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Abstract
Motivated by electricity consumption reconstitu-
tion, we propose a new matrix recovery method
using nonnegative matrix factorization (NMF).
The task tackled here is to reconstitute electric-
ity consumption time series at a fine temporal
scale from measures that are temporal aggregates
of individual consumption. Contrary to existing
NMF algorithms, the proposed method uses tem-
poral aggregates as input data, instead of matrix
entries. Furthermore, the proposed method is ex-
tended to take into account individual autocorre-
lation to provide better estimation, using a recent
convex relaxation of quadratically constrained
quadratic programs. Extensive experiments on
synthetic and real-world electricity consumption
datasets illustrate the effectiveness of the pro-
posed method.

1. Introduction
In this paper, we propose a new matrix recovery method
using nonnegative matrix factorization (NMF, Lee & Seung
(1999)) where matrix columns represent time series at a
fine temporal scale. Moreover, only temporal aggregates of
these time series are observed.

The method has its motivation in the context of electricity
load balancing, where time series represent electric power
consumption. To avoid failure in the electricity network,
suppliers are typically required by transmission system op-
erators (TSO) to supply as much electricity as their con-
sumers consume at every moment. This mechanism is
called balancing. In the context of an open electricity
market, all market participants, such as suppliers, utility
traders, and large consumers, have a balance responsibil-
ity: any imbalance caused within the perimeter of a par-
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ticipant is billed by the TSO. To calculate the imbalance
caused by a market participant, one needs an estimation
of the consumption and production within its perimeter
at a small temporal scale, for example, half-hourly (RTE
(2014), SVK (2016), REE (2016)).

However, for many customers (for instance residential)
within a perimeter, electricity consumption is not recorded
at that scale. Although smart meter readings may be
recorded locally up to every minute, utility companies often
have very limited access to such data, due to data transmis-
sion and processing costs and/or privacy issues. Following
a fixed schedule, cumulative consumption of each meter is
recorded by the utility company, for instance every day or
every month. By differentiating consecutive readings, the
utility obtains the consumption of a customer between two
reading dates. Currently, TSOs use proportional rules to
reconstitute consumption from these measurements, based
on national consumption profiles adjusted by temperature.
In this article, we develop an NMF-based matrix recovery
method providing a solution to consumption reconstitution
from such temporal aggregates.

Recent advances in matrix completion have made it clear
that when a large number of individuals and features are
involved, even partial data could be enough to recover
much of lost information, thanks to the low-rank prop-
erty (Candès & Recht, 2009): although the whole data ma-
trix V∗ ∈ RT×N is only partially known, if V∗ = WH,
where W ∈ RT×K ,H ∈ RK×N , with K much smaller
than both T and N , one could recover V∗ entirely under
some conditions over the sampling process.

In this article, we adress electricity consumption reconsti-
tution as a matrix recovery problem. Consider the electric-
ity consumption of N consumers during T periods. Since
consumption is always positive, the N time series are or-
ganized into a nonnegative matrix V∗ ∈ RT×N+ . An entry
of this matrix, v∗t,n represents, for example, the electricity
consumption of Consumer n for Period t.

Information about consumption is revealed as meter read-
ings which do not correspond to matrix entries but to cumu-
lative sums of each column of V∗: at a meter-reading date
t, we observe that Consumer n has consumed

∑t
i=1 v

∗
i,n
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since the first period. Several readings are available for
each consumer.

An alternative matrix representation could be to define en-
tries directly as the cumulative consumption since the first
period. Again, this matrix has missing values and a ma-
trix completion algorithm can be applied. However, this
cumulative matrix has increasing columns, which is quite
different from matrices considered in the standard matrix
completion literature, where matrix completion error is typ-
ically bounded by the upper bound on matrix.

We represent meter readings as linear measures on the con-
sumption matrix V∗. Temporal aggregates are derived
from meter readings by differentiating consecutive read-
ings: we will consider these temporal aggregates as ”obser-
vations” in the rest of the paper. We consider D scalar ob-
servations, represented by a data vector a ≡ A(V∗) ∈ RD+ ,
whereA is aD-dimensional linear operator. To recover V∗

from a, we look for a low-rank NMF of V∗: WH ' V∗,
where W ∈ RT×K+ ,H ∈ RK×N+ . The columns of W are
K nonnegative factors, which can be interpreted as typical
profiles of the N time series, and the columns of H as the
weights of each individual. The problem is formalized as
the minimization of a quadratic loss function under non-
negativity and data constraints:

min
V, W, H

`(V,W,H) = ‖V −WH‖2F

s.t. V ≥ 0, W ≥ 0, H ≥ 0, A(V) = a,
(1)

where X ≥ 0 (or x ≥ 0) means that the matrix X (or the
vector x) is element-wise nonnegative.

Note the difference between (1) and another potential esti-
mator,

min
W, H

ˆ̀(W,H) = ‖A(WH)− a‖22

s.t. W ≥ 0, H ≥ 0,
(2)

studied in (Roughan et al., 2012). If V is a solution to (1), it
satisfies exactly the measurement constraint, but is approx-
imately low-rank, while WH, a solution to (2) is exactly
of low rank, but only matches the measurements approxi-
mately. Since in our application, the estimated time series
matrix is to be used for billing, the match to metering data
is essential. Therefore, we use (1) in this work.

1.1. Prior works

The measurement operator A is a special instance of the
trace regression model (Rohde & Tsybakov, 2011) which
generalizes the matrix completion setting. In matrix com-
pletion, each measurement is exactly one entry. Various
forms of linear measurements other than matrix completion
have been considered for matrix recovery without nonneg-

ativity (Recht et al., 2010; Candès & Plan, 2011; Zuk &
Wagner, 2015).

The NMF literature is generally focused on full observa-
tion (Gillis, 2014; Alquier & Guedj, 2016), or on matrix
completion (Gillis & Glineur, 2011; Xu & Yin, 2013) Ran-
dom projection measurements are used in an NMF context
in (Pnevmatikakis & Paninski, 2013), where a maximum
likelihood estimator is developed based on a specific gen-
erative model in neural imaging. The particular form of
measurement operator considered here arises from meter
reading, and can be used in other fields, such as Internet
traffic matrix estimation (Roughan et al., 2012). Because
of our choice of estimator (1) over estimator (2), we derive
a novel algorithm for this measurement operator, which
has a smaller time complexity than previously studied ones
(more details in Section 2.1).

In real-world applications, global information such as tem-
poral autocorrelation could be available in addition to mea-
surements. Previous approaches combining matrix factor-
ization and autoregressive structure are often focused on
obtaining factors that are more smooth and/or sparse, both
in NMF (Chen & Cichocki, 2005; Févotte & Idier, 2011;
Smaragdis et al., 2014) and without nonnegativity (Udell
et al., 2016; Yu et al., 2015). Our objective is different from
these studies: we try to further improve the matrix recov-
ery by constraining temporal correlation on individual time
series (not factors). We use a recent convex relaxation of
quadratically constrained quadratic programs (Ben-Tal &
den Hertog, 2013) to deduce a closed-form projection step
in this case.

We propose an algorithm to solve (1) in Section 2.1. To
take into account individual autocorrelation, a second algo-
rithm is proposed in Section 2.2. In Section 3, both algo-
rithms are validated on synthetic and real electricity con-
sumption datasets, compared to a linear benchmark and a
state-of-art matrix completion method.

2. Reconstitution of time series with NMF
2.1. Iterative algorithm with simplex projection

We represent temporal aggregation by a linear operator A.
For each 1 ≤ d ≤ D, the d-th measurement on X, A(X)d,
is the sum of several consecutive rows on one column of
X, that is,

A(X)d =
∑

(t,n)∈Id

xt,n,

where Id = {(t, n)|t0(d)+1 ≤ t ≤ t0(d)+h(d), n = nd},
is the index set over h(d) consecutive periods of Con-
sumer nd, starting from Period t0(d) + 1. Each measure-
ment covers a disjoint index set. All entries of X are not
necessarily involved in the measurements.
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A block Gauss-Seidel algorithm (Algorithm 1) is used to
solve (1). We alternate by minimizing `(V,W,H) over
W,H or V, keeping the other two matrices fixed. Meth-
ods from classical NMF problems are used to update W
and H (Kim et al., 2014). In the implementation, we use
two variants that seem similarly efficient (more details in
Section 3): Hierarchical Alternating Least Squares (HALS,
Cichocki et al. (2007)), and a matrix-base NMF solver with
Nesterov-type acceleration (NeNMF, Guan et al. (2012)).

When W and H are fixed, the optimization problem on
V is equivalent to D simplex projection problems, one for
each scalar measurement. For 1 ≤ d ≤ D, we have to
solve

min
vId

‖vId −
t0(d)+h(d)∑
t=t0(d)+1

wthnd‖2

s.t. vId ≥ 0, v′Id1 = bd.

(3)

The simplex projection algorithm introduced by Chen &
Ye (2011) solves this subproblem efficiently. Define the
operator, PA, as the orthogonal projection into the simplex
A ≡ {X ∈ RT×N+ |A(X) = a}. A is the intersection
of the affine subspace {X ∈ RT×N |A(X) = a} and the
first orthant. Projector PA encodes the measurement data
a = A(V∗). In Algorithm 1, we apply PA to a working
value of V in order to obtain its projection in A.

Contrary to previously studied algorithms (Roughan et al.,
2012), by choosing estimator (1) over (2), the simplex pro-
jection step is separated from the classical NMF update
steps in our algorithm. Instead of multiplying the rank and
the complexity introduced by the number of measurements,
we have an algorithm whose complexity is the sum of the
two. In cases where the number of measurements is large,
this difference can be crucial. 1

Algorithm 1 Block coordinate descent for NMF from tem-
poral aggregates
input PA, 1 ≤ K ≤ min{T,N}

Initialize W0,H0 ≥ 0,V0 = PA(W0H0), i = 0
while Stopping criterion is not satisfied do

Wi+1 = Update(Wi,Hi,Vi)
Hi+1 = Update(Wi+1,Hi,Vi)
Vi+1 = PA(Wi+1Hi+1)
i = i+ 1

end while
output Vi ∈ A,Wi ∈ RT×K+ ,Hi ∈ RK×N+

A classical stopping criterion in the NMF literature is based
on Karush-Kuhn-Tucker (KKT) conditions on (1) (Gillis,

1This intuition is confirmed by the comparison of Algorithm 1
and our implementation of the algorithm proposed in (Roughan
et al., 2012).

2014, Section 3.1.7). We calculate

R(W)i,j = |(WH−V)H′)i,j |1Wi,j 6=0,

andR(H)i,j = |(W′(WH−V))i,j |1Hi,j 6=0.

The algorithm is stopped if ‖R(W)‖2F + ‖R(H)‖2F ≤ ε,
for a small threshold ε > 0.

Convergence to a stationary point has been proved for past
NMF solvers with the full observation or the matrix com-
pletion setting (Guan et al. (2012); Kim et al. (2014)). Our
algorithms have similar convergence property. Although
the subproblems on W and H do not necessarily have
unique optimum, the projection of V attains a unique min-
imizer. By Grippo & Sciandrone (2000, Proposition 5), the
convergence to a stationary point is guaranteed.

Algorithm 1 can be generalized to other types of measure-
ment operators A, as long as a projection into the simplex
defined by the data constraint A(X) = a and the positivity
constraint can be efficiently computed.

2.2. From autocorrelation constraint to penalization

In addition to the measurements in a, we have some prior
knowledge on the temporal autocorrelation of the individu-
als. To take into account information about autocorrelation,
we add a penalization term to the original matrix recovery
problem, replacing (1) by:

min
V,W,H

‖V −WH‖2F − λ
N∑
n=1

v′n∆ρnvn

s.t. V ≥ 0, W ≥ 0, H ≥ 0, A(V) = a,
(4)

where λ ≥ 0 is a single fixed penalization parameter, and
∆ρn is a symmetric matrix precised shortly after. In the
rest of this section, we first show by Theorem 1, that with
an appropriately chosen value of λ, adding the penalization
term v′n∆ρnvn is equivalent to impose that the temporal
autocorrelation of vn to be at least equal to ρn, a prior
threshold. Then we modify the Algorithm 1 to solve this
penalized problem.

For 1 ≤ n ≤ N , suppose that the lag-1 autocorrelation of
Individual n’s time series is at least equal to a threshold ρn
(e.g. from historical data, excluded from observed tempo-
ral aggregates), that is,

T−1∑
t=1

vt+1,nvt,n ≥ ρn
T∑
t=1

v2t,n. (5)
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Notice that with the lag matrix,

∆ =


0 1 0 ... 0
0 0 1 ... 0

0 0 0
. . . :

: :
. . . . . . 1

0 0 ... 0 0

 ,

we have
∑T−1
t=1 vt+1,nvt,n = v′n∆vn. Define ∆ρ ≡ ∆ +

∆′ − 2ρI, for a threshold −1 ≤ ρ ≤ 1. Inequality (5) is
then equivalent to

v′n∆ρnvn ≥ 0. (6)

Imposing (6) would require one to solve, at each iteration,
N quadratically constrained quadratic programs (QCQP)
of the form:

min
x

||x− x0||2

s.t. x′Sx ≥ 0,
(7)

where S is a general symmetric matrix, not necessarily
semi-definite positive. This means that the QCQP is in gen-
eral a non-convex problem. Let δ be the vector of eigenval-
ues of ∆. By eigendecomposition, S = U′DU. where the
matrix U is orthogonal. The entries of δ are the diagonal
entries of D. The following theorem justifies the choice of
penalization term in (4), by showing with an appropriate λ,
adding this penalization term is equivalent to imposing the
autocorrelation constraint (5).

Theorem 1. Suppose that δ1, the largest eigenvalue of S,
is strictly positive. Suppose that z0 ≡ Ux0 has no zero
component. Then there exists 0 ≤ λ < 1

δ1
, that verifies∑T

t=1 δt
z20,t

2(1−λδt)2 = 0, so that x∗ ≡ (I− λS)−1x0 is an
optimal solution of (7).

Proof. We follow Ben-Tal & den Hertog (2013) to obtain
a convex relaxation of (7).

Define z ≡ Ux, z0 ≡ Ux0, yt ≡ 1
2z

2
t , ∀1 ≤ t ≤ T .

Recall that δ1 > 0, and that ∀t, 1 ≤ t ≤ T , z0,t 6= 0.

Problem (7) is equivalent to the non-convex problem

min
y,z

1′y − z′0z

s.t. − δ′y ≤ 0,
1

2
z2t = yt, ∀1 ≤ t ≤ T.

(8)

Now consider its convex relaxation

min
y,z

1′y − z′0z

s.t. − δ′y ≤ 0,
1

2
z2t − yt ≤ 0, ∀1 ≤ t ≤ T.

(9)

By Ben-Tal & den Hertog (2013, Theorem 3), if (z∗,y∗) is
an optimal solution of (9), and if 1

2 (z
∗
t )

2 = y∗t , ∀1 ≤ t ≤

T , then (z∗,y∗) is also an optimal solution of (8), which
makes x∗ = U′z∗ an optimal solution of (7).

We will look for such a solution to (9) by exam-
ining its first-order conditions of optimality. Prob-
lem (9) is convex, and it verifies the Slater condition:
∃(ŷ, ẑ),−δ′ŷ < 0, 12 ẑ

2
t < ŷt,∀1 ≤ t ≤ T . This is true,

because δ1 > 0. We could choose an arbituary value of
ŷ1 > 0 and strictly positive but small values for other
components of ŷ so as to have −δ′ŷ < 0, and ẑ = 0.
Thus, Problem (9) always has an optimal solution, because
the objective function is coercive over the constraint. This
shows the existence of (z∗,y∗).

Now we show that 1
2 (z
∗
t )

2 = y∗t , ∀1 ≤ t ≤ T . The KKT
conditions of (9) are verified by (z∗,y∗). In particular,
there is some dual variable λ ≥ 0,µ ∈ RT+ that verifies,

1− λδ − µ = 0, (10)
−δ′y∗ ≤ 0, (11)
λδ′y∗ = 0, (12)

−z0,t + µtz
∗
t = 0, ∀1 ≤ t ≤ T, (13)

1

2
(z∗t )

2 − y∗t ≤ 0, ∀1 ≤ t ≤ T, (14)

µt(
1

2
(z∗t )

2 − y∗t ) = 0, ∀1 ≤ t ≤ T. (15)

Since z0,t 6= 0, we have µt 6= 0, z∗t = 1
µt
z0,t,∀1 ≤ t ≤ T

by (13). Therefore, by (15), y∗t = 1
2 (z
∗
t )

2,∀1 ≤ t ≤ T .

By (10), the values of µt = 1 − λδt can be deduced from
that of λ. Since µ > 0, we obtain that λ < 1

δ1
.

By (13), z∗t =
z0,t

1−λδt ,∀1 ≤ t ≤ T . This shows that x∗ =

U′z∗ = U′(I − λD)−1z∗0 = (I − λS)−1x0 is an optimal
solution for (7).

Theorem 1 shows that with a well chosen λ, the constraint
in (7) can be replaced by a penalization.

There are in fact two cases. Either x0 verifies the con-
straint, in which case λ = 0, and x∗ = x0 is the solution.
Otherwise, λ > 0. We replug the values of

y∗t =
1

2
(z∗t )

2 =
z20,t

2(1− λδt)2

back into (12), and obtain that λ verifies

T∑
t=1

δtz
2
0,t

2(1− λδt)2
= 0.

When W and H are fixed, the subproblem of (4) on V can
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be separated into N constrained problems of the form,

min
x

‖x− x0‖2 − λx′∆ρnx,

s.t. Anx = cn,

x ≥ 0,

(16)

where x0 is the n-th column of WH, cn is the observa-
tions on the n-th column, and An is a matrix which encodes
the measurement operator over that column. The following
theorem shows how to solve this problem.

Theorem 2. Suppose that S is a symmetric matrix with
eigenvalues δ, and λ1 > 0. Suppose A ∈ Rm,l a full-rank
matrix with m ≤ l, x0 ∈ Rl, c ∈ Rm, λ ≥ 0. Define
Q ≡ (I−λS)−1A′(A(I−λS)−1A′)−1. If λ < 1

δρ,1
, then

Qc + (I−QA)(I− λS)−1x0 is a minimizer of

min
x

‖x− x0‖2 − λx′Sx,

s.t. Ax = c,
(17)

Proof. Let l be the dimension of c. Define IC as the indi-
cator function for the constraint of (17), that is

IC(x) = 0, if Ax = c,

and IC(x) = +∞, if Ax 6= c.

Problem (17) is then equivalent to

min
x
F (x) ≡ 1

2
‖x− x0‖2 −

1

2
λx′Sx + IC(x). (18)

The subgradient of (18) is ∂F (x) = {x − x0 − λSx −
A′ε|ε ∈ Rl}. When λ < 1

δ1
, (18) is convex. Therefore,

x∗ is a minimizer if and only if 0 ∈ ∂F (x), and Ax∗ = c.
That is, ∃ε ∈ Rl,

(I− λS)x∗ − x0 −A′ε = 0,

Ax∗ = c.

The vector ε thereby verifies A(I−λS)−1(x0+A′ε) = c.

The l-by-l matrix A(I − λS)−1A′ is invertible, because
l is smaller than m, and A is of full rank (because each
measurement covers disjoint periods). Therefore,

ε = (A(I− λS)−1A′)−1(c−A(I− λS)−1x0),

x∗ = (I− λS)−1(x0 + A′ε)

= Qc + (I−QA)(I− λS)−1x0.�

In our particular problem, the eigenvalues of ∆ρn are

δρn,t = 2 cos(
t

T + 1
π)− 2ρn,

with t taking every value from 1 to T . This means that for
most of the autocorrelation threshold that we could need to

impose (−1 ≤ ρn ≤ 1), ∆ρn has both strictly positive and
strictly negative eigenvalues, allowing the above theorems
to apply.

Both I − λ∆ρn and An(I − λ∆ρn)
−1A′n are invertible

with λ < δρn,1. The matrix inversion only needs to be
done once for each individual. After computing Qn ≡ (I−
λ∆ρn)

−1A′n(An(I − λ∆ρn)
−1A′n)

−1, Qncn and (I −
QnAn)(I − λ∆ρn)

−1 for each n, we use Algorithm 2 to
solve (4).

Algorithm 2 Block coordinate descent for NMF from tem-
poral aggregates and autocorrelation penalty
input ρn,An,Qn,Qncn,∀1 ≤ n ≤ N, and 1 ≤ K ≤

min{T,N}
Initialize W0,H0 ≥ 0,V0 = PA(W0H0), i = 0
while Stopping criterion is not satisfied do

Wi+1 = Update(Wi,Hi,Vi)
Hi+1 = Update(Wi+1,Hi,Vi)
for all 1 ≤ n ≤ N do

vi+1
n = (Qncn + (I − QnAn)(I −
λ∆ρn)

−1Wi+1hi+1
n )+

end for
i = i+ 1

end while
output Vi ∈ A,Wi ∈ RT×K+ ,Hi ∈ RK×N+

Choosing λ An optimal value of λ could be calculated.
Substituting the values of y∗ in (12), shows that the optimal

λ is a root of the polynomial
∑T
t=1 δρ,t

z20,t
2(1−λδρ,t)2 . The

root-finding is too expensive to perform at every iteration.
However, the optimal λ verifies

0 < λ <
1

δρ,1
,

where δρ,1 = 2 cos( 1
T+1π) − 2ρ is the biggest eigen-

value of ∆ρ. This gives us a good enough idea about how
large a λ to use. In the numerical experiments, we chose
λ = min(1, 1

2maxn δρn,1
) in the penalization when the con-

straint in (7) is active, and λ = 0 (no penalization) when
the constraint is verified by x0.

3. Experimental results
We use one synthetic dataset and three real-world elec-
tricity consumption datasets to evaluate the proposed al-
gorithms. In each dataset, the individual autocorrelation
is calculated on historical data from the corresponding
datasets, not used for evaluation.

• Synthetic data: 20 independent Gaussian processes
with Matern covariance function (shifted to be non-
negative) are sampled over 150 periods to form the
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factor matrix W. A 20-by-120 weight matrix H is
generated by sampling from a standard normal dis-
tribution truncated at 0, independantly for each entry.
The data matrix is obtained as W×H (T = 150, N =
120). This matrix is exactly of rank 20.

• French electricity consumption (proprietary
dataset): daily consumption of 636 medium-
voltage feeders gathering each around 1,500 con-
sumers based near Lyon in France during 2012
(T = 365, N = 636).

• Portuguese electricity consumption (Trindade,
2016) daily consumption of 370 Portuguese clients
during 2014 (T = 365, N = 370).

• Electricity consumption of small Irish compa-
nies (Commission for Energy Regulation, Dublin,
2011a;b) daily consumption of 426 small Irish com-
panies during 200 days in 2010 (T = 200, N = 426).

For each individual in a dataset, we generate observations
by selecting a number of observation periods. The tem-
poral aggregates are the sum of the time series between
two consecutive observation periods. The observation pe-
riods are chosen in two possible ways: periodically (at reg-
ular intervals with the first observation period sampled at
random), or uniformly at random. The regular intervals
for periodic observations are p ∈ {2, 3, 5, 7, 10, 15, 30}.
This is motivated by the real application where meter read-
ings are recorded regularly. With random observations,
we use sampling rates that are equivalent to the regular
intervals. That is, the number of observations D verifies
D
TN = 1

p ∈ {0.5, 0.33, 0.2, 0.14, 0.1, 0.07, 0.03}.

We apply the following methods to recover the data matrix
from each set of sampled observations:

• interpolation Temporal aggregates are distributed
equally over the covered periods.

• softImpute As an alternative method, we apply a
state-of-art matrix completion algorithm to complete
the cumulative matrix. The observed entries are the
cumulative values of the column from the first period
to the observation dates. We use a nuclear-norm min-
imization algorithm, implemented in the R package,
softImpute (Mazumder et al. (2010)), to complete the
cumulative consumption matrix, before differentiating
each column to obtain recovered matrix. To choose
the thresholding parameter, we use the warm start pro-
cedure documented in softImpute.

• HALS, and NeNMF These are the proposed matrix
recovery algorithms using two classical W and H
update implementations: HALS, and NeNMF. When

autocorrelation penalization is used, we choose λ =
min(1, 1

2maxn δρn,1
), as explained in the previous sec-

tion. The rank used in proposed algorithms is chosen
by a 5-fold cross validation procedure: we split the
observations randomly into 5 folds, and apply the al-
gorithm to 4 of the 5 folds with ranks 2 ≤ K ≤ 30.
We then calculate the `2-distance between the tempo-
ral aggregates on the recovered matrix with the 1-fold
holdout. Repeating this procedure onto the 5 folds
separately, we choose the rank which minimizes the
average `2-distance, to perform the algorithm on all
observations.

With a recovered matrix V obtained in an algorithm
run, we compute the relative root-mean-squared error
(RRMSE):

RRMSE(V,V∗) =
‖V −V∗‖F
‖V∗‖F

.

Each experiment (dataset, sampling scheme, sampling rate,
recovery method, unpenalized or penalized) is run three
times, and the average RRMSE is reported in Figure 1. The
figure is zoomed to show the RRMSE of the proposed al-
gorithms. Much higher error rates for reference methods
are sometimes not shown.

On sample sets with random observation periods (lower
panel), proposed methods (HALS and NeNMF, blue and
purple lines), whether unpenalized (solid lines) or penal-
ized (dashed lines), out-performs the interpolation bench-
mark (red solid lines) by large in all datasets. This is espe-
cially the case when the sampling rate is small, i.e. when
the task is more difficult. On the Irish dataset (lower panel,
furthest to the right), penalized HALS and NeNMF (dashed
blue and purple lines) are an improvement to unpenalized
HALS and NeNMF when the sampling rate is low.

With periodic observations (upper panel), the RRMSE is
higher for every method. Proposed unpenalized methods,
HALS and NeNMF (blue and purple solid lines) are equiv-
alent to interpolation benchmark (red solid lines) for syn-
thetic data, but sometimes worse for real datasets. Real
electricity consumption has significant weekly periodicity,
which is poorly captured by observations at similar peri-
ods. However, this shortcoming of the unpenalized method
is more than compensated for by the penalization (dashed
blue and purple lines).

We notice that penalized HALS and NeNMF consistently
outperform interpolation with both observation schemes.
This makes penalized methods particularly useful for the
application of electricity consumption reconstituion, where
it may be costly to install a random observation scheme,
or to change the current periodic observation scheme to a
random one.
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Figure 1. Mean RRMSE of the recovered matrices over three separate runs over the four datasets. On the samples with random ob-
servation periods, proposed methods (HALS and NeNMF, blue and purple lines, both penalized and unpenalized) out-performs the
interpolation benchmark (solid red line). On the samples with regular observation periods, unpenalized HALS and NeNMF (solid blue
and purple lines) are similar to the interpolation benchmark, whiled penalized HALS and NeNMF (dashed blue and purple lines) are an
important improvement. The softImpute method (solid green line) only has comparable performance in two of the datasets, in the easiest
task (50% sampling rate at random periods). In most cases, RRMSE of softImpute is larger than 100%.

It is also interesting to note that the rank chosen by the
cross validation procedure is higher in higher sampling rate
scenarios (Figure 2). This shows that the cross validation
procedure is able to relax the rank constraint when more
information is available in the data.

The traditional matrix completion method seems to fail in
this application: softImpute (green solid lines) only has
comparable results to interpolation or proposed methods in
two of the four datasets, with 50% sampling rate in the ran-
dom sampling scheme, which is the easiest case. In most
cases, softImpute has an RRMSE much larger than 100%,
and thus is not shown in the graphic. This indicates that
the cumulative matrix considered in this application does
not verify assumptions which guarantee matrix completion
success.

4. Perspectives
Motivated by a new industrial application, we extended
NMF to use temporal aggregates as input data, by adding
a projection step into NMF algorithms. With appropriate
projection algorithms, this approach could be further gen-
eralized to other types of data, such as disaggregating spa-
tially aggregated data, or general linear measures. When
such information is available, we introduce a penalization
on individual autocorrelation, which improves the recovery
performance of the base algorithm. This component can be
generalized to larger lags (with a matrix ∆ with 1’s fur-
ther off the diagonal), or multiple lags (by adding several
lag matrices together). It is also possible to generalize this
approach to other types of expert knowledge through addi-
tional constraints on V.
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that procedure is able to relax the rank constraint when more information is available in the data.
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