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In this article, we study sparse spike deconvolution over the space of complex-valued measures when the
input measure is a finite sum of Dirac masses. We introduce a modified version of the Beurling Lasso, a
semi-definite program that we refer to as the Concomitant Beurling Lasso. This new procedure estimates
the target measure and the unknown noise level simultaneously. Contrary to previous estimators in the
literature, theory holds for a tuning parameter that depends only on the sample size, so that it can be used
for unknown noise level problems. Consistent noise level estimation is standardly proved. As for Radon
measure estimation, theoretical guarantees match the previous state-of-the-art results in Super-Resolution
regarding minimax prediction and localization. The proofs are based on a bound on the noise level given
by a new tail estimate of the supremum of a stationary non-Gaussian process through the Rice method.

Keywords: deconvolution; convex regularization; inverse problems; model selection; concomitant
Beurling Lasso; square-root Lasso; scaled-Lasso; sparsity; rice method.

1. Introduction

1.1 Sparse deconvolution with unknown noise

1.1.1 Super-resolution Sparse deconvolution over the space of complex-valued Borel measures has
recently attracted a lot of attention in the ‘Super-Resolution’ community and its companion formulation
‘Line spectral estimation’. In the Super-Resolution framework, one aims at recovering fine scale details
of an image from few low frequency measurements, where ideally the observation is given by a low-
pass filter. The novelty in this body of work relies on new theoretical guarantees of the �1-minimization
over the space of discrete measures in a grid-less manner. Some recent works on this topic (when the
underlying dimension is one) can be found in [3,9,12–14,18,22,25,38] and references therein.

More precisely, pioneering works were proposed in [12], treating inverse problems on the space of
Borel measures and in [13], where the Super-Resolution problem was investigated via Semi-Definite
Programming and a groundbreaking construction of a ‘dual certificate’. Exact recovery (in the noiseless
case), minimax prediction and localization (in the noisy case) have been performed using the Beurling
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UNKNOWN NOISE LEVEL IN SPARSE DECONVOLUTION 311

Lasso (BLasso) estimator [3,25,37,38], which minimizes the total variation norm over complex-valued
Borel measures. Noise robustness (as the noise level tends to zero) has been thoroughly investigated in
[22]; the reader may also consult [20,23,24] for more details. Change point detection and grid-less spline
decomposition are studied in [7,19]. Several interesting extensions, such as deconvolution over spheres,
have been also recently provided in [6,8,9]. The paper [30] considers functional variants of compati-
bility conditions (see (6)) for general operators, but it does not handle the concomittant formulation
presented here.

1.1.2 Concomitant Beurling Lasso: adapting to the noise Our proposed estimator is an adaptation to
the Super-Resolution framework of a methodology first developed for sparse high-dimensional regres-
sion. In the latter case, the joint estimation of the parameter and of the noise level has first been considered
in [1,33], though without any theory. It was based on concomitant estimation ideas that could be traced
back to the work of Huber [29]. The formulation we consider in this work appeared first in [1,33] with
a statistical point of view, as well as in [40] with a game theory flavor. Note that interestingly, both
approaches rely on the notion of robustness. An equivalent definition of this estimator was proposed
and extensively studied independently in [5] under the name Square-root Lasso. The formulation we
investigate is also closer to the one analyzed in [36] under the name Scaled-Lasso. Yet, we adopt the
terminology of ‘Concomitant Beurling Lasso (CBLasso)’ in reference to the seminal paper [33]. Last
but not least, our contribution borrows some ideas from the stimulating lecture notes [39].

Remark that an alternative formulation was investigated in [35] with a particular aim at Gaussian
mixture models. The authors have proposed to analyze a different high-dimensional regression variant
that also leads to a jointly convex (w.r.t. both the parameter and the noise level) reformulation of a
penalized log-likelihood estimator. It is to be noted that this estimator is also sometimes referred to as
Scaled-Lasso, creating possible ambiguities. In practice though, at least in high-dimensional regression
settings, this method seems to be outperformed by the concomitant formulation [32].

1.2 Model and contributions

1.2.1 Model and notation Denote E := (C(T,C), ‖ · ‖∞) the space of complex-valued continuous
functions over the one-dimensional torus T (obtained by identifying the endpoints on [0, 1]) equipped
with the �∞-norm and E∗ := (M(T,C), ‖ · ‖TV) its dual topological space. Namely, E∗ is the space of
complex-valued Borel measures over the torus endowed with the total variation norm, defined by

∀μ ∈ E∗, ‖μ‖TV := sup
‖f ‖∞≤1

R

(∫
T

f̄ dμ

)
, (1)

where R(·) denotes the real part and f̄ the complex conjugate of a continuous function f . Our observation
vector is y ∈ Cn (where n = 2fc + 1) and our sampling scheme is modeled by the linear operator Fn

that maps a Borel measure to its n first Fourier coefficients as

∀μ ∈ E∗, Fn(μ) := (ck(μ))|k|≤fc , where ck(μ) :=
∫
T

exp(−2πıkt)μ(dt) =
∫
T

ϕk dμ,

and ϕk(·) = exp(2πık·). The statistical model we consider is formulated as follows

y = Fn(μ
0)+ ε, (2)
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312 C. BOYER ET AL.

with ε is a complex-valued centered Gaussian random variable defined by ε
d= ε(1) + ıε(2), where the

real part ε(1) = R(ε) and the imaginary part ε(2) = I(ε) are i.i.d. Nn(0, σ 2
0 Idn) random vectors with an

unknown standard deviation σ0 > 0, where Idn is the identity matrix of size n×n. Moreover, we assume
that the target measure μ0 admits a sparse structure, namely it has finite support and can be written

μ0 =
s0∑

j=1

a0
j δt0j

, (3)

where s0 ≥ 1, δt0j
is the Dirac measure at positions t0

j ∈ T and with amplitudes a0
j ∈ C. We can now

introduce our CBLasso estimator, that jointly estimates the signal and the noise level as the solution of
the convex program

(μ̂, σ̂ ) ∈ arg min
(μ,σ)∈E∗×R++

1

2nσ
‖y − Fn(μ)‖2

2 +
σ

2
+ λ‖μ‖TV, (4)

where R++ denotes the set of positive real numbers and λ > 0 is a tuning parameter. This formulation,
by using a suitable rescaling of the data fitting and adding a penalty on the noise level, leads to a jointly
convex formulation that can be theoretically analyzed. The division by σ is used for homogeneity reasons,
while the σ/2 term helps avoiding degenerate solutions and plays a regularization role.

When the solution is reached for σ̂ > 0, one can check that our estimator satisfies the identity
σ̂ = ‖y−Fn(μ̂)‖2/

√
n and μ̂ ∈ arg minμ∈E∗ ‖y−Fn(μ)‖2/

√
n+λσ̂‖μ‖TV, which is in our framework,

the analogous version of the square-root formulation from [5] (while the one from (4) is inspired
by [33,36]).

Remark 1 As defined in (4), the CBLasso estimator is ill-defined. Indeed, the set over which we
optimize is not closed and the optimization problem may have no solution. We circumvent this difficulty
by considering instead the Fenchel biconjugate of the objective function. The actual objective function
accepts σ ≥ 0 as soon as y = Fn(μ). In the rest of the paper, we will write (4) instead of the minimization
of the biconjugate as a slight abuse of notation (see also [32] for more details).

This new estimator can be efficiently computed using Fenchel–Legendre duality and a semi-definite
representation of non-negative trigonometric polynomials. The dual program estimates the coefficients
of a non-constant trigonometric polynomial (that we refer to as ‘dual polynomial’), and the support of
the estimated measure μ̂ is included in the roots of the derivative of the dual polynomial, see Section 3.1
for further details.

1.2.2 Contributions By tackling the simultaneous estimation of the noise level and the target measure,
we revisit the state-of-the-art results in Super-Resolution theory. In particular, we show (Theorem 1) that
the ‘near’ minimax prediction (i.e. ‘fast rate’ of convergence) is achieved by our new CBLasso estimator.
To prove this result, we have adapted the proof of [37] to our estimator and finely controlled the noise
level dependency in their bounds. This latter task has been carried out thanks to the Rice method for a
non-Gaussian process (Lemma D2) which provides new results in this context, whose interest could go
behind the context of Super-Resolution. Though standardly proved as in [3,25,37], spike localization
errors (Theorem 2) are amended by the Rice method as well. In particular, it allows us control the ‘no-
overfitting’ event as shown by Proposition 1. We would like to emphasize that our contribution provides
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UNKNOWN NOISE LEVEL IN SPARSE DECONVOLUTION 313

the first result on simultaneous estimation of both the noise level and the the target measure in spike
deconvolution. We have introduced a new estimator and theoretically demonstrated that it attains ‘near’
minimax optimal prediction together with strong localization accuracy. On the numerical side, we show
that (i) the root-finding search can still be adapted to our method; (ii) the constructed ‘dual polynomial’
(see Equations (15) and (16) for definition) is never constant (see Proposition 4) proving the applicability
of our method. Experiments are conducted to illustrate the benefits of our noise and measure estimation
procedure.

1.3 Notation

We denote by [m], the set {1, . . . , m} for any integer m ∈ N and by S
m−1 the (real) unit sphere in Rm.

For any set A, its indicator function and its cardinality, respectively reads 1A and |A|. We denote by z the
complex conjugate of z ∈ C, and by R(z) (resp. I(z)) its real (resp. imaginary) part. For any bounded
linear mapping F , its adjoint operator is denoted by F∗. The standard Hermitian norm on Cn is written
‖·‖, with 〈·, ·〉 being the associated inner product, i.e. 〈z, z′〉 = (z∗z′). If a measure μ ∈ E∗ can be written
μ =∑s

j=1 ajδtj , we say that it has a finite support and we denote it by supp(μ) := {t1, . . . , ts} ⊂ T. The
canonical distance between two points t and t′ on the torus T is written d(t, t′).

2. Main results

2.1 Standard assumptions

In the CBLasso analysis, the following standard assumptions will be useful, see [39] for instance. The
first assumption governs the signal-to-noise ratio (SNR) that can be defined as

SNR := ‖μ0‖TV√
E[‖ε‖2

2]/n
= ‖μ

0‖TV√
2σ0

,

measuring the strength of the true signal μ0 compared to the noise level σ0.

Assumption 1 (Sampling rate condition) The sampling rate condition holds if and only if

λ · SNR ≤
√

17− 4

2
� 0.0616. (5)

The main point of the article is to consider a noise-free tuning parameter λ that depends only on the
number n of measurements. As standard results in the literature, we consider λ ≥ 2

√
2 log n/n. In this

regime, one may write the sampling rate condition as n/log n ≥ C SNR2 for some universal constant
C > 0. Roughly speaking, Assumption 1 states that the number of measurements n is at least SNR2.

Another important assumption is the ‘no-overfitting’ condition, assuming that the noise level esti-
mator σ̂ is positive. If it does not hold, then the observations are perfectly fitted with our estimator and
the residuals vanish. This kind of situation could happen when the noise level is small. Hence, Assump-
tion 1 requires an upper bound on the SNR that could seem counterintuitive. However, it ensures to
have enough noise compared to signal to estimate it. For obvious reasons, it is essential from both
theoretical and practical points of views to assert this property. Observe that, throughout this article, all
our results are based on the event

{‖F∗n (ε)‖∞/(
√

n‖ε‖2) ≤ R
}∩ {‖ε‖2/

√
n ≥ σ

}
for suitable R and σ ,
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314 C. BOYER ET AL.

and by Proposition 1 the ‘no-overfitting’ condition holds with large probability (in particular, note that
Assumption 1 implies Inequality (9) with η = 1/2 whenever n ≥ −8 log α).

In Super-Resolution, one often assumes that the target measure μ0 ∈ E∗ satisfies the classical
separation condition, see [26] for a state-of-the-art result on the subject. This condition governs the
existence of dual certificates, see Appendix C for further results. In particular, all our constructions
assume a lower bound on the number of observed frequencies fc. Based on [26], we assume that fc ≥ 103

throughout this article leading to c0 = 1.26 in Assumption 2 below. Note that one can lower the bound
on the observed frequencies fc considering larger values of c0, the interested reader may consult [26] on
this topic.

Assumption 2 (Separation condition) The true support supp(μ0) = {t0
1 , . . . , t0

s0
} is said to verify the

separation condition if it satisfies the following property

∀i, j ∈ [s0], s.t. i �= j, d(t0
i , t0

j ) ≥
c0

fc
,

where c0 = 1.26 and fc ≥ 103.

2.2 Compatibility limits

In order to obtain oracle inequalities for the Lasso [39], the statistical community has proposed various
sufficient conditions such that restricted isometry property (RIP), restricted eigenvalue condition (REC),
or Compatibility Condition for instance. However, in the Super-Resolution setting, one can show that
these classical assumptions do not hold. Indeed, since RIP implies REC, which in turn implies the
Compatibility Condition (see [39] for further details), we only show that the Compatibility Condition
fails to hold. To do so, let us recall the definition of the compatibility constant, denoted by C(L, S) for a
constant L > 0 and a given support S

C(L, S) := inf
{|S|‖Fn(ν)‖2

2/n; ν ∈ E∗, ‖νS‖TV = 1, ‖νSc‖TV ≤ L
}
. (6)

We say that the compatibility condition of parameter (s, L) holds if inf |S|≤s C(L, S) > 0. This condition
does not hold, i.e. C(L, S) = 0. For instance, it fails with the following example: choose S = Sε = {ε}
for any ε > 0 and L ≥ 1. Consider the sequence (νε)ε>0 defined by νε = δε − δ−ε , in which the location
−ε on T can be associated to 1 − ε. Note that for this sequence, we have ck(νε) = −2ı sin(2πkε)

for all k ∈ Z, therefore ‖Fn(νε)‖2
2 =

∑fc
k=−fc

4 sin2(2πkε). Note that Sε
c = T \ {ε}, which leads to

‖(νε)Sε‖TV = 1 and ‖(νε)Sε
c‖TV = 1 ≤ L. Considering ε → 0 leads to the inequality inf |S|≤1 C(L, S) ≤

lim infε→0
1
n

∑fc
k=−fc

4 sin2(2πkε) = 0. Since one can show that for S ⊂ S, C(L, S)/|S| ≤ C(L, S)/|S|
[39], we deduce that for s ≥ 1, inf |S|≤s C(L, S) = 0, which implies that the Compatibility Condition does
not hold for Super-Resolution, and neither do the RIP or REC. It turns out that our setting meets the
curse of highly correlated designs since close Dirac masses (as aforementioned) share almost the same
Fourier coefficients.
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UNKNOWN NOISE LEVEL IN SPARSE DECONVOLUTION 315

2.3 Prediction error

As in [37], we uncover that CBLasso achieves the minimax rate1 in prediction up to a log factor. Up to
several technicalities, our proof in Appendix A follows the same guidelines as in [37], though we use
the Rice method to finely bound our non-Gaussian process, see Lemma D2.

Theorem 1 Let C > 2
√

2. There exists numerical constants γ , C′ > 0, that may depend on C, such that
the following holds. Under Assumptions 1 and 2, the estimator μ̂ solution to Problem 4 with a choice
λ ≥ C

√
log n/n satisfies

1

n
‖Fn(μ̂− μ0)‖2

2 ≤ C′ s0 λ2 σ 2
0 ,

with probability at least 1− C′n−γ .

Up to a log factor, this prediction error bound matches the ‘fast rate’ of convergence, namely σ 2
0 s0/n

(see [17] for instance), established in sparse regression.

2.4 Localization and amplitudes estimation

Following [14,26], we define the set of ‘near’ points as

∀j ∈ [s0], Nj :=
{

t ∈ T; d(t, t0
j ) ≤

c1

fc

}
, (7)

for some 0 < c1 < c0/2 (where c0 = 1.26 is given in Assumption 2) and the set of ‘far’ points as

F := T \
⋃

j∈[s0]
Nj. (8)

Theorem 2 Let C > 2
√

2. There exist numerical constants γ , C′ > 0, that may depend on C, such that
the following holds. Suppose that Assumptions 1 and 2 hold. The estimator μ̂, solution to Problem 4
with a choice λ ≥ C

√
log n/n, satisfies

1. ∀j ∈ [s0],
∣∣∣a0

j −
∑
{k: t̂k∈Nj}

âk

∣∣∣ ≤ C′σ0s0λ,

2. ∀j ∈ [s0],
∑
{k: t̂k∈Nj}

|âk| d2(t0
j , t̂k) ≤ C′σ0s0λ/n2,

3.
∑
{k: t̂k∈F}

|âk| ≤ C′σ0s0λ,

with probability at least 1− C′n−γ.

1 In [37], the minimax rate is derived using the minimax rate of [15] established in high-dimension statistics.
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316 C. BOYER ET AL.

Points (1) and (3) in Theorem 2 ensure that μ̂ will retrieve the mass of μ0 in the near regions of the
support supp

(
μ0
)

and not in regions far away. Point (2) provides a control on the support identification
of the procedure. A proof of this theorem can be found in Appendix B. In particular, we deduce the
following result.

Corollary 1 Under the assumptions of Theorem 2, for any t0
j in the support of μ0 such that

a0
j > C′σ0s0λ, there exists an element t̂k in the support of μ̂ such that

d(t0
j , t̂k) ≤

√
C′σ0s0λ

|a0
j | − C′σ0s0λ

1

n
,

with probability at least 1− C′n−γ .

2.5 Noise level estimation

The following noise level estimation result relies on standard results in sparse regression, see [39].

Proposition 1 Let 0 < η < 1 and 0 < α < 1. Let λ be the tuning parameter of the CBLasso. Set

σ = √2σ0

(
1−√−2 log α/n

)1/2
and R = √2log(n/α)/n. If λ ≥ (1− η)−1R and

λ
‖μ0‖TV

σ
≤ 2

[√
1+ (η/2)2 − 1

]
, (9)

then it holds ∣∣∣∣√nσ̂

‖ε‖2
− 1

∣∣∣∣ ≤ η, (10)

with probability larger than 1− α
(

2
√

2
n + 2

√
3+3
3

)
.

Note that Assumption 1 implies Inequality (9) with η = 1/2 whenever n ≥ −8 log α.

Proof. The proof is a direct application of Lemma D2 with R = √2
√

log(n/α)/n that gives

P

{‖F∗n (ε)‖∞√
n‖ε‖2

≥ R

}
≤ α

(
2
√

2

n
+ 2√

3

)
.

Applying Lemma D7 with x = − log α gives P(‖ε‖2/
√

n ≤ σ) ≤ α. A union bound on the event
{‖F∗n (ε)‖∞/(

√
n‖ε‖2) ≤ R} ∩ {‖ε‖2/

√
n ≥ σ } combined with Proposition D1 finishes the proof. �
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3. Numerical aspects

3.1 Primal/dual problems and Fermat conditions

We begin by presenting the Fenchel dual formulation of CBLasso in the next proposition.

Proposition 2 Denoting Dn =
{
c ∈ Cn; ‖F∗n (c)‖∞ ≤ 1, nλ2‖c‖2 ≤ 1

}
, the dual formulation of the

CBLasso reads

ĉ ∈ arg max
c∈Dn

λ 〈y, c〉. (11)

Then, we have the link-equation between primal and dual solutions

y = nλ̂ĉ+ Fn(μ̂), (12)

where we define λ̂ = λσ̂ , as well as a link between the coefficient and the polynomial

F∗n (ĉ) = p̂. (13)

The polynomial p̂ is said to be the dual polynomial of Problem (4).

Proof. This proposition is proved in Appendix E.1. �

Using (12) and (13), we retrieve the Karush-Kuhn-Tucker (KKT) conditions, namely

1

n
F∗n (y − Fn(μ̂)) = λ̂p̂. (14)

In particular, the dual polynomial satisfies the property of a TV-norm sub-gradient at the solution point
μ̂, namely

‖p̂‖∞ ≤ 1, (15)

R

(∫
T

p̂(t)μ̂(dt)

)
= ‖μ̂‖TV. (16)

Remark 2 (The constant dual polynomial issue) If the associated dual polynomial p̂ is not constant, the
support of μ̂ is finite, and is included in the set of its derivative roots, so the measure solution can be
written as μ̂ =∑ŝ

j=1 âjδt̂j . This follows from (16).

Equivalently, Equation (14) reads as follows

∀t ∈ T,
1

n

fc∑
k=−fc

(
yk − ck(μ̂)

)
exp(2πıkt) = λ̂p̂(t). (17)
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318 C. BOYER ET AL.

Fig. 1. CBLasso regimes for different values of the regularization parameter λ. When λ ≤ λmin(y), there is overfitting. When
λmin(y) < λ ≤ λmax(y), the dual polynomial is not of constant modulus, so that the root finding can be done. We also show that
the no-overfitting assumption holds in such a regime. Finally, when λ > λmax(y), the solution is degenerated and μ̂ = 0.

3.2 No-overfitting and root-finding issues

In the sequel, we tackle the ‘no-overfitting’ (see Section 2.1) and the ‘constant dual polynomial’ issues.
The ‘constant dual polynomial’ issue is due to the use of root-finding algorithm which requires finding
roots of the dual polynomial derivative. A practical limitation occurs when the dual polynomial is
constant, in this case we cannot localize the primal solution support, which we refer to as the ‘constant
dual polynomial’ issue. We summarize our results from Propositions 3 and 4 in Fig. 1. We may use
the estimator (18) referred to as ‘Beurling Minimal Extrapolation’ (BME for short) by [18], which
extends the basis pursuit [16] in our context. The no-overfitting property is guaranteed by the following
proposition.

Proposition 3 Defining λmin(y) = 1/(‖ĉ(BME)‖2
√

n) and the problem

μ̂(BME) ∈ arg min
Fn(μ)=y

‖μ‖TV, (18)

and its dual formulation

ĉ(BME) ∈ arg max
c∈Cn

〈y, c〉

s.t. ‖F∗n (c)‖∞ ≤ 1
(19)

the following statements are equivalent

(i) λ∈ ]0, λmin(y)],
(ii) ĉ = ĉ(BME),

(iii) σ̂ = 0 (overfitting).

Remark that λmin(y) = 1/(‖ĉ(BME)‖2
√

n) > 1/
√

n.

Proof. (i)⇒ (ii): Choose λ∈ ]0, λmin(y)]. Note that nλ2‖ĉ(BME)‖2 ≤ n(λmin(y))2‖ĉ(BME)‖2 ≤ 1. Hence,
ĉ(BME) ∈ Dn, and since Dn ⊂ {c ∈ Cn : ‖F∗n (c)‖∞ ≤ 1}, then ĉ = ĉ(BME).

(ii) ⇒ (iii): Assume that ĉ = ĉ(BME), then y = nλ̂ĉ(BME) + Fn(μ̂) thanks to Equation (12) and
Fn(μ̂

(BME)) = y thanks to Equation (18). Moreover,

〈y, ĉ(BME)〉 = ‖μ̂‖TV and λ〈y, ĉ〉 = 1

2nσ̂
‖y − Fn(μ̂)‖2 + σ̂

2
+ λ‖μ̂‖TV

by strong duality. The only way the last equation holds is when σ̂ = 0 and that y = Fn(μ̂).
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UNKNOWN NOISE LEVEL IN SPARSE DECONVOLUTION 319

(iii)⇒ (i): Assume that σ̂ = 0, this leads to λ̂ = 0 thanks to the definition of λ̂ below (12). Thanks
to Equation (12), y = Fn(μ̂). This means that (μ̂, σ̂ ) is solution of the problem

(μ̂, σ̂ ) ∈ arg min
(μ,σ)∈E∗×R++

y=Fn(μ)

1

2nσ
‖y − Fn(μ)‖2

2 +
σ

2
+ λ‖μ‖TV

and so

μ̂ ∈ arg min
μ∈E∗

y=Fn(μ)

λ‖μ‖TV,

i.e. μ̂ = μ̂(BME).
By strong duality in Problem (4), one has λ‖μ̂‖TV = λ〈ĉ, y〉 and by strong duality in Problem (19),

λ‖μ̂(BME)‖TV = λ〈ĉ(BME), y〉. Hence 〈ĉ, y〉 = 〈ĉ(BME), y〉 and one can choose ĉ(BME) as a dual optimal
solution for Problem (11). So ‖ĉ(BME)‖2

2 ≤ 1/(nλ2), and (i) holds by definition of λmin.
We now proved the last statement of the proposition. Since ‖p̂‖∞ ≤ 1, Parseval’s inequality leads to

‖ĉ‖2 ≤ 1. If λ < 1/
√

n then λ2n‖ĉ‖2 ≤ λ2n < 1, this means that the �2 constraint in the dual formulation
(11) is not saturated. With the first part of the proof, we deduce the result by choosing ĉ = ĉ(BME). Using
(ii)⇔ (i), one has λmin(y) ≥ 1/

√
n. �

Remark 3 As for the BLasso defined by solving

μ̂BLasso ∈ arg min
μ∈E∗

1

2n
‖y − Fn(μ)‖2

2 + λ‖μ‖TV, (20)

note that if λ is chosen large enough, 0 is the unique solution of the CBLasso problem given by (4), the
threshold being λmax(y) = ‖F∗n (y)‖∞/(

√
n‖y‖2) (for the BLasso it is simply ‖F∗n (y)‖∞/n). This result

is easily deduced thanks to the KKT conditions.

The next proposition ensures that the root-finding is always possible, meaning that when the primal
solution is non-zero, then the dual polynomial is non-constant.

Proposition 4 For λ∈ ]λmin(y); λmax(y)], the polynomial |p̂|2 is non-constant.

Proof. See Appendix E.4. �

3.3 Semi-definite program formulation of the CBLasso

We write A � 0 when a symmetric matrix A is semi-definite positive. Let us recall a classical property
expressing the CBLasso as a semi-definite program (SDP), see [21, Section 4.3] or [14,37] for instance.
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Proposition 5 For any c ∈ Cn, the following holds

‖F∗n c‖2
∞ ≤ 1⇔ ∃Λ ∈ Cn×n satisfying Λ∗ = Λ and

⎧⎪⎨⎪⎩
(

Λ c

c∗ 1

)
� 0,∑n−j+1

i=1 Λi,i+j−1 = δj,1,∀j ∈ [n],
(21)

where δk,l is the standard Kronecker symbol.

Remark that A � 0 and B � 0 are equivalent to

(
A 0
0 B

)
� 0. From properties of the Schur complement

(cf. [11, p. 651]), a block matrix

(
A B
B∗ C

)
� 0⇔ A � 0 and C − B∗A−1B � 0.

Applying this, one can represent the dual feasible set Dn, as an SDP condition and the dual problem
can be cast as follows

max
c∈Cn

λ 〈y, c〉 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Λ c

c∗ 1

)
� 0,∑n−j+1

i=1 Λi,i+j−1 = δj,1,∀j ∈ [n],
(

Idn λ
√

nc

λ
√

nc∗ 1

)
� 0.

(22)

3.4 From the dual to the primal

By solving Problem (22), one can identify p̂, the dual polynomial (13), and the set of locations where
the latter reaches unit modulus and in which the support of μ̂ is included, see Remark 2. We recall that
the support of all the solutions of Problem (4) are included in the level set |p̂|2 = 1. Once this set is
identified, remark that solutions to Problem (4) are equivalently solutions to a finite dimensional one:

(μ̂, σ̂ ) ∈ arg min
(μ,σ)∈Ê∗×R++

1

2nσ
‖y − Fn(μ)‖2

2 +
σ

2
+ λ‖μ‖TV, (23)

where Ê∗ := (C(supp(μ̂),C), ‖ · ‖∞) the space of Borelian measure, whose support is included in
supp(μ̂) = {t̂j, j = 1, . . . , ŝ}, a set found thanks to the dual formulation from the previous section.
Indeed, any solution μ̂ to Problem (4) belongs to Ê∗ so that it is equivalently a solution to (23).

We can now introduce the design matrix X ∈ R
n×ŝ, defined by Xk,j = ϕk(t̂j). Considering the

estimators (â, σ̂ ) defined by

(â, σ̂ ) ∈ arg min
(a,σ)∈Rŝ×R++

1

2nσ
‖y − Xa‖2

2 +
σ

2
+ λ‖a‖1, (24)

one can check that (μ̂, σ̂ ) satisfies the original optimality condition for Problem (4), where

μ̂ =
ŝ∑

j=1

âjδt̂j .
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To solve (24), we proceed following the alternate minimization procedure proposed in [36], that consists
in alternating between a Lasso step and a noise level estimation step (i.e. computing the norm of the
residuals). Note that the Lasso step is simple in this case, since the KKT condition reads X∗(Xa− y)+
λσ̂ ζ̂ = 0, where ζ̂ = sign(X∗ĉ). Provided that the matrix X∗X can be stored and inverted, one can use

â = X+y − λσ̂ (X∗X)−1ζ̂ , (25)

along the iterative process.

3.5 Experiments

The source code of all the experiments presented in this section can be downloaded from this gitHub
repository;2 a notebook can also be found at this address.3 First, let us summarize the description of the
proposed algorithm: given the data y ∈ Cn

1. Set λ = α λmax(y), for a constant α ∈ (0, 1) fraction of λmax(y) = ‖F∗(y)‖∞/(
√

n‖y‖2).

2. Solve Problem (22) to find the coefficients ĉ of the dual polynomial p̂. For this step, we use the cvx
Matlab toolbox [27,28].

3. Identify supp(μ̂) using the roots of 1− |p̂|2 and construct the matrix X described above.

4. Solve Problem (24) as follows: for an initial value of σ̂ , until some stopping criterion,

(a) Solve Problem (24) using (25) with σ̂ to compute â,

(b) Update σ̂ = ‖y − Xâ‖2/
√

n using the new value of â.

In our experiments, we have chosen in Step 4 the stopping criterion combining (i) a maximal number
of iterations fixed to 1000, and (ii) a tolerance threshold of 10−4 between two iterates of σ̂ .

3.5.1 Measure estimation We run this algorithm for estimating a 3-spikes measure. The measure
is generated by drawing uniformly at random support locations in the torus satisfying the separation
condition. The spike amplitudes are set to 1 or −1 at random. The noise level σ0 is fixed to 1 and
n = 161. For this experiment, we fix λ to be equal to λmax(y)/2 = ‖F∗n (y)‖∞/(2

√
n‖y‖2). The results

are presented in Fig. 2 and compared with a BLasso approach (solved thanks to (25) for λ = nλBLasso
max (y)/2

with λBLasso
max (y) = ‖F∗n (y)‖∞/n and σ̂ = σ0, the true level of noise) over the estimated support supp(μ̂).

First, note that both the BLasso and the CBLasso methods can recover the true support supp(μ0).
Secondly, the CBLasso better estimates the spikes magnitude in the original measure than the BLasso
due to a better scaling of the regularizing factor.

3.5.2 Noise estimation In order to illustrate noise estimation performance provided by the CBLasso
method, we run the following experiment. Following the same procedure described above, we draw at
random 100 target measures replica composed of three spikes with support satisfying the separation
condition. For each target measure μ0, we observe y = Fn(μ

0) + ε with n = 161 and ε a complex

2 https://github.com/claireBoyer/CBLasso (accessed 19 December 2016).
3 http://www.lsta.upmc.fr/boyer/codes/html_CBlasso_vs_Blasso/script_example1_CBlasso_vs_Blasso.html (accessed 19

December 2016).
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Fig. 2. Reconstruction of a discrete measure. The original measure μ0 is composed of three spikes (in black). The reconstructed
measure μ̂ using our proposed CBLasso (in blue). In comparison, we plot the reconstructed measure using the BLasso (in red).

Fig. 3. Boxplot on σ̂ for 100 CBLasso consistent estimations of
√

2σ0 = 1. We compare our method to σ̂BLasso = ‖y −
Fn(μ̂

BLasso)‖2/
√

n− ŝBLasso proposed in [34], where μ̂BLasso is the reconstructed measure supported on ŝBLasso spikes via BLasso.
Noise estimation using CBLasso is clearly closer to σ0 than σ̂BLasso.

Gaussian vector such that ε
(d)= ε(1) + iε(2) and ε(1), ε(2) ∼ N (0, (1/2) Idn) (here we choose σ0 = 1/

√
2)

and we perform the algorithm proposed above. In Fig. 3, we present a boxplot on the value σ̂ for the
100 CBLasso estimations. One can remark that σ̂ presents a bias compared to the noise level equal to 1,
but this bias will decrease as n increases. Indeed, Proposition 1 shows that σ̂ is close to ‖ε‖2/

√
n whose

expectation is
√

2σ0E‖g‖2/
√

2n with g standard Gaussian in dimension 2n. We deduce that

σ̂ � √2σ0 × E‖g‖2√
2n
= √2σ0 × Γ (n+ 1/2)√

nΓ (n)
→√2σ0,

showing that σ̂ /
√

2 is consistent estimator of σ0.
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In Fig. 3, we also compare the CBLasso noise estimation to

σ̂ BLasso = 1√
n− ŝBLasso

‖y − Fn(μ̂
BLasso)‖2,

proposed in [34], in which μ̂BLasso denotes the reconstructed measure that is supported on ŝBLasso spikes
using the BLasso. The CBLasso approach provides a satisfactory noise level estimation w.r.t. the
heuristics defined above.
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Reading guide

The proofs of this article are quite long and may be difficult to follow. The main part is devoted for
proving Theorem 1, as we need the control of the prediction error to derive the result on estimation of the
target measure, namely Theorem 2. More precisely, we need (B.2) that controls the Bregman divergence
of the TV norm at point (μ̂, μ0). If we admit this control, the proof of Theorem 2 is only two pages and
partially follows from [3,25]. Regarding this proof, the main contribution is to control the influence of
the noise estimation error on σ̂ , bounding it from above and/or below in each step. This is new since
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this article is the first to address the noise estimation issue in such a context. This proof is presented in
Appendix B. Three ingredients are part of Theorems 1 and 2 proofs.

1. The first one is the noise level control, namely bounding the probability of {‖F∗n (ε)‖∞ ≤ λ} and
{‖F∗n (ε)‖∞/

√
n‖ε‖2 ≤ R}. This step required new results on the supremum of processes indexed by

the torus. This is done using the Rice formula [2, Proposition 4.1, p. 93] presented in Appendix D.2

2. One recent breakthrough in Super-Resolution has been brought by pioneering constructions [9,14,18]
of dual polynomials, namely proving the existence of convenient sub-gradients of the TV norm at the
target measure (and, hence, assuming the separation condition of Assumption 2). These constructions
are now well referenced and we omit their proofs in this article. They are briefly synthesized though
in Appendix C.

3. The last ingredient is a mixture of optimality conditions derived from convexity (see Appendix E)
and simple but non-trivial ad hoc inequalities.

The proofs presentation is essentially focused on these last points, since we believe that they are specific
to and at the heart of the Super Resolution framework. As we have seen, these ad hoc inequalities steps
are presented in Appendix B for Theorem 2.

As for Theorem 1, this last ingredient is costly, requiring several pages, see Appendix A. Its proof is
based on the pioneering paper [37]. However, the proof presented here, on the prediction error, differs
from there since we take into account the noise estimation. It changes large parts of the proof of [37]
and Appendix A is devoted to this task. In a nutshell, the noise estimation is given by λ̂ = λσ̂ where λ

is a tuning parameter of our algorithm, while the noise level ‖F∗n (ε)‖∞ can be bounded (with large
probability) by λ̃ in the proof, see for instance Lemma A2. Observe that λ itself has been tuned so that
it bounds the noise level, but we need to draw a (technical) distinction here. Doing so, we are able to
assess the probability of some key events such that {̃λ/̂λ ≤ (CF ∧ CN)/(2C)}, see p. 330. This event
has been controlled in [37] with ‘high probability’, while ‘choosing large enough constants’ which was
rightfully enough for the purpose of [37]. In this article, we carefully quantify these assertions as done
in Lemma A4. The second main difference with the proof of [37] relies on the fact that we have to track
the noise estimation error in all the ad hoc inequalities steps. This has been achieved by tuning λ, λ̃,
λ̂, β̃, β̂, etc., in a suitable manner. The proofs have been organized through the paper according to the
aforementioned remarks.

Appendix A. Proof of Theorem 1

Let us define ck(μ̂ − μ0) = ∫
T

exp(−2πıkt)(μ̂ − μ0)(dt) for −fc ≤ k ≤ fc, and introduce the
trigonometric polynomial Δ of degree fc defined by

Δ =
∑
|k|≤fc

ck(μ̂− μ0)ϕk , (A.1)

with ϕk(·) = exp(2πık·). One can write

1

n
‖Fn(μ̂− μ0)‖2

2 =
1

n
R

⎡⎣∫
T

∑
|k|≤fc

ck(μ̂− μ0) e−2ıπkt(μ̂− μ0)(dt)

⎤⎦ = 1

n
R

[∫
T

Δ̄(t)(μ̂− μ0)(dt)

]
.
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Applying Lemma A1 (see Appendix A.1 below) with q = Δ̄ and ν = μ̂− μ0, one gets

R
[ ∫

T

Δ̄(μ̂− μ0)(dt)
]
≤ ‖Δ‖∞

[ s0∑
i=1

( ∣∣∣∣∫
Ni

ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii
0

+ n

∣∣∣∣∫
Ni

(t − ti)ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii
1

+ n2

2

∣∣∣∣∫
Ni

(t − ti)
2ν(dt)

∣∣∣∣︸ ︷︷ ︸
Ii
2

)

+
∫

F
|ν|(dt)

]
,

≤ ‖Δ‖∞
[∫

F
|ν|(dt)+ I0 + I1 + I2

]
,

with Ij =∑s0
i=1 I i

j for j = 0, 1, 2. Therefore,

1

n
‖Fn(μ̂− μ0)‖2

2 ≤
1

n
‖Δ‖∞

[∫
F
|ν|(dt)+ I0 + I1 + I2

]
. (A.2)

The result in Theorem 1 follows by bounding each term in (A.2) using Lemmas A2–A4, presented in
the sequel.

A.1 Preliminary lemma

Lemma A1 For all trigonometric polynomial q of degree less than fc and for all (t0
i )1≤i≤s0 ∈ Ts0 satisfying

the separation condition given in Assumption 2, we have for any ν ∈ E∗,

∣∣∣∣∫
T

qdν

∣∣∣∣ ≤ ‖q‖∞
[∫

F
|ν|(dt)+

s0∑
i=1

(∣∣∣∣∫
Ni

ν(dt)

∣∣∣∣+ n

∣∣∣∣∫
Ni

(t − t0
i )ν(dt)

∣∣∣∣+ n2

2

∣∣∣∣∫
Ni

(t − t0
i )

2ν(dt)

∣∣∣∣)
]

,

where Nj and F are defined in (7) and (8).

Proof. Given the definitions of F and the (Ni)’s, one can write

∣∣∣∣∫
T

q(t)ν(dt)

∣∣∣∣ ≤ ∣∣∣∣∫
F

q(t)ν(dt)

∣∣∣∣+ s0∑
i=1

∣∣∣∣∫
Ni

q(t)ν(dt)

∣∣∣∣ ≤ ‖q‖∞ ∫
F
|ν|(dt)+

s0∑
i=1

∣∣∣∣∫
Ni

q(t)ν(dt)

∣∣∣∣ .
In the sequel, we may identify T with R/Z using [−1/2, 1/2) as fundamental polygon. Using the
Taylor–Lagrange expansion

∣∣q(t)− q(t0
i )− q′(t0

i )(t − t0
i )
∣∣ ≤ ‖q′′‖∞ (t − t0

i )
2

2
,

and the Bernstein inequality [10, Theorem 5.1.4] for trigonometric polynomials (reminding fc ≤ n)

‖q′‖∞ ≤ n‖q‖∞ and ‖q′′‖∞ ≤ n2‖q‖∞,
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we can derive for a fixed i ∈ {1, . . . , s0}∣∣∣∣∫
Ni

q(t)(ν)(dt)

∣∣∣∣ ≤ ∣∣q(t0
i )
∣∣ ∣∣∣∣∫

Ni

(μ̂− μ0)(dt)

∣∣∣∣+ |q′(t0
i )|
∣∣∣∣∫

Ni

(t − t0
i )(μ̂− μ0)(dt)

∣∣∣∣
+ n2‖q‖∞

2

∫
Ni

(t − t0
i )

2|ν|(dt),

≤‖q‖∞
(∣∣∣∣∫

Ni

(ν)(dt)

∣∣∣∣+ n

∣∣∣∣∫
Ni

(t − t0
i )(ν)(dt)

∣∣∣∣+ n2

2

∣∣∣∣∫
Ni

(t − t0
i )

2(ν)(dt)

∣∣∣∣),

as claimed. �

A.2 Control of ‖Δ‖∞
Lemma A2 Let α̃ ∈ (0, 1) and set λ̃ := 2σ0

√
log(n/α̃)/n. Then, reminding λ̂ = λσ̂ , it holds

‖Δ‖∞ = sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

ck(μ̂− μ0)ϕk(t)

∣∣∣∣∣∣ ≤ n
(̃
λ+ λ̂

)
,

with probability greater than 1− α̃.

Proof. Recall that Fn(μ
0) = y − ε to get

‖Δ‖∞ ≤ sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

εkϕk(t)

∣∣∣∣∣∣+ sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(μ̂))ϕk(t)

∣∣∣∣∣∣ ,
≤ ‖F∗n (ε)‖∞ + sup

t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(μ̂))ϕk(t)

∣∣∣∣∣∣ .
Using Lemma D1, it holds that ‖F∗n (ε)‖∞ ≤ ñλ with probability greater than 1 − α̃. Using the KKT
conditions (14), we have that

sup
t∈T

∣∣∣∣∣∣
∑
|k|≤fc

(yk − ck(μ̂))ϕk(t)

∣∣∣∣∣∣ ≤ λ̂‖np̂‖∞ ≤ n̂λ.

We deduce the result from this last point. �

A.3 Control of I0 and I1 by I2 +
∫

F |ν|(dt)

Lemma A3 There exists a numerical constant C2 > 0 such that

I0 ≤ C2

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
and I1 ≤ C2

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
.

Proof. Invoke Lemma 2 of [38] to get the result. �

Downloaded from https://academic.oup.com/imaiai/article-abstract/6/3/310/2938061/Adapting-to-unknown-noise-level-in-sparse
by guest
on 15 September 2017



328 C. BOYER ET AL.

A.4 Control of I2 +
∫

F |ν|(dt)

Setting α̂ = n−β̂ and α̃ = n−β̃ for some well chosen constants β̂ > 0, β̃ > 0 (to be specified later), the
proof reduces to control the quantity

∫
F
|μ̂−μ0|(dt)+ I2 =

∫
F
|μ̂−μ0|(dt)+

s0∑
i=1

I i
2 =

∫
F
|μ̂−μ0|(dt)+ n2

2

s0∑
i=1

∣∣∣∣∫
Ni

(t − ti)
2(μ̂− μ0)(dt)

∣∣∣∣ ,
and λ̂ in Lemma A2.

Lemma A4 Under the assumptions of Theorem 1, with a probability of failure that decays as a power
of n, it holds ∫

F
|ν|(dt)+ I2 ≤ 3

√
2

2

(
1+ C1

C
+ 2C1

CF ∧ CN

)
s0σ0λ,

where the constants C1, CN , CF > 0 are defined in Appendix C and C > 0 is an universal constant.

Proof. The proof follows several steps.

A.4.1 Preliminary First, let us fix S := supp(μ0) = {t0
1 , . . . , t0

s0
} and then let ΠS : E∗ → E∗ be defined

for ν ∈ E∗, such that ΠS(ν) is the atomic part of ν on S. Considering that ν = μ̂ − μ0 and using the
triangle inequality, one can write that

‖ΠS(ν)‖TV ≤
∣∣∣∣∫

T

q1(t)ν(dt)

∣∣∣∣+ ∣∣∣∣∫
T

q1(t)ν|Sc(dt)

∣∣∣∣ ,
where ν|Sc = ν−ΠS(ν), and q1 is the interpolation polynomial interpolating the phases of ΠS(ν), defined
as in Lemma C1. By Hölder’s inequality and Lemma A2, one has∣∣∣∣∫

T

q1(t)ν(dt)

∣∣∣∣ ≤ ‖q1‖1‖Δ‖∞ ≤ ‖q1‖1(̃λ+ λ̂)n.

By noticing the following disjoint union T = F � (∪s0
i=1Ni \ {t0

i }
) � S, we deduce that

‖ΠS(ν)‖TV ≤ ‖q1‖1(̃λ+ λ̂)n+
∣∣∣∣∫

F
q1(t)ν|Sc(dt)

∣∣∣∣+ s0∑
i=1

∣∣∣∣∣
∫

Ni\{t0i }
q1(t)ν|Sc(dt)

∣∣∣∣∣+
∣∣∣∣∫

S
q1(t)ν|Sc(dt)

∣∣∣∣ ,
in which the last term is equal to 0 since ν|Sc has no mass on S. Note that, for any borelian A ⊆ T, it
holds ν|Sc(F ∩ A) = ν(F ∩ A). Therefore,

‖ΠS(ν)‖TV ≤ ‖q1‖1(̃λ+ λ̂)n+
∣∣∣∣∫

F
q1(t)ν(dt)

∣∣∣∣+ s0∑
i=1

∣∣∣∣∫
Ni\{ti}

q1(t)ν|Sc(dt)

∣∣∣∣ .
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By Lemma C1, one can write that

‖ΠS(ν)‖TV ≤ ‖q1‖1(̃λ+ λ̂)n+ (1− CF)

∫
F
|ν|(dt)+

s0∑
i=1

∣∣∣∣∣
∫

Ni\{t0i }
q1(t)ν|Sc(dt)

∣∣∣∣∣ .
Moreover, using Lemma C1(ii),∣∣∣∣∣

∫
Ni\{t0i }

q1(t)ν|Sc(dt)

∣∣∣∣∣ ≤
∫

Ni\{t0i }
|q1|(t)|ν||Sc(dt) ≤

∫
Ni\{t0i }

(
1− CN

2
n2(t − t0

i )
2

)
|ν|(dt),

≤
∫

Ni\{t0i }
|ν|(dt)− CN Ii

2.

Combining the last two inequalities, one gets

‖ΠS(ν)‖TV ≤ ‖q1‖1(̃λ+ λ̂)n+ ‖ν|Sc‖TV − CF

∫
F
|ν|(dt)− CN

s0∑
i=1

I i
2,

≤ ‖q1‖1(̃λ+ λ̂)n+ ‖ν|Sc‖TV − CF

∫
F
|ν|(dt)− CN I2,

and finally,

‖ΠS(ν)‖TV − ‖ν|Sc‖TV ≤ −CF

∫
F
|ν|(dt)− CN I2 + ‖q1‖1(̃λ+ λ̂)n. (A.3)

A.4.2 Trade-off between λ̂ and λ̃ Secondly, by optimality of μ̂, we have

1

2n
‖y − Fn(μ̂)‖2

2 + λ̂‖μ̂‖TV ≤ 1

2n
‖ε‖2

2 + λ̂‖μ0‖TV,

then, invoking Lemmas A1 and A3 (at the last step), one has

n̂λ
(‖μ̂‖TV − ‖μ0‖TV

) ≤ 1

2

(‖ε‖2
2 − ‖y − Fn(μ̂)‖2

2

)
,

= 1

2

(‖ε‖2
2 − ‖y − Fn(μ

0 − μ̂)+ ε‖2
2

)
,

= 1

2

(
2
〈
ε, Fn(μ̂− μ0)

〉− ‖Fn(μ
0 − μ̂)‖2

2

)
,

≤ ∣∣〈ε, Fn(μ̂− μ0)
〉∣∣ = ∣∣∣∣R(∫

T

F∗n (ε) dν

)∣∣∣∣,
≤ ñλ · C

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
, (A.4)
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for some universal constant C > 0. Considering the triangle inequality coupled with the separability
property of ‖ · ‖TV, one has ‖μ̂‖TV = ‖μ0 + ν‖TV ≥ ‖μ0‖TV − ‖ΠS(ν)‖TV + ‖ν|Sc‖TV. It yields

n̂λ
(‖ν|Sc‖TV − ‖ΠS(ν)‖TV

) ≤ n̂λ
(‖μ̂‖TV − ‖μ0‖TV

) ≤ ñλC

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
. (A.5)

Combining (A.3) and (A.5), we finally get

CF

∫
F
|ν|(dt)+ CN I2 − ‖q1‖1(̃λ+ λ̂)n ≤ λ̃

λ̂
C

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
.

Using Lemma C3, one has

(CF ∧ CN)

(∫
F
|ν|(dt)+ I2

)
≤ λ̃

λ̂
C

(
s0̂λ+ I2 +

∫
F
|ν|(dt)

)
+ C1s0(̃λ+ λ̂).

On the event
{̃
λ/̂λ ≤ (CF ∧ CN)/(2C)

}
, then

∫
F
|ν|(dt)+ I2 ≤

(
1+ C1

C
+ 2C1

CF ∧ CN

)
s0̂λ. (A.6)

A.4.3 Control of the event
{̃
λ/̂λ ≤ (CF ∧ CN)/(2C)

}
Recall that λ̃ := 2σ0

√
log(n/α̃)/n has been

chosen so that P
{‖F∗n (ε)‖∞ ≤ ñλ

} ≥ 1− α̃, using Lemma D1. Moreover, on the events
{
‖F∗n (ε)‖∞√

n‖ε‖2 ≤ R
}

and
{
‖ε‖2√

n ≥ σ
}

with the choice R = √2 log(n/α̂)/n and σ = √2σ0

(
1−√−2 log α̂/n

)1/2
, one can

invoke Proposition 1 with η = 1/2 to obtain

λ̂ = σ̂ λ ≥ R

1− η
(1− η)

‖ε‖2√
n
≥ σ

√
2 log(n/α̂)

n
,

with probability greater than 1− α̂
(

2
√

2/n+ 2/
√

3
)

.

Eventually, setting α̂ = n−β̂ and α̃ = n−β̃ , we can chose the constants β̂ > 0, β̃ > 0, so that, for n
large enough,

λ̃

λ̂
≤ √2

(
1−

√
−2β̂ log n/n

)−1/2
√

log(n/α̃)

log(n/α̂)
≤ 2

√
1+ β̃

1+ β̂
≤ CF ∧ CN

2C
.

In this case, note that the probability of failure of the event {̃λ/̂λ ≤ (CF ∧CN)/(2C)} decays as a power
of n.
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A.4.4 Control of λ̂ Invoke Proposition 1 with η = 1/2 (reminding that λ ≥ 2R = 2
√

2 log(n/α̂)/n
and that Assumption 1 holds, fulfilling (D.1) and (D.2)) and Lemma D7 (with x = γ log n) to obtain,

λ̂ = σ̂ λ ≤ (1+ η)‖ε‖2λ√
n

≤ 3
√

2

2
σ0λ(1+ γ log n/n+√2γ log n/n). (A.7)

Invoke (A.6) to conclude the proof of Lemma A4. �

The quantity λ̂ is controlled by (A.7), we can conclude the proof of the theorem.

Appendix B. Proof of Theorem 2

Let us remind that by Equation (3), μ0 = ∑s0
j=1 a0

j δt0j
. Then, let q be a dual certificate of μ0 obtained

by applying Lemma C1 (see Appendix C.1) to the set supp(μ0) = (t0
1 , . . . , t0

s0
). Recall that q then

interpolates the phase vj = a0
j /|a0

j | at the point t0
j . Recall also that q is a trigonometric polynomial of

degree fc with ‖q‖∞ ≤ 1. Consider DTV(μ̂, μ0) the Bregman divergence of the TV-norm between the
solution μ̂ of (4) and the target measure μ0, namely

DTV(μ̂, μ0) := ‖μ̂‖TV − ‖μ0‖TV −R

(∫
T

q(t)(μ̂− μ0)(dt)

)
. (B.1)

Since q interpolates the phases of μ0, one can show that

R

(∫
T

q(t)(μ̂− μ0)(dt)

)
= R

(∫
T

q(t)μ̂(dt)

)
− ‖μ0‖TV ≤ ‖μ̂‖TV − ‖μ0‖TV,

using Holder’s inequality and ‖q‖∞ ≤ 1. It shows that DTV(μ̂, μ0) is non-negative. From this point,
we consider the framework of the proof of Theorem 1. In particular, we invoke Lemma C4, Equa-
tions (A.4), (A.6) and the control of the event

{̃
λ/̂λ ≤ (CF ∧ CN)/(2C)

}
to get that there exists a

constant C > 0 such that

DTV(μ̂, μ0) ≤ Cs0̂λ. (B.2)

From now on, universal constants C > 0 may change from line to line, but they do not depend on
n, α, s0, σ0, λ, λ̃ or λ̂. Proposition 1 (with η = 1/2) and Lemma D7 (with x = − log α) show that

λ̂ = σ̂ λ0 ≤ 3√
2

(
1+ log(1/α)

n
+
√

2 log(1/α)

n

)
σ0λ, (B.3)

with probability greater than 1− α
(

2
√

2
n + 2

√
3+6
3

)
. Invoke (B.2) and (B.3) to get that

DTV(μ̂, μ0) ≤ C

(
1+ 2 log(1/α)

n
+
√

2 log(1/α)

n

)
σ0s0λ ≤ Dα(σ0, s0, λ), (B.4)
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where we define

Dα(σ0, s0, λ) := C

(
1+ log(1/α)

n
+
√

2 log(1/α)

n

)
σ0s0λ,

with C > 0 a universal constant that is sufficiently large to ensure the correctness of all the (forthcoming)
bounds involving Dα .

Denote μ̂ =
ŝ∑

k=1

âkδt̂k
a solution4 of (4) and observe that

DTV(μ̂, μ0) = ‖μ̂‖TV − ‖μ0‖TV −R

(∫
T

q(t)(μ̂− μ0)(dt)

)
,

= ‖μ̂‖TV −R

(∫
T

q(t)μ̂(dt)

)
,

=
ŝ∑

k=1

(|âk| −R(q(t̂k)âk)
)
,

≥
ŝ∑

k=1

|âk|(1− |q(t̂k)|),

≥
ŝ∑

k=1

|âk|min

{
(CN/2)n2 min

t∈supp(μ0)

d(t, t̂k)
2, CF

}
, (B.5)

using Cauchy–Schwarz inequality and Lemma C1. Claims (2) and (3) follow from (B.4) and (B.5).

Recall that the set of ‘near’ points is defined as Nj :=
{

t ∈ T; d(t, t0
j ) ≤ c1

fc

}
for some 0 < c1 < c0/2, as

in the papers [14,26]; and the set of ‘far’ points as F := [0, 1]\⋃j∈[s] Nj. Let qj := q01,j be constructed as

in Appendix C.2 with respect to supp(μ0). In particular, Lemma C3 shows that ‖q01,j‖1 ≤ C1s0
n (where

s = s0). We get that, for all j ∈ {1, . . . , s0},∣∣∣ ∑
{k: t̂k /∈Nj}

âkq01,j(t̂k)+
∑
{k: t̂k∈Nj}

|âk|(q01,j(t̂k)− 1)

∣∣∣
≤

∑
{k: t̂k /∈Nj}

|âk||q01,j(t̂k)|+
∑
{k: t̂k∈Nj}

|âk||q01,j(t̂k)− 1|,

≤
ŝ∑

k=1

|âk|min

{
(C′N/2)n2 min

t∈supp(μ0)

d(t, t̂k)
2, 1− CF

}
,

≤ max

{
1− CF

CF
,

C′N
CN

}
×

ŝ∑
k=1

|âk|min

{
(CN/2)n2 min

t∈supp(μ0)

d(t, t̂k)
2, CF

}
,

4 Recall that almost surely this solution is unique and has finite support, see Section 3.1.
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≤ max

{
1− CF

CF
,

C′N
CN

}
DTV(μ̂, μ0),

≤ 1

2
Dα(σ0, s0, λ) (B.6)

using Appendix C.2 and (B.5). Furthermore, Lemma C4 shows∣∣∣∣∫
T

q01,j(t)(μ̂− μ0)(dt)

∣∣∣∣ ≤ C1s0

(‖F∗n (ε)‖∞
n

+ λ̂

)
.

Using Lemma D1, with probability 1 − α, it holds that ‖F∗n (ε)‖∞ ≤ 2nσ0

√
log(n/α)/n. Invoke

Equation (B.3) and recall λ ≥ 2
√

2
√

log(n/α)/
√

n to get that,∣∣∣∣∫
T

q01,j(t)(μ̂− μ0)(dt)

∣∣∣∣ ≤ 1

2
Dα(σ0, s0, λ), (B.7)

with probability greater than 1 − α
(

2
√

2/n+ (2
√

3+ 9)/3
)

. Using inequalities (B.6) and (B.7), one

can check that, for all j ∈ {1, . . . , s0},∣∣∣∣∣∣a0
j −

∑
{k: t̂k∈Nj}

âk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

q01,j(t)(μ̂− μ0)(dt)+
∑
{k: t̂k /∈Nj}

âkq01,j(t̂k)+
∑
{k: t̂k∈Nj}

âk(q01,j(t̂k)− 1)

∣∣∣∣∣∣ ,
≤ Dα(σ0, s0, λ).

This proves Claim (1).

Appendix C. Standard constructions of dual/interpolating polynomials

This section is devoted to present the different interpolating polynomials that we shall use in this article.
These polynomials are offsprings of the construction given in the pioneering paper [14] that has been
recently improved by [26].

C.1 Two constructions

Lemma C1 (Interpolating polynomial) There exists universal positive constants CN , C′N and CF such
that the following holds. For any set of point {t1, . . . , ts} satisfying Assumption 2, for any v ∈ C

s such
that |v1| ≤ 1, . . . , |vs| ≤ 1, there exists a complex trigonometric polynomial q1 of degree less than fc

such that

(i) for all j ∈ [s], it holds q(tj) = vj,

(ii) for all j ∈ [s] and for all t ∈ Nj, it holds |q(t)| ≤ 1−CN
n2

2 d2(t, tj) and |q(t)− vj| ≤ C′N
n2

2 d2(t, tj),

(iii) for all t ∈ F, it holds |q(t)| < 1− CF ,

where we recall that n = 2fc + 1.
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Fig. C.1. Interpolating polynomial q1 (|v1| = · · · = |vs| = 1) on the left and q01 (|v1| = · · · = |vs| = 0 except for one vj = 1)
on the right.

The proof of Lemma C1 can be found using the proof of Lemma 2.2 in [25] and Lemma 2.2 in [14].

Remark C1 Note that Claim (ii) leads to |q(t)| ≥ 1− C′N
n2

2 d2(t, tj).

Lemma C2 (Interpolating derivative polynomial) There exists universal positive constants CN ,0 CF,0

such that the following holds. For any set of point {t1, . . . , ts} satisfying Assumption 2, for any v ∈ C
s

such that |v1| ≤ 1, . . . , |vs| ≤ 1, there exists a complex trigonometric polynomial q0 of degree less than
fc such that

(i) for all j ∈ [s] and for all t ∈ Nj, it holds |q0(t)− vj(t − tj)| ≤ CN ,0
n
2 d2(t, tj),

(ii) for all t ∈ F, it holds |q0(t)| < CF,0
n ,

where we recall that n = 2fc + 1.

The proof of Lemma C2 can be found in the proof of Lemma 2.7 in [13] which can be improved (lowering
c0 = 1.26 in Assumption 2) using the paper [26].

C.2 Dual certificates

Throughout this article, we shall use the following polynomials, see Fig. C.1. Consider a set of point
{t1, . . . , ts} satisfying Assumption 2.

• Invoke Lemma C1 for well-chosen complex numbers |v1| = · · · = |vs| = 1 to get a ‘dual certificate’
that we shall denote by q1.

• Fix j ∈ [s] and invoke Lemma C1 with vj = 1 and vi = 0 for i �= j to define the polynomial q01,j. In
particular, the polynomial q01,j enjoys
– q01,j(tj) = 1,

– for all t ∈ Nj, |1− q01,j(t)| ≤ C′N
n2

2 d2(t, tj),
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– for all i �= j, for all t ∈ Ni, |q01,j(t)| ≤ C′N
n2

2 d2(t, ti),

– for all t ∈ F, it holds |q01,j(t)| < 1− CF .

• Polynomial q0 is given by Lemma C2.

C.3 Control of the Bregman divergence

Lemma C3 ([37], Lemma 4) With the same notation as Lemma C1, there exists a universal positive
constant C1 > 0 such that the polynomials q1, q01,j and q0 defined in Appendix C.2 satisfy

(i) ‖q1‖1 ≤ C1s
n ,

(ii) ‖q01,j‖1 ≤ C1s
n ,

(iii) ‖q0‖1 ≤ C1s

n2 ,

where we recall that n = 2fc + 1.

The proof of Lemma C3 can be found in the proof of Lemma 4 in [37].

Lemma C4 With the same notation as Lemma C1, let ν := μ̂ − μ0. Let α̃ ∈ (0, 1) and set
λ̃ := 2σ0

√
log(n/α̃)/n. Then, with probability greater than 1− α̃, it holds∣∣∣∣∫

T

q1(t)ν(dt)

∣∣∣∣ ≤ C1s
(̃
λ+ λ̂

)
,∣∣∣∣∫

T

q01,j(t)ν(dt)

∣∣∣∣ ≤ C1s
(̃
λ+ λ̂

)
,∣∣∣∣∫

T

q0(t)ν(dt)

∣∣∣∣ ≤ C1s

n

(̃
λ+ λ̂

)
,

where C1 > 0 is the universal constant defined in Lemma C3 and the polynomials q1, q01,j and q0 are
defined in Appendix C.2.

Proof. We prove the first inequality, the second follows the same lines. Remind that q1 is a trigonometric
polynomial of degree less than fc and write

q1 =
fc∑

k=−fc

d(1)

k φk ,

where we recall that φk(·) = exp(2πık·). Set Δ to be the following trigonometric polynomial (used also
in (A.1))

F∗n (μ̂− μ0) =
fc∑

k=−fc

ck(μ̂− μ0)φk =: Δ, (C.1)
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then, using Parseval’s identity and Holder’s inequality, we have

∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣ =
∣∣∣∣∣∣
∫
T

fc∑
k=−fc

d(1)

k φk(t)ν(dt)

∣∣∣∣∣∣ ,
=
∣∣∣∣∣∣

fc∑
k=−fc

d(1)

k

∫
T

φk(t)ν(dt)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

fc∑
k=−fc

d(1)

k ck(μ̂− μ0)

∣∣∣∣∣∣ ,
=
∣∣∣∣∫

T

q1(t)Δ(t) dt

∣∣∣∣ ,
≤ ‖q1‖1‖Δ‖∞.

Using Lemmas C3(i) and A2, we have∣∣∣∣∫
T

q1(t)ν(dt)

∣∣∣∣ ≤ C1s
(̃
λ+ λ̂

)
,

as claimed. �

Appendix D. Statistical analysis

D.1 Noise level estimation

In order to control σ̂ , one can use the following result given by [39].

Proposition D1 ([39], Lemma 3.1) Suppose that for some η ∈ (0, 1), some R > 0 and some σ > 0.
Assume also that

λ ≥ R

1− η
, (D.1)

and

λ
‖μ0‖TV

σ
≤ 2

(√
1+ (η/2)2 − 1

)
. (D.2)

Then, on the set where
{
‖F∗n (ε)‖∞√

n‖ε‖2 ≤ R
}

and
{
‖ε‖2√

n ≥ σ
}

, one has

∣∣∣∣√nσ̂

‖ε‖2
− 1

∣∣∣∣ ≤ η.

The proof of [39, Lemma 3.1] is elementary but non-trivial, mainly based on triangular inequali-
ties, optimality conditions, norm convexity. It is still valid in our setting with the following notation
correspondences: λ → λ0, λ0,ε → R, ‖ · ‖n → ‖ · ‖2/

√
n, Xβ → Fn(μ), XTε → F∗n (ε),

‖β0‖1 → ‖μ0‖TV.
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D.2 Control of the processes

Standard approaches in �1-minimization are based on bounding the noise correlation F∗n (ε) or its normal-
ized version F∗n (ε)/‖ε‖2 in the CBLasso case. In particular, one needs to upper bound the probabilities
of the following events

{‖F∗n (ε)‖∞ ≤ λ
}

and

{‖F∗n (ε)‖∞√
n‖ε‖2

≤ R

}
,

where we recall that

F∗n (ε)(t) =
fc∑

k=−fc

εk exp(2πıkt),

for all t ∈ [0, 1]. The first event can be handled with a Rice formula for stationary Gaussian processes
as in [3]. Due to the denominator, the second event cannot be described by a Gaussian process and its
analysis is a bit more involved.

Remark D1 A natural question could be to compare the Rice method to standard entropy arguments for
computing the aforementioned events. Comparing the Rice method with entropy arguments is a well-
referenced discussion in the community working on the supremum of Gaussian processes, see references
below. Entropy methods are indeed more general (it requires less regularity than the Rice method) but,
when it comes to Gaussian processes, the Rice-Euler method may offer a competitive alternative.

Observe that entropy methods provide concentration inequalities with the good deviation rate, but
often with unknown constants in front of the exponential and a variance term to be calculated in the
exponent. Moreover, even in the simplest case of a Wiener process (where the expectation is known),
the bounds given by standard Gaussian concentration are crude, e.g. [2, pp. 61–62].

On the other hand, the Rice method requires regular processes and regular index sets. However,
this method is sharp, see [2, Proposition 4.2] that gives an equivalent of the tail distribution. On a
more general note, the Rice method gives the exact expression of the number of crossings at any level,
leading to a rather sharp estimate of the tail distribution of the supremum with tractable constants.
When it comes to applications, it could be interesting to have an idea of the constants appearing in the
inequalities. Unfortunately, this is an issue for entropy methods (e.g. the constants in Dudley inequality
are unknown).

In a nutshell, entropy, chaining and/or Gaussian concentration methods are very general tools that
often lead to the right exponent in the rate function, but their generality comes with a price when
comparing it to the ground truth. A contrario, the Rice/Euler method is very specific to Gaussian processes
with both regular paths and index, but it often leads to better/sharp estimates of the tail distribution of
the supremum of Gaussian processes.

We start with some notation. Let

z(1) = (z(1)

−fc
, . . . , z(1)

0 , . . . , z(1)

fc
),

z(2) = (z(2)

−fc
, . . . , z(2)

0 , . . . , z(2)

fc
),
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be i.i.d. Nn(0, Idn) random vectors. Set, for any t ∈ [0, 1],

X(t) = z(1)

0 +
fc∑

k=1

(z(1)

k + z(1)

−k) cos(2πkt)+
fc∑

k=1

(z(2)

−k − z(2)

k ) sin(2πkt),

Y(t) = z(2)

0 +
fc∑

k=1

(z(2)

k + z(2)

−k) cos(2πkt)+
fc∑

k=1

(z(1)

k − z(1)

−k) sin(2πkt),

Z(t) = X(t)+ ıY(t).

Then, note that

‖σ0Z‖∞ d=‖F∗n (ε)‖∞ and sup
t∈[0,1]

|Z(t)|
√

n(‖z(1)‖2
2 + ‖z(2)‖2

2)
1
2

d= ‖F
∗
n (ε)‖∞√
n‖ε‖2

,

where σ0 > 0 is the (unknown) standard deviation of the noise ε.

D.2.1 The Gaussian process

Lemma D1 For a complex-valued centered Gaussian random vector ε as defined in (2), it holds

∀u > 0, P
{‖F∗n (ε)‖∞ > u

} ≤ n exp

(
− u2

4nσ 2
0

)
,

where σ0 > 0 denotes the noise level.

Proof. Observe that X(t) and Y(t) are two independent stationary Gaussian processes with the same
auto-covariance function Σ given by

∀t ∈ [0, 1], Σ(t) = 1+ 2
fc∑

k=1

cos(2πkt) =: Dfc(t),

where Dfc denotes the Dirichlet kernel. Set

σn
2 = Var(X(t)) = Dfc(0) = n. (D.3)

We use the following inequalities, for any u > 0,

P{‖Z‖∞ > u} ≤ P{‖X‖∞ > u/
√

2} + P{‖Y‖∞ > u/
√

2} = 2P{‖X‖∞ > u/
√

2}, (D.4)

and (by symmetry of the process X)

P{‖X‖∞ > u/
√

2} ≤ 2P{ sup
t∈[0,1]

X(t) > u/
√

2}. (D.5)
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To give bounds to the right hand side of (D.5), we use the Rice method (see [2, p. 93])

P{ sup
t∈[0,1]

X(t) > u/
√

2} = P{∀t ∈ [0, 1]; X(t) > u/
√

2} + P{Uu/
√

2 > 0},

≤ 1√
2π

∫ +∞
u/(
√

2σn)

exp

(
−v2

2

)
dv + E(Uu/

√
2),

where Uv is the number of up-crossings of the level v by the process X(t) on the interval [0, 1]. By the
Rice formula (see [2, Proposition 4.1, p. 93])

E(Uu/
√

2) =
1

2π

√
Var(X ′(t))

1

σn
exp

(
− u2

4σn
2

)
,

where

Var(X ′(t)) = −Σ ′′(0) = 2(2π)2
fc∑

k=1

k2 = 4π 2

3
fc(fc + 1)n. (D.6)

A Chernoff argument provides for any w > 0,
∫ +∞

w exp(−v2/2) dv/
√

2π ≤ exp(−w2/2), which yields

P

{
sup

t∈[0,1]
X(t) >

u√
2

}
≤ exp

(
− u2

4n

)
+
√

fc(fc + 1)

3
exp

(
− u2

4n

)
≤ n

2
exp

(
− u2

4n

)
.

The result follows with (D.5). �

D.2.2 The non-Gaussian process

Lemma D2 It holds for all 0 < u ≤ 1,

P

{‖F∗n (ε)‖∞√
n‖ε‖2

> u

}
≤
(

2
√

2+ 2n√
3

)(
1− u2

2

)n

.

Furthermore, it holds

‖F∗n (ε)‖∞√
n‖ε‖2

≤ √2

almost surely.

Proof. Consider the stationary process defined for any t ∈ [0, 1] by

X (t) := X(t)
√

n(‖z(1)‖2
2 + ‖z(2)‖2

2)
1
2

.
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Notice that Lemma D3 proves the last statement of Lemma D2. Note that the process X is not a Gaussian
and the analysis of Appendix D.2.1 fails. Observe that, as in (D.4), it holds for any 0 < u ≤ 1

P

{‖F∗n (ε)‖∞√
n‖ε‖2

> u

}
≤ 2 P

{
sup

t∈[0,1]
X (t) >

u√
2

}
,

and it remains to bound the right-hand side term. Observe that

P

{
sup

t∈[0,1]
X (t) >

u√
2

}
= P

{
∀t ∈ [0, 1]; X (t) >

u√
2

}
+ P

{Uu/
√

2 > 0
}
,

≤ P

{
∀t ∈ [0, 1]; X (t) >

u√
2

}
+ E

{Uu/
√

2

}
,

where Uv is the number of up-crossings of the level v by the process X on the interval [0, 1]. Eventually,
we combine Lemmas D5 and D6 to get

P

{‖F∗n (ε)‖∞√
n‖ε‖2

> u

}
≤
(

2
√

2√
2− u2

+ 2τn

π(2− u2)

)(
1− u2

2

)n

,

where τn = 2π
√

fc(fc + 1)/
√

3. The result follows. �

D.2.3 Joint law of the process and its derivative

Lemma D3 It holds

(X (t), X ′(t)) d=(V1, τnV2),

where τn = 2π
√

fc(fc + 1)/
√

3 and V1 and V2 are the first coordinates of a random vector uniformly
distributed on the sphere S

2n−1. For any t ∈ [0, 1], the joint density p(X (t),X ′(t)) of (X (t), X ′(t)) is
given by

∀(a, b) ∈ R2, p(X (t),X ′(t))(a, b) = n− 1

τnπ

[
1− a2 − (b/τn)

2
]n−2

1Hn(a, b),

where Hn := {(a, b) ∈ R2; a2 + (b/τn)
2 < 1}.

Proof. We start by noticing that for any t ∈ [0, 1],

(X (t), X ′(t)) d= 1√
n
(〈V , θ(t)〉, 〈V , θ ′(t)〉), (D.7)
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where V is uniformly distributed on the sphere S
2n−1 and

θ(t) = (cos(2π fct), cos(2π(fc − 1)t), . . . , 1, . . . , cos(2π fct), sin(2π fct), . . . , 0, . . . ,− sin(2π fct)),

θ ′(t) =
(
− 2π fc sin(2π fct),−2π(fc − 1) sin(2π(fc − 1)t) . . . , 0, . . . ,−2π fc sin(2π fct),

2π fc cos(2π fct), 2π(fc − 1) cos(2π(fc − 1)t), . . . , 0, . . . ,−2π fc cos(2π fct)
)

.

The property is proved as follows. First, write

X(t) = 〈z, θ(t)〉, (D.8)

X ′(t) = 〈z, θ ′(t)〉, (D.9)

where

z = (z(1)

−fc
, . . . , z(1)

0 , . . . , z(1)

fc
, z(2)

−fc
, . . . , z(2)

0 , . . . , z(2)

fc
) ∼ N2n(0, Id2n).

The last term is simply obtained by derivation. Using the previous displays then V = z/‖z‖2 is uniform
on the sphere S

2n−1, and one can check that X (t) = 〈V , θ(t)〉/√n and X ′(t) = 〈V , θ ′(t)〉/√n.
Using the properties of X and X ′ given in (D.8) and (D.9), combined with (D.3) and (D.6), for all

t ∈ [0, 1] it holds that Var(X(t)) = ‖θ(t)‖2
2 = n and Var(X ′(t)) = ‖θ ′(t)‖2

2 = τ 2
n n. Moreover, one

can check that 〈θ(t), θ ′(t)〉 = 0. Since θ(t) and θ ′(t) are orthogonal and since the Haar measure on the
sphere is invariant under the action of the orthogonal group, we deduce from (D.7) that

(X (t), X ′(t)) d=(V1, τnV2), (D.10)

where τn = 2π
√

fc(fc + 1)/
√

3 and V1 and V2 are the first coordinates of a random vector uniformly
distributed on the sphere S

2n−1. A standard change of variables allows us to compute the joint law of V1

and τnV2. Indeed, let f be any continuous bounded function, using spherical coordinates one has

E(f (V1, τnV2)) = 1

S2n−1

∫
[0,π ]2n−2×[0,2π)

f (cos x1, τn sin x1 cos x2),

sin2n−2 x1 sin2n−3 x2 · · · sin x2n−2 dx1 · · · dx2n−2 dx2n−1,

= S2n−3

S2n−1

∫
[0,π ]2

f (cos x1, τn sin x1 cos x2) sin2n−2 x1 sin2n−3 x2 dx1 dx2,

= n− 1

π

∫
]0,π [2

f (hn(x, y)) sin2n−2 x sin2n−3 y dx dy,

where Sk denotes the k-dimensional surface area of the k-sphere S
k ⊂ Rk+1 and hn is defined from

]0, π [2 onto Hn := {(a, b) ∈ R2; a2 + (b/τn)
2 < 1} by hn(x, y) = (cos x, τn sin x cos y). Observe

that hn is a C1-diffeomorphism whose Jacobian determinant at point (x, y) is τn sin2 x sin y and its
inverse function is h−1

n (a, b) = (arccos a, arccos(b/(τn

√
1− a2))). By the change of variables given
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by hn, it holds

E(f (V1, τnV2)) = n− 1

π

∫
Hn

f (a, b)
1

τn
sin2n−4(arccos a) sin2n−4(arccos(b/(τn

√
1− a2))) da db,

= n− 1

τnπ

∫
Hn

f (a, b)

[
(1− a2)n−2

(
1− b2

τ 2
n (1− a2)

)n−2
]

da db,

using that sin(arccos(t)) = √1− t2. From (D.10), we deduce that (X (t), X ′(t)) has a density p(X (t),X ′(t))
with respect to the Lebesgue measure and it holds

p(X (t),X ′(t))(a, b) = n− 1

τnπ
(1− a2)n−2

[
1− b2

τ 2
n (1− a2)

]n−2

1Hn(a, b),

for all (a, b) ∈ R2. �

We derive the following useful description of the law of X (t).

Lemma D4 It holds X (t) has the same law as the first coordinate V1 of a random vector uniformly
distributed on the sphere S

2n−1. For any t ∈ [0, 1], the density pX (t) of X (t) is given by

∀a ∈ R, pX (t)(a) = Γ (n)√
πΓ (n− 1/2)

(
1− a2

)n−3/2
1[−1;1](a),

with Γ the Gamma function.

Proof. Let g be any continuous bounded function, using spherical coordinates one has

E(g(V1)) = 1

S2n−1

∫
[0,π ]2n−2×[0,2π)

g(cos x1)

sin2n−2 x1 sin2n−3 x2 · · · sin x2n−2 dx1 · · · dx2n−2 dx2n−1,

= S2n−2

S2n−1

∫
[0,π ]

g(cos x1) sin2n−2 x1 dx1,

= Γ (n)√
πΓ (n− 1/2)

∫
]0,π [

g(cos x1) sin2n−2 x1 dx1.

Using the change of variable a = cos x1, one gets

E(g(V1)) = Γ (n)√
πΓ (n− 1/2)

∫ 1

−1
g(a) sin2n−3(arccos a) da,

= Γ (n)√
πΓ (n− 1/2)

∫ 1

−1
g(a)

(√
1− a2

)2n−3
da,

which ends the proof. �
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D.2.4 Trajectories uniformly above a level

Lemma D5 For all 0 < u <
√

2, it holds

P

{
∀t ∈ [0, 1]; X (t) >

u√
2

}
≤ 2

(
1− u2

2

)n− 1
2

.

Proof. We simply consider the elementary bound

P

{
∀t ∈ [0, 1]; X (t) >

u√
2

}
≤ P

{
X (0) >

u√
2

}
,

where we recall that

X (0) =

fc∑
k=−fc

z(1)

k

√
n(‖z(1)‖2

2 + ‖z(2)‖2
2)

1
2

d= z(1)

0

(‖z(1)‖2
2 + ‖z(2)‖2

2)
1
2

,

where the last equality in distribution holds thanks to (D.10). Then, we make use of the following
inequalities as in [39]

P

{
X (0) >

u√
2

}
= P

{
(z(1)

0 )2

‖z(1)‖2
2 + ‖z(2)‖2

2

>
u2

2

}
,

= P

{(
1− u2

2

)
(z(1)

0 )2 >
u2

2

(
fc∑

k=1

(z(1)

k )2 + (z(1)

−k)
2 + ‖z(2)‖2

2

)}
,

=
∫ +∞

0
P

{
(z(1)

0 )2 >
tu2

2− u2

}
fχ2

2n−1
(t) dt,

≤
∫ +∞

0
2 exp

(
− tu2

4− 2u2

)
fχ2

2n−1
(t) dt,

= 2E

[
exp

(
− u2Z

4− 2u2

)]
,

= 2

(
1

1+ u2

2−u2

) 2n−1
2

,

= 2

(
1− u2

2

)n− 1
2

,

where fχ2
2n−1

denotes the density function of the Chi-squared distribution with 2n−1 degrees of freedom

and Z is distributed with respect to this distribution. Note that we have used Fubini’s theorem and a
Chernoff argument providing for any v > 0, 1−Ψ (v) ≤ exp(−v2/2), where Ψ denotes the cumulative
distribution function of the standard normal distribution. �
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D.2.5 Number of up-crossings

Lemma D6 It holds

E{Uu/
√

2} ≤
τn

2π

(
1− u2

2

)n−1

,

where we recall that τn = 2π
√

fc(fc + 1)/
√

3.

Proof. First observe that the joint density p(X (t),X ′(t)) of (X (t), X ′(t)) is a compactly supported continuous
function that does not depend on t by Lemma D3. In order to bound E(Uu/

√
2), we make use of the

following result described in [2, p. 79]

E
{Uu/

√
2

} ≤ ∫ 1

0
dt
∫ ∞

0
xp(X (t),X ′(t))(u/

√
2, x) dx. (D.11)

Lemma D3 and an elementary change of variables (namely z = (x/τn)
2 and y = 1− u2/2− z) give

E
{Uu/

√
2

} ≤ n− 1

τnπ

∫ τn
√

1−u2/2

0
x

(
1− u2

2
− x2

τ 2
n

)n−2

dx,

= (n− 1)τn

2π

∫ 1−u2/2

0
xn−2 dx,

= τn

2π

(
1− u2

2

)n−1

,

as claimed. �

D.3 Concentration

D.3.1 The Chi-squared distribution We control the Chi-square deviation using a standard lemma
recalled here.

Lemma D7 [31, Lemma 1] If ε is a complex valued centered Gaussian random variable defined by

ε
d= ε(1) + ıε(2), where the real part ε(1) = R(ε) and the imaginary part ε(2) = I(ε) are i.i.d. random

vectors Nn(0, σ 2
0 Idn). It holds

P

{
‖ε‖2

2 ≤ 2nσ 2
0

(
1−

√
2x

n

)}
≤ exp(−x),

P

{
‖ε‖2

2 ≥ 2nσ 2
0

(
1+ x

n
+
√

2x

n

)}
≤ exp(−x).

Proof. Take D = 2n and ai = σ 2
0 in [31, Lemma 1]. �
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Appendix E. Convexity tools

We first remind some classical results from standard convex analysis, see [4, Example 13.8, Proposition
13.20, and Example 13.6].

E.1 Convexity reminder

The sub-gradient of a convex function f : Cd → R at x is defined as

∂f (x) = {z ∈ Cd ;∀y ∈ Rd , f (x)− f (y) ≥ 〈z, (x − y)〉}. (E.1)

We denote f ∗ the Fenchel-conjugate of f , f ∗(z) = supw∈Cd 〈w, z〉 − f (w). In this section, for convexity
analysis purpose, we will denote by IC the indicator function of a set C defined as

IC : Cd → R, IC(x) =
{

0, if x ∈ C,

+∞, otherwise.
(E.2)

Lemma E1 For a convex function f : Cn → R, its perspective function is the function

persp(f ) : Cn ×R→ R, (x, t) �→
{

tf ( x
t ), if t > 0,

+∞, otherwise.
(E.3)

Its Fenchel-conjugate persp(f )∗ reads persp(f )∗ = I{(z,u)∈Cn×R : u+f ∗(z)≤0}.

Lemma E2 For a function f : Cn → R and for any z ∈ Cn one has the following properties for the
Fenchel-conjugate:

• (τz(f ))∗ = f ∗ + 〈·, z〉, where τz(f ) = f (· − z).

• (f + 〈·, z〉)∗ = τz(f ∗).
• For (‖ · ‖2/2)∗ = ‖ · ‖2/2.

E.2 Proof of Proposition 2

Applying Lemmas E1 and E2 to the function f = ‖ · ‖2/2 and persp(f )(x, t) = ‖x‖2
2/(2t), provides

persp(f )∗ = I{(z,u)∈Cn×R : u+‖z‖2/2≤0}.
We can now dualize Problem (4). First remark that the objective function in (4) can be written

as Pλ(μ, σ) = persp(‖ · ‖2/2)(Fn(μ) − y, nσ) + σ/2 + λ‖μ‖TV. For h : Cn × R → R defined by
h = persp(‖ ·‖2/2), one can write the primal in the form Pλ(μ, σ) = τz(h)(Fn(μ), nσ)+σ/2+ f (μ, σ),
where z = (y, 0) ∈ Cn ×R and f (μ, σ) = λ‖μ‖TV + IR++ . Then, we can apply [4, Proposition, 19.18],
with g : Cn × R → R by g(·, σ) = τz(h)(·, nσ) + σ/2 and L = Fn. This leads to the Lagrangian
formulation

L(μ, σ , c, t) := f (μ, σ)+ 〈Fn(μ), c〉 + σ t − g∗(c, t),

where g∗(c, t) = 〈c, y〉 + IC(c, t) for C = {(z, u) ∈ Cn ×R : u+ n‖z‖2/2 ≤ 1/2}.
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Since strong duality holds, the primal problem is equivalent to finding a saddle point of the
Lagrangian. Any such saddle point (μ̂, σ̂ , ĉ, t̂) satisfies on the one hand ‖F∗n ĉ‖∞ ≤ λ, and on the
other hand ĉ = (Fn(μ̂)− y)/(nσ̂ ) and t̂ = 1/2− ‖Fn(μ̂)− y‖2/(2n(σ̂ )2) = 1/2− n‖ĉ‖2/2. The dual
problem can also be obtained from the aforementioned theorem:

min
(c,t)∈Cn×R

f ∗(F∗n (c), t)+ g∗(−c,−t), (E.4)

where

f ∗(F∗n (c), t) =
{

0, if ‖F∗n c‖∞ ≤ λ and t ≤ 0,

+∞, otherwise.
(E.5)

Hence the dual problem reads

min
(c,t)∈Cn×R

〈y,−c〉,
s.t. ‖F∗n (c)‖∞ ≤ λ, t ≤ 0 and − t + n‖c‖2/2 ≤ 1/2.

(E.6)

Re-parameterizing the dual by performing c← c/λ and taking t←−t leads to:

min
(c,t)∈Cn×R

〈−y, λc〉,
s.t.‖F∗n (c)‖∞ ≤ 1, t ≥ 0 and t + nλ2‖c‖2/2 ≤ 1/2.

(E.7)

Finally, the dual problem of (4) reads

ĉ ∈ arg min
c∈D̃n

〈−y, λc〉, (E.8)

where D̃n =
{
(c, u) ∈ Cn ×R : ‖F∗n c‖∞ ≤ 1, u ≥ 0, nλ2‖c‖2/2+ u ≤ 1/2

}
. However, one can eas-

ily show that Problem (11) is equivalent to (E.8). Indeed, one can write that D̃n = ∪u≥0Dn,u where
Dn,u=

{
c ∈ Cn : ‖F∗n (c)‖∞ ≤ 1, nλ2‖c‖2/2+ u ≤ 1/2

}
. Moreover, one can remark that for all u ≥ 0,

Dn,u⊂Dn,0 and then for all u ≥ 0,

min
c∈Dn,u

〈−y, λc〉 ≥ min
c∈Dn,0

〈−y, λc〉.

With the previous remark, one can infer that

min
c∈D̃n

〈−y, λc〉 = min
c∈Dn,0

〈−y, λc〉,
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the conclusion follows by noting that Dn,0 = Dn. Finally, the dual problem can be written as follows

ĉ ∈ arg max
c∈Dn

〈y, λc〉.

Equation (12) is the consequence of considering the Lagrangian formulation of the following
constrained problem:

(z, μ̂, σ̂ ) ∈ arg min
(z,μ,σ)∈E∗×R++

1

2nσ
‖z‖2

2 +
σ

2
+ λ‖μ‖TV,

s.t. z = y − Fn(μ).

(E.9)

E.3 Proof of Proposition 3

We present the proof of Proposition 3 here.
(i) ⇒ (ii): Let us choose λ ∈]0, λmin(y)], then nλ2‖ĉ(BME)‖2 ≤ n(λmin(y))2‖ĉ(BME)‖2 ≤ 1. Hence,

ĉ(BME) ∈ Dn, and since Dn ⊂ {c ∈ Cn : ‖F∗n (c)‖∞ ≤ 1}, then ĉ = ĉ(BME).
(ii) ⇒ (iii): Assume that ĉ = ĉ(BME), then y = nλ̂ĉ(BME) + Fn(μ̂) thanks to Equation (12) and

Fn(μ̂
(BME)) = y thanks to Equation (18). Moreover, one has 〈y, ĉ(BME)〉 = ‖μ̂‖TV and it holds that

λ〈y, ĉ〉 = ‖y−Fn(μ̂)‖2/2nσ̂ + σ̂ /2+ λ‖μ̂‖TV by strong duality. The only way the last equation holds
is when σ̂ = 0 and that y = Fn(μ̂).

(iii)⇒ (i): Assume that σ̂ = 0, this leads to λ̂ = 0 thanks to the definition of λ̂ below (12). Thanks
to Equation (12), y = Fn(μ̂). This means that (μ̂, σ̂ ) is solution of the problem

(μ̂, σ̂ ) ∈ arg min
(μ,σ)∈E∗×R++

y=Fn(μ)

1

2nσ
‖y − Fn(μ)‖2

2 +
σ

2
+ λ‖μ‖TV, (E.10)

and so

μ̂ ∈ arg min
μ∈E∗

y=Fn(μ)

λ‖μ‖TV, (E.11)

i.e. μ̂ = μ̂(BME).
By strong duality in Problem (4), one has λ‖μ̂‖TV = λ〈ĉ, y〉 and by strong duality in Problem (19),

λ‖μ̂(BME)‖TV = λ〈ĉ(BME), y〉. Hence 〈ĉ, y〉 = 〈ĉ(BME), y〉 and one can choose ĉ(BME) as a dual optimal
solution for Problem (11). So ‖ĉ(BME)‖2

2 ≤ 1/(nλ2), and (i) holds by definition of λmin.
We now prove the last statement of the proposition. Since ‖p̂‖∞ ≤ 1, Parseval’s inequality leads to

‖ĉ‖2 ≤ 1. If λ < 1/
√

n then λ2n‖ĉ‖2 ≤ λ2n < 1, this means that the �2 constraint in the dual formulation
(11) is not saturated. Then ĉ = ĉ(BME) and using (ii)⇔ (i), we deduce that λmin(y) ≥ 1/

√
n.

E.4 Proof of Proposition 4

First note that if λ ≤ λmin(y), by Proposition 3 there is overfitting which contradicts the assumption
made in Section 2.1. Secondly, if λ > λmax(y), then by Remark 3, μ̂ = 0 a scenario we are not interested
in. Now, with Equations (12) and (13), one can check that ĉ = y/(n̂λ) = y/(

√
nλ‖y‖). Since y is a

Gaussian vector, p̂ = F∗n (ĉ) almost surely has a non-constant modulus.
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Set that λ ∈ [λmin(y); λmax(y)]. Let us suppose that the polynomial |p̂|2 is of constant modulus, then
it can be written as p = vϕk with v ∈ C and ϕk(·) = exp(2πık·) for some k ∈ [[ − fc, fc

]]
. Note that

if |v| < 1, using Holder’s inequality on (16) leads to μ̂ = 0. Now if |v| = 1, we also have ĉ ∈ Dn, in
particular ‖ĉ‖2 ≤ 1/(

√
nλ), leading to |v| ≤ 1/(

√
nλ). However, since λmin(y) > 1/

√
n, it turns out that

|v| < 1, which contradicts |v| = 1. One can then conclude that a dual polynomial of constant modulus
never occurs in the CBLasso setup, provided that λ ∈ [λmin(y); λmax(y)].
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