for t > 0.

Proof. The proof is given in Appendix B.2. (|

Remark 6. In dimension two, note that A(l) U Aal = {(U1, Uz); S(Uy, Up) = 1}. In higher di-
mensions, one has

p
{W....up: sy, ... up =1} =] | {M =eU; =r}1§lx|UjI]-
i=1e==%l

Observe the aforementioned set is not a hyperplane and so no orthogonal symmetry appears. The
proof given in this section cannot be generalized to higher dimensions.

4.2. A toolbox computing the power

To compute the power of Spacing test for LARS using (2.5), we need to perform integration in
high dimensions. First, observe that (2.5) can be expressed as n-dimensional Gaussian integral.
Indeed, recall that n = rank(R) and R = R'2(RY/?)T with R'/? e RP*", so that

PufS <o} =aE[W(Vi,..., V)],
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where V = (Vy,..., V,) ~ N, (0,1d,,) and

P

Wi, ...,V = Z Z exp(suiha(8(R1/2V)l.))]lcl,£.

i=1e==%l1

The aforementioned formula is a high dimensional Gaussian integral and we use a very efficient
algorithm from A. Genz [2,14], based on a reduction of the integral on the hypercube [0, 1]"
and Monte-Carlo Quasi Monte-Carlo (MCQMC) integration. In this fashion, Matlab programs
gsimvn and gsimvnef provide powerful and robust numerical integration algorithms. The MC-
QMC routine is based on Kronecker or lattice sequences to compute integrals. In a second step,
a Monte-Carlo (MC) layer is added to ensure unbiasedness and to compute the precision. Even-
tually, the QMC step is nested in the MC step in order to improve the speed of convergence,
see [24], for example. A Matlab toolbox computing the power of Spacing test for LARS and
based on Genz’ routines is available on S. Mourareau’s website [23]. In addition, some practical
examples are given.

4.3. The numerical analysis of the two-dimensional case

In dimension two, the power of Spacing test can be easily computed using numerical integration
from (2.5). Consider the power function ky ,(8) = P{IN(RB, R) € Ry}, where R = R(p) is
given by (4.1) and the region R, is defined in Section 4.1. The aforementioned power function
is monotone in B along the directions defined in Section 4.1 and it can be seen on Figure 5 that
the variation of the power is minimal along the diagonal associated to the minimal eigenvalue of
R(p), see also Corollary 2.

4.4. Competing the spacing test for LARS

We consider the standard goodness of fit test of the hypothesis Hp : “B* € ker(X)” against
H; : “B* ¢ ker(X)”. This test is defined by the statistic 0 = ||Y||% that follows a x2(n, ||Xﬂ||%)
distribution where x2(a,b) denotes the x2 distribution with a degrees of freedom and non-
centrality parameter b. Our aim is to compare this standard test with the Spacing test for LARS
in different cases.

4.4.1. The two-dimensional case

In dimension two, considering the full model (s, n, p) = (2,2, 2), we present a comparison of
level sets of power functions for Spacing test for LARS and Pearson’s chi-squared test, see Fig-
ure 6. It may suggest, from the comparison of level sets, that Pearson’s chi-squared test is uni-
formly more powerful than Spacing test for LARS in the two-dimensional case.

4.4.2. Higher dimensions and some comments

In higher dimension, our experiments have been conducted in the following frame. The design
matrix X is drawn from n x p independent standard Gaussian distribution. The target f* has s
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Figure 5. At the top, from left to right, power function g - ky, ,(B) for a significance level @ = 0.05 and
correlations p =0, p = 0.5 and p = —0.4. At the bottom, corresponding level sets of the power function,
ka,p(-) =0.10, 0.20, 0.40 and 0.70.

Figure 6. From left to right, level sets of the power functions of S (dashed lines) and Q (plain line) for
a=0.05and p =0, p=0.5 and p = —0.4. We observe that the hypograph of the power function of S is
included in the corresponding one of Q.
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non zero entries independently and identically drawn from centered Gaussian distribution having
variance 2 (referred to as the “large mean case”), variance 1 (“medium mean case) or from
uniform random distribution on [0, 1] (“small mean case’). The choice of s, n and p concerns
“full” models (s =n = p, see Figure 8), “sparse” models (see Figure 7) or “very sparse” models
(s < p, see Figure 9). Our comments are listed below.

e As we have seen in Section 4.4.1, Figure 6 suggests, from the comparison of level sets,
that the x2 test is uniformly more powerful than the Spacing test for LARS in the two
dimensional case. Results from Figure 8 seem to confirm the interest of the x? test for full
models. However, the Spacing test seems much more efficient in very high dimension cases
when the signal presents a major gap between the dominant component and the rest, see
Figure 9 for instance. When the target entries 8; have the same order of magnitude (i.e.,
independently drawn w.r.t. the same law), even in case of sparse models, the x 2 test seems
to be more powerful than the Spacing test, see Figure 7.

chi-square power

chi-square power
s

chi-square power
s

0 02 04 06 08 1 0 02 04 06 0.8 1 0 0.2 04 0.6 08 1
Spacing power Spacing power Spacing power

0.14

chi-square power
s

chi-square power
=

chi—square power
=

o

8

0.06

0.04

0.06
0.02

L L L L L L 0.04 L L L L L
0 0.05 0.1 0.15 02 0.25 0 0.05 0.1 0.15 0.04 0.05 0.06 0.07 0.08 0.09 0.4

Spacing power Spacing power Spacing power

Figure 7. From left to right, 2000 simulations of Spacing test for LARS’s power versus x2 power in
various sparse cases (s,n, p) = (5, 10, 50), (10, 50, 100) and (10, 100, 200). At the top, the mean S is
“large”, while, at the bottom, the mean is “small” (see Section 4.4.2 for a definition). In both case, Pearson’s
chi-squared test seems more powerful in respectively 95, 94 and 99% of cases (large mean) and 91, 98 and
99% of cases.
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Figure 8. From left to right, 2000 simulations of Spacing test for LARS’ power versus X2 power in the
“full” case (s,n, p) = (5,5,5) and (10, 10, 10) for a mixture of small, medium and high mean. As in
dimension two, the x2 test seems to give an improvement with respect to the Spacing test for LARS.
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e On Figure 10, we have compared p-values coming from the spacing test, the x? test and
the “max test” (i.e., the numerical testing procedure based on A where the rejection thresh-
old/quantile has been set by MCQMC method) under the alternatives of our framework. On
one hand, when the signal is not sparse enough, we witness the “power loss” of the Spac-
ing test and similar power performances for the max test and the chi-squared test. On the
other hand, in case of very sparse models with a gap between the largest target entry and the
others, the max test and the spacing test outperform the chi-squared test.
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Figure 9. In the first instance (left), (s, n, p) = (1, 100, 400) and the mean is drawn from N (/2log(p), 1).
In the second one (center), (s,n, p) = (3,100,400) and B; ~ N(y/2log(p), 1) while B, and B3 fol-
low a standard Gaussian. In the third one (right), (s, n, p) = (3, 100, 400) and all means are drawn from
N (/2log(p), 1). When one mean is dominant, as in the first two cases, the Spacing test for LARS seems
to be more efficient. However, when the difference between the two dominant means isn’t large enough, the

X
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test seems to be more efficient.
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Figure 10. Empirical distribution function of 6000 p-values coming from various scenarii: 2000 p-values
of S under the alternative (red), 2000 p-values of A| under the alternative (green) and 2000 p-values of Q
under the alternative (blue). At the top, (s, n, p) = (10, 10, 10) and (s, n, p) = (10, 50, 100) for a mixture
of small, medium and high means. At the bottom line, (s, n, p) = (1, 100, 500) and the mean is drawn from

N (/2log(p), 1) on the left panel; whereas (s, n, p) = (3, 100, 500) and 81 ~ N (\/2log(p), 1) while B,

and B3 follow a standard Gaussian on the right panel.

e Remark that the max test is very sensitive to the estimation of c¢i_, defined by Py, {1 >
C1—q} = o for which we used the MCQMC program of A. Genz, gsimvn. In Figure 10 the
noise variance o2 is known with infinite precision and, in that case, we witness that the
max test seems to be more powerful than the Spacing test. However, we must keep in mind
that, in practice, the variance o2 is not exactly known and the max test may be not robust
to variance estimation errors. Furthermore, contrary to the Spacing test, no studentization
of the max test exists, as far as we know. We conclude that, in perfect world, the max test
would be a good opportunity though, in more realistic scenarii, one would prefer a more
robust and studentized testing procedure such as the Spacing test.

5. Conclusion and perspectives

This article provides a new tool computing the power of the Spacing test that we leverage to
obtain unbiasedness, studentization, optimal rejection regions (in the orthogonal design case) and
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power behavior for small significance levels. Comprehensive numerical and theoretical studies
has been given in the two dimensional case. Extensive numerical studies comparing the Spacing
to naive chi-squared test and maximal correlation test have been undertaken enlightening that
the “power loss” of the Spacing test when increasing sparsity and/or decreasing signal maximal
amplitude.

Other interesting questions remain open. In particular, one can wonder wether the Spacing test
is still unbiased when the design is not normalized as in (H). In this case, unpublished computa-
tions reveal that the fibration presented in this article will not be sufficient to invoke Aderson’s
inequality. Indeed, the function % is no longer constant on opposite faces of the fibration (here
the cube) and a finer fibration is needed. Moreover, one can question about the alternative, like
sparsity or the separation in magnitude of the largest effect. This issue seems more tractable
though, even in the orthogonal case described by (2.7), one sees that consequential work has to
be done to properly exhibit the influence of the sparsity (here the sparsity is understand through
w* := X T Xp* = B*) and the magnitude of the coefficients of the target ;*. We feel that it might
be carried out through explicit (and nontrivial) computations but we did not pursue this lead here.
This would be an interesting question to address in future work.

Appendix A: Technical lemmas

Lemma 4 (Anderson’s inequality for Gaussian measure [1]). Let E be a convex set in R?,
symmetric around the origin, and let Z ~ N, (0, V). For all t > 0 and . € R? define

VEut) =P(Z+tpekE).
Then t = yEg ,(t) is a non-increasing function.

Lemma 5. For all a € [0, 1] and for all u € R such that u > <i>(oc/2), it holds that the function
hy defined by (2.4) enjoys hy > 0, hy is non-increasing, and hy goes to zero at infinity.

Proof. First, note a®(u) < ®(u) and P is non-increasing, to get that h, > 0. Compute the
derivative and use that &, > 0 to show that hfx (u) <o — 1 <0. Eventually, we get that

Ya €10, 11, Yu > ug, D(u+a) <ad).

As @ is non-increasing, it implies that u +a > &~ («®(u)) so that a > hg (1) > 0 which con-
cludes the proof. (]

Lemma 6. Vo € [0, 1], Vu > &~ («/2), Vv > 0, it holds
8o +v)>gqu)+v,

where g () = ®~1(1 — %) = (@) /a).
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Proof. To prove (6), we show

08a e o)
—(I/t,a) - —- 7 -
ou ap(ge(u))  ju,a)

Use the fact that Vu € R, ¢(u) > u®(u) to compute

aj @
3—](14, @) = ¢(ga(w) — ﬂga(u) >0
o o
SO
%(M,Ol) > QO(M) =1,
ou Jj, 1)
as claimed. |

Appendix B: Proofs of Section 4.1
B.1. Proof of Proposition 6

Set R = R(p) for short. The proof relies on the fact that the eigenvectors of a two dimensional
correlation matrix (such a R) are fixed and coincide with the diagonals of R2. Symmetry of T~
with respect to these diagonals is a key point in the proof.

First, we can uses a /4 rotation and consider a variance—covariance matrix R which is diag-
onal and a set 7 which is symmetric with respect to the two axis and whose intersections with a
line parallel to one axe is an interval.

Let W the expression of the function W after this rotation. We have to prove that ¥ is non-
increasing along the relevant half-axis. Fix, for example, 1| and consider, for iy > 0 the function

w2 > U(w) = PN (u, R) € T) :/

—00

+o00 <u —
%
o1

)p(jv(,u, o2) € I,)du.

where (712, 022 are the diagonal elements of R, ;v = (i1, 2) and

Iu:{veR:(u,v)e’f'}.

Our hypotheses imply that for all u, I, is an interval that is symmetrical with respect to zero. An-
derson’s inequality (Lemma 4) implies directly that the Gaussian measure of /,, is non-increasing
as a function of s so the function ps — W (w1, n2) is non-increasing. This gives half of the
statement, the other statement is obtained exactly in the same fashion by exchanging the roles of
w1 and po.
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B.2. Proof of Corollary 2

Step 1: If (U1, U,) has distribution A/ (0, R), then it is also the case of (U1, —U,), (—=Uy, Us) or
(=U;, —U,). This implies that R, which is computed under the null hypothesis, has the two
required symmetry properties of Proposition 6.

Step 2: We consider now hypothesis (4.2). Consider (41, u2) € R;“’l. By definition of this
region, it holds

uy > d ()2,
and

8aw)(1 — p) + pur > ur > —go )1+ p) + puy.

Let r > 0 and consider the points (u] + 7, u +r) and (u1 4+ r, uy — r). It is proven in Lemma 6
in the appendix that

a1 +71) > go(ur) +r.

As a consequence, for example, g, (41 +7)(1 —p)+pW1+7) > go(m1)(1 —p)+ p(uy) +r and
this implies directly that (1 + r, us +r) and (u1 +r, up — r) belong to R(‘x"*l. The intersections
of R;ﬁl with the diagonals A?, are half lines or empty sets. We have the same results for the three
other regions in the same fashion and this implies that the intersections of R, with the diagonals
A? are intervals. Finally, this result is true in B because R preserves symmetry properties along
the diagonals.
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