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We introduce a new approach aiming at computing approximate optimal
designs for multivariate polynomial regressions on compact (semialgebraic)
design spaces. We use the moment-sum-of-squares hierarchy of semidefinite
programming problems to solve numerically the approximate optimal design
problem. The geometry of the design is recovered via semidefinite program-
ming duality theory. This article shows that the hierarchy converges to the
approximate optimal design as the order of the hierarchy increases. Further-
more, we provide a dual certificate ensuring finite convergence of the hier-
archy and showing that the approximate optimal design can be computed
numerically with our method. As a byproduct, we revisit the equivalence the-
orem of the experimental design theory: it is linked to the Christoffel poly-
nomial and it characterizes finite convergence of the moment-sum-of-square
hierarchies.

1. Introduction.

1.1. Convex design theory. The optimal experimental designs are computa-
tional and theoretical objects that aim at minimizing the uncertainty contained in
the best linear unbiased estimators in regression problems. In this frame, the ex-
perimenter models the responses z1, . . . , zN of a random experiment whose inputs
are represented by a vector ti ∈ R

n with respect to known regression functions
f1, . . . , fp , namely

zi =
p∑

j=1

θj fj (ti) + εi, i = 1, . . . ,N,

where θ1, . . . , θp are unknown parameters that the experimenter wants to esti-
mate, εi, i = 1, . . . ,N are i.i.d. centered square integrable random variables and
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the inputs ti are chosen by the experimenter in a design space X ⊆ R
n. In this

paper, we consider that the regression functions F are multivariate polynomials of
degree at most d .

Assume that the inputs ti , for i = 1, . . . ,N , are chosen within a set of distinct
points x1, . . . , x� with � ≤ N , and let nk denote the number of times the partic-
ular point xk occurs among t1, . . . , tN . This would be summarized by defining a
design ξ as follows:

(1) ξ :=
⎛
⎝x1 · · · x�

n1

N
· · · n�

N

⎞
⎠ ,

whose first row gives distinct points in the design space X where the inputs pa-
rameters have to be taken and the second row indicates the experimenter which
proportion of experiments (frequencies) have to be done at these points. We refer
to the inspiring book of Dette and Studden [3] and references therein for a com-
plete overview on the subject of the theory of optimal design of experiments. We
denote the information matrix of ξ by

(2) M(ξ) :=
�∑

i=1

wiF(xi)F�(xi),

where F := (f1, . . . , fp) is the column vector of regression functions and wi :=
ni/N is the weight corresponding to the point xi . In the following, we will not not
distinguish between a design ξ as in (1) and a discrete probability measure on X
with finite support given by the points xi and weights wi .

Observe that the information matrix belongs to S
+
p , the space of symmetric non-

negative definite matrices of size p. For all q ∈ [−∞,1], define the function

φq :=
{
S

+
p →R,

M 	→ φq(M),

where for positive definite matrices M

φq(M) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

p
trace

(
Mq))1/q

if q 
= −∞,0,

det(M)1/p if q = 0,

λmin(M) if q = −∞,

and for nonnegative definite matrices M

φq(M) :=
⎧⎪⎨
⎪⎩
(

1

p
trace

(
Mq))1/q

if q ∈ (0,1],
0 if q ∈ [−∞,0].

We recall that trace(M), det(M) and λmin(M) denote respectively the trace, de-
terminant and least eigenvalue of the symmetric nonnegative definite matrix M .
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Algorithm 1: Approximate Optimal Designs on Semialgebraic Sets
Data: A compact semialgebraic design space X defined as in (4).
Result: An approximate optimal design ξ

1. Choose the two relaxation orders δ and r .
2. Solve the SDP relaxation (7) of order δ for a vector y	

δ .
3. Either solve Nie’s SDP relaxation (28) or the Christoffel polynomial

SDP relaxation (30) of order r for a vector y	
r .

4. If y	
r satisfies the rank condition (29), then extract the optimal design ξ

from the truncated moment sequence as explained in Section 5.
5. Otherwise, choose larger values of δ and r and go to Step 2.

These criteria are meant to be real valued, positively homogeneous, nonconstant,
upper semicontinuous, isotonic (with respect to the Loewner ordering) and con-
cave functions.

Hence, an optimal design is a solution ξ	 to the following problem:

(3) maxφq

(
M(ξ)

)
,

where the maximum is taken over all ξ of the form (1). Standard criteria are given
by the parameters q = 0,−1,−∞ and are referred to D, A or E-optimum designs,
respectively. As detailed in Section 3.2, we restrict our attention to “approximate”
optimal designs where, by definition, we replace the set of “feasible” matrices
{M(ξ) : ξof the form (1)} by the larger set of all possible information matrices,
namely the convex hull of {F(x)F�(x) : x ∈ X }. To construct approximate op-
timal designs, we propose a two-step procedure presented in Algorithm 1. This
procedure finds the information matrix M	 of the approximate optimal design ξ	

and then it computes the support points x	
i and the weights w	

i of the design ξ	 in
a second step.

1.2. Contribution. This paper introduces a general method to compute ap-
proximate optimal designs—in the sense of Kiefer’s φq -criteria—on a large variety
of design spaces that we refer to as semialgebraic sets; see [9] or Section 2 for a
definition. These can be understood as sets given by intersections and complements
of superlevel sets of multivariate polynomials. An important distinguishing feature
of the method is to not rely on any discretization of the design space which is in
contrast to computational methods in previous works, for example, the algorithms
described in [21, 23].

We apply the moment-sum-of-squares hierarchy—referred to as the Lasserre
hierarchy—of SDP problems to solve numerically and approximately the optimal
design problem. More precisely, we use an outer “approximation” (in the SDP re-
laxation sense) of the set of moments of order d; see Section 2.2 for more details.
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Note that these approximations are SDP representable so that they can be effi-
ciently encoded numerically. Since the regressors are polynomials, the informa-
tion matrix M is a linear function of the moment matrix (of order d). Hence, our
approach gives an outer approximation of the set of information matrices, which
is SDP representable. As shown by the interesting works [18, 20], the criterion φq

is also SDP representable in the case where q is rational. It proves that our proce-
dure (depicted in Algorithm 1) makes use of two semidefinite programs and it can
be efficiently used in practice. Note that similar two steps procedures have been
presented in the literature, the reader may consult the interesting paper [4] which
proposes a way of constructing approximate optimal designs on the hypercube.

The theoretical guarantees are given by Theorem 3 (equivalence theorem re-
visited for the finite order hierarchy) and Theorem 4 (convergence of the hierar-
chy as the order increases). These theorems demonstrate the convergence of our
procedure towards the approximate optimal designs as the order of the hierarchy
increases. Furthermore, they give a characterization of finite order convergence
of the hierarchy. In particular, our method recovers the optimal design when fi-
nite convergence of this hierarchy occurs. To recover the geometry of the design,
we use SDP duality theory and Christoffel polynomials involved in the optimality
conditions.

We have run several numerical experiments for which finite convergence holds
leading to a surprisingly fast and reliable method to compute optimal designs. As
illustrated by our examples, in polynomial regression model with degree order
higher than one we obtain designs with points in the interior of the domain.

1.3. Outline of the paper. In Section 2, after introducing necessary notation,
we shortly explain some basics on moments and moment matrices, and present
the approximation of the moment cone via the Lasserre hierarchy. Section 3 is
dedicated to further describing optimal designs and their approximations. At the
end of the section, we propose a two-step procedure to solve the approximate de-
sign problem; it is described in Algorithm 1. Solving the first step is subject to
Section 4. There, we find a sequence of moments y	 associated with the optimal
design measure. Recovering this measure (step two of the procedure) is discussed
in Section 5. We finish the paper with some illustrating examples and a short con-
clusion.

2. Polynomial optimal designs and moments. This section collects prelim-
inary material on semialgebraic sets, moments and moment matrices, using the
notation of [9]. This material will be used to restrict our attention to polynomial
optimal design problems with polynomial regression functions and semialgebraic
design spaces.
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2.1. Polynomial optimal design. Denote by R[x] the vector space of real poly-
nomials in the variables x = (x1, . . . , xn), and for d ∈ N define R[x]d := {p ∈
R[x] : degp ≤ d} where degp denotes the total degree of p.

We assume that the regression functions are multivariate polynomials, namely
F = (f1, . . . , fp) ∈ (R[x]d)p . Moreover, we consider that the design space X ⊂ R

n

is a given closed basic semialgebraic set

(4) X := {
x ∈ R

m : gj (x) ≥ 0, j = 1, . . . ,m
}

for given polynomials gj ∈ R[x], j = 1, . . . ,m, whose degrees are denoted by dj ,
j = 1, . . . ,m. Assume that X is compact with an algebraic certificate of compact-
ness. For example, one of the polynomial inequalities gj (x) ≥ 0 should be of the
form R2 −∑n

i=1 x2
i ≥ 0 for a sufficiently large constant R.

Notice that those assumptions cover a large class of problems in optimal de-
sign theory; see, for instance, [3], Chapter 5. In particular, observe that the design
space X defined by (4) is not necessarily convex and note that the polynomial
regressors F can handle incomplete m-way dth degree polynomial regression.

The monomials x
α1
1 · · ·xαn

n , with α = (α1, . . . , αn) ∈ N
n, form a basis of the

vector space R[x]. We use the multi-index notation xα := x
α1
1 · · ·xαn

n to denote
these monomials. In the same way, for a given d ∈ N the vector space R[x]d has
dimension s(d) := (n+d

n

)
with basis (xα)|α|≤d , where |α| := α1 + · · · + αn. We

write

vd(x) := (
1︸︷︷︸

degree 0

, x1, . . . , xn︸ ︷︷ ︸
degree 1

, x2
1 , x1x2, . . . , x1xn, x

2
2 , . . . , x2

n︸ ︷︷ ︸
degree 2

, . . . ,

. . . , xd
1 , . . . , xd

n︸ ︷︷ ︸
degree d

)�

for the column vector of the monomials ordered according to their degree, and
where monomials of the same degree are ordered with respect to the lexicographic
ordering. Note that, by linearity, there exists a unique matrix A of size p × (n+d

n

)
such that

(5) ∀x ∈ X , F(x) = Avd(x).

The cone M+(X ) of nonnegative Borel measures supported on X is understood
as the dual to the cone of nonnegative elements of the space C (X ) of continuous
functions on X .

2.2. Moments, the moment cone and the moment matrix. Given a positive
measure μ ∈ M+(X ) and α ∈N

n, we call

yα =
∫
X

xα dμ
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the moment of order α of μ. Accordingly, we call the sequence y = (yα)α∈Nn the
moment sequence of μ. Conversely, we say that y = (yα)α∈Nn has a representing
measure, if there exists a measure μ such that y is its moment sequence.

We denote by Md(X ) the convex cone of all truncated sequences y = (yα)|α|≤d

which have a representing measure supported on X . We call it the moment cone
(of order d) of X . It can be expressed as

Md(X ) :=
{

y ∈R(n+d
n ) : ∃μ ∈ M+(X ) s.t.

(6)

yα =
∫
X

xα dμ,∀α ∈ N
n, |α| ≤ d

}
.

Let Pd(X ) denotes the convex cone of all polynomials of degree at most d that
are nonnegative on X . Note that we assimilate polynomials p of degree at most d

with a vector of dimension s(d), which contains the coefficients of p in the chosen
basis.

When X is a compact set, then Md(X ) = Pd(X )	 and Pd(X ) = Md(X )	; see,
for example, [10], Lemma 2.5, or [7].

When the design space is given by the univariate interval X = [a, b], that is,
n = 1, then this cone is representable using positive semidefinite Hankel matri-
ces, which implies that convex optimization on this cone can be carried out with
efficient interior point algorithms for semidefinite programming; see for example,
[24]. Unfortunately, in the general case, there is no efficient representation of this
cone. It has actually been shown in [22] that the moment cone is not semidefinite
representable, that is, it cannot be expressed as the projection of a linear section
of the cone of positive semidefinite matrices. However, we can use semidefinite
approximations of this cone as discussed in Section 2.3.

Given a real valued sequence y = (yα)α∈Nn , we define the linear functional Ly :
R[x] → R which maps a polynomial f = ∑

α∈Nn fαxα to

Ly(f ) = ∑
α∈Nn

fαyα.

A sequence y = (yα)α∈Nn has a representing measure μ supported on X if and only
if Ly(f ) ≥ 0 for all polynomials f ∈R[x] nonnegative on X [9], Theorem 3.1.

The moment matrix of a truncated sequence y = (yα)|α|≤2d is the
(n+d

n

)× (n+d
n

)
-

matrix Md(y) with rows and columns, respectively, indexed by integer n-tuples
α ∈N

n, |α|, |β| ≤ d and whose entries are given by

Md(y)(α,β) = Ly
(
xαxβ) = yα+β.

It is symmetric [Md(y)(α,β) = Md(y)(β,α)], and linear in y. Further, if y has a
representing measure, then Md(y) is positive semidefinite [written Md(y)� 0].

Similarly, we define the localizing matrix of a polynomial f = ∑
|α|≤r fαxα ∈

R[x]r of degree r and a sequence y = (yα)|α|≤2d+r as the
(n+d

n

) × (n+d
n

)
ma-

trix Md(f y) with rows and columns, respectively, indexed by α,β ∈ N
n, |α|, |β| ≤
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d and whose entries are given by

Md(f y)(α,β) = Ly
(
f (x)xαxβ) = ∑

γ∈Nn

fγ yγ+α+β.

If y has a representing measure μ, then Md(f y) � 0 for f ∈ R[x]d whenever the
support of μ is contained in the set {x ∈ R

n : f (x) ≥ 0}.
Since X is basic semialgebraic with a certificate of compactness, by Putinar’s

theorem (see, for instance, the book [9], Theorem 3.8), we also know the con-
verse statement in the infinite case. Namely, it holds that y = (yα)α∈Nn has a rep-
resenting measure μ ∈ M+(X ) if and only if for all d ∈ N the matrices Md(y)

and Md(gj y), j = 1, . . . ,m, are positive semidefinite.

2.3. Approximations of the moment cone. Letting vj := �dj/2�, j = 1, . . . ,m,
denote half the degree of the gj , by Putinar’s theorem, we can approximate the
moment cone M2d(X ) by the following semidefinite representable cones for δ ∈
N:

MSDP
2(d+δ)(X ) := {

yd,δ ∈ R(n+2d
n ) : ∃yδ ∈ R(n+2(d+δ)

n ) such that

yd,δ = (yδ,α)|α|≤2d and(7)

Md+δ(yδ)� 0,Md+δ−vj
(gj yδ)� 0, j = 1, . . . ,m

}
.

By semidefinite representable, we mean that the cones are projections of linear sec-
tions of semidefinite cones. Since M2d(X ) is contained in every
(MSDP

2(d+δ)(X ))δ∈N, they are outer approximations of the moment cone. Moreover,
they form a nested sequence, so we can build the hierarchy

(8) M2d(X ) ⊆ · · · ⊆MSDP
2(d+2)(X ) ⊆ MSDP

2(d+1)(X ) ⊆ MSDP
2d (X ).

This hierarchy actually converges, meaning M2d(X ) = ⋂∞
δ=0 MSDP

2(d+δ)(X ),

where A denotes the topological closure of the set A.
Further, let 
[x]2d ⊆ R[x]2d be the set of all polynomials that are sums of

squares of polynomials (SOS) of degree at most 2d , that is, 
[x]2d = {σ ∈ R[x] :
σ(x) = ∑k

i=1 hi(x)2 for some hi ∈ R[x]d and some k ≥ 1}. The topological dual
of MSDP

2(d+δ)(X ) is a quadratic module, which we denote by PSOS
2(d+δ)(X ). It is given

by

PSOS
2(d+δ)(X ) :=

{
h = σ0 +

m∑
j=1

gjσj : deg(h) ≤ 2d,

(9)

σ0 ∈ 
[x]2(d+δ), σj ∈ 
[x]2(d+δ−νj ), j = 1, . . . ,m

}
.
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Equivalently (see, for instance, [9], Proposition 2.1), h ∈ PSOS
2(d+δ)(X ) if and only if

h has degree less than 2d and there exist real symmetric and positive semidefinite
matrices Q0 and Qj, j = 1, . . . ,m of size

(n+d+δ
n

) × (n+d+δ
n

)
and

(n+d+δ−νj

n

) ×(n+d+δ−νj

n

)
, respectively, such that for any x ∈R

n

h(x) = σ0(x) +
m∑

j=1

gj (x)σj (x)

= vd+δ(x)�Q0vd+δ(x) +
m∑

j=1

gj (x)vd+δ−νj
(x)�Qj vd+δ−νj

(x).

The elements of PSOS
2(d+δ)(X ) are polynomials of degree at most 2d which are non-

negative on X . Hence, it is a subset of P2d(X ).

3. Approximate optimal design.

3.1. Problem reformulation in the multivariate polynomial case. For all i =
1, . . . , p and x ∈ X , let fi (x) := ∑

|α|≤d ai,αxα with appropriate ai,α ∈ R and note
that A = (ai,α) where A is defined by (5). For μ ∈ M+(X ) with moment se-
quence y, define the information matrix

Md(y) :=
(∫

X
fifj dμ

)
1≤i,j≤p

=
( ∑

|α|,|β|≤d

ai,αaj,βyα+β

)
1≤i,j≤p

= ∑
|γ |≤2d

Aγ yγ ,

where we have set Aγ := (
∑

α+β=γ ai,αaj,β)1≤i,j≤p for |γ | ≤ 2d . Observe that it
holds

(10) Md(y) = AMd(y)A�.

If y is the moment sequence of μ = ∑�
i=1 wiδxi

, where δx denotes the Dirac mea-
sure at the point x ∈ X and the wi are again the weights corresponding to the
points xi , observe that Md(y) = ∑�

i=1 wiF(xi)F�(xi) as in (2).
Consider the optimization problem

maxφq(M)(11)

s.t. M = ∑
|γ |≤2d

Aγ yγ � 0, yγ =
�∑

i=1

ni

N
x

γ
i ,

�∑
i=1

ni = N,

xi ∈ X , ni ∈ N, i = 1, . . . , �,

where the maximization is with respect to xi and ni , i = 1, . . . , �, subject to the
constraint that the information matrix M is positive semidefinite. By construction,
it is equivalent to the original design problem (3). In this form, problem (11) is
difficult because of the integrality constraints on the ni and the nonlinear relation
between y, xi and ni . We will address these difficulties in the sequel by first relax-
ing the integrality constraints.
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3.2. Relaxing the integrality constraints. In problem (11), the set of admissi-
ble frequencies wi = ni/N is discrete, which makes it a potentially difficult com-
binatorial optimization problem. A popular solution is then to consider “approxi-
mate” designs defined by

(12) ξ :=
(

x1 · · · x�

w1 · · · w�

)
,

where the frequencies wi belong to the unit simplex W := {w ∈ R
� : 0 ≤ wi ≤

1,
∑�

i=1 wi = 1}. Accordingly, any solution to problem (3), where the maximum
is taken over all matrices of type (12), is called “approximate optimal design”,
yielding the following relaxation of problem (11):

maxφq(M)

s.t. M = ∑
|γ |≤2d

Aγ yγ � 0, yγ =
�∑

i=1

wix
γ
i ,(13)

xi ∈ X ,w ∈ W,

where the maximization is with respect to xi and wi , i = 1, . . . , �, subject to the
constraint that the information matrix M is positive semidefinite. In this problem,
the nonlinear relation between y, xi and wi is still an issue.

3.3. Moment formulation. Let us introduce a two-step procedure to solve the
approximate optimal design problem (13). For this, we first reformulate our prob-
lem again.

By Carathéodory’s theorem, the subset of moment sequences in the truncated
moment cone M2d(X ) defined in (6) and such that y0 = 1, is exactly the set{
y ∈ M2d(X ) : y0 = 1

}
=

{
y ∈ R(n+2d

n ) : yα =
∫
X

xα dμ ∀|α| ≤ 2d,μ =
�∑

i=1

wiδxi
, xi ∈ X ,w ∈ W

}
,

where � ≤ (n+2d
n

)
; see the so-called Tchakaloff theorem [9], Theorem B12.

Hence, problem (13) is equivalent to

maxφq(M)

s.t. M = ∑
|γ |≤2d

Aγ yγ � 0,(14)

y ∈M2d(X ), y0 = 1,

where the maximization is now with respect to the sequence y. Moment problem
(14) is finite-dimensional and convex, yet the constraint y ∈M2d(X ) is difficult to
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TABLE 1
Gradients of the Kiefer’s φq criteria. We recall that �min(M) = uu�/‖u‖2

2 is defined only when
the least eigenvalue of M has multiplicity one and u denotes a nonzero eigenvector associated to
this least eigenvalue. If the least eigenvalue has multiplicity greater than 2, then the subgradient

∂φq(M) of λmin(M) is the set of all projectors on subspaces of the eigenspace associated
to λmin(M); see, for example, [13]. Notice further that φq is upper semicontinuous and is a

positively homogeneous function

Name q D-opt. 0 A-opt −1 E-opt. −∞ Generic case q �= 0,−∞

φq(M) det(M)
1
p p(trace(M−1))−1 λmin(M) [ trace(Mq)

p ] 1
q

∇φq(M) det(M)
1
p M

− 1
p p(trace(M−1)M)−2 �min(M) [ trace(Mq)

p ] 1
q
−1 Mq−1

p

handle. We will show that by approximating the truncated moment cone M2d(X )

by a nested sequence of semidefinite representable cones as indicated in (8), we
obtain a hierarchy of finite dimensional semidefinite programming problems con-
verging to the optimal solution of problem (14). Since semidefinite programming
problems can be solved efficiently, we can compute a numerical solution to prob-
lem (13).

This describes step one of our procedure. The result of it is a sequence y	 of
moments. Consequently, in a second step, we need to find a representing atomic
measure μ	 of y	 in order to identify the approximate optimal design ξ	.

4. The ideal problem on moments and its approximation. For notational
simplicity, let us use the standard monomial basis of R[x]d for the regression
functions, meaning F = (f1, . . . , fp) := (xα)|α|≤d with p = (n+d

n

)
. This case cor-

responds to A = Id in (5). Note that this is not a restriction, since one can get the
results for other choices of F by simply performing a change of basis. Indeed, in
view of (10), one shall substitute Md(y) by AMd(y)A� to get the statement of
our results in whole generality; see Section 4.5 for a statement of the results in
this case. Different polynomial bases can be considered and, for instance, one may
consult the standard framework described by the book [3], Chapter 5.8.

For the sake of conciseness, we do not expose the notion of incomplete q-way
mth degree polynomial regression here but the reader may remark that the strategy
developed in this paper can handle such a framework.

Before stating the main results, we recall the gradients of the Kiefer’s φq criteria
in Table 1.

4.1. The ideal problem on moments. The ideal formulation (14) of our ap-
proximate optimal design problem reads

ρ = max
y

φq

(
Md(y)

)
(15)

s.t. y ∈ M2d(X ), y0 = 1.
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For this, we have the following standard result.

THEOREM 1 (Equivalence theorem). Let q ∈ (−∞,1) and X ⊆ R
n be a com-

pact semialgebraic set as defined in (4) and with a nonempty interior. Problem (15)
is a convex optimization problem with a unique optimal solution y	 ∈ M2d(X ).
Denote by p	

d the polynomial

(16) x 	→ p	
d(x) := vd(x)�Md

(
y	)q−1vd(x) = ∥∥Md

(
y	) q−1

2 vd(x)
∥∥2

2.

Then y	 is the vector of moments—up to order 2d—of a discrete measure μ	 sup-
ported on at least

(n+d
n

)
and at most

(n+2d
n

)
points in the set

� := {
x ∈ X : trace

(
Md

(
y	)q)− p	

d(x) = 0
}
.

In particular, the following statements are equivalent:

• y	 ∈M2d(X ) is the unique solution to problem (15);
• y	 ∈ {y ∈ M2d(X ) : y0 = 1} and p	:= trace(Md(y	)q) − p	

d ≥ 0 on X .

PROOF. A general equivalence theorem for concave functionals of the infor-
mation matrix is stated and proved in [6], Theorem 1. The case of φq -criteria is
tackled in [19] and [3], Theorem 5.4.7. In order to be self-contained and because
the proof of our Theorem 3 follows the same road map, we recall a sketch of the
proof in the Supplementary Material [2], Section 1. �

REMARK 1 (On the optimal dual polynomial). The polynomial p	
d contains

all the information concerning the optimal design. Indeed, its level set � supports
the optimal design points. The polynomial is related to the so-called Christoffel
function (see Section 4.2). For this reason, in the sequel p	

d in (16) will be called
a Christoffel polynomial. Notice further that

X ⊂ {
p	

d ≤ trace
(
Md

(
y	)q)}.

Hence, the optimal design problem related to φq is similar to the standard problem
of computational geometry consisting in minimizing the volume of a polynomial
level set containing X (Löwner–John’s ellipsoid theorem). Here, the volume func-

tional is replaced by φq(M) for the polynomial ‖M q−1
2 vd(x)‖2

2. We refer to [10]
for a discussion and generalizations of Löwner–John’s ellipsoid theorem for gen-
eral homogenous polynomials on nonconvex domains.

REMARK 2 (Equivalence theorem for E-optimality). Theorem 1 holds also
for q = −∞. This is the E-optimal design case, in which the objective function is
not differentiable at points for which the least eigenvalue has multiplicity greater



138 Y. DE CASTRO ET AL.

than 2. We get that y	 is the vector of moments—up to order 2d—of a discrete
measure μ	 supported on at most

(n+2d
n

)
points in the set

� :=
{
x ∈ X : λmin

(
Md

(
y	))‖u‖2

2 −
(∑

α

uαxα

)2
= 0

}
,

where u = (uα)|α|≤2d is a nonzero eigenvector of Md(y	) associated to
λmin(Md(y	)). In particular, the following statements are equivalent:

• y	 ∈ M2d(X ) is a solution to problem (15);
• y	 ∈ {y ∈ M2d(X ) : y0 = 1} and for all x ∈ X , (

∑
α uαxα)2 ≤

λmin(Md(y	))‖u‖2
2.

Furthermore, if the least eigenvalue of Md(y	) has multiplicity one then y	 ∈
M2d(X ) is unique.

4.2. Christoffel polynomials. In the case of D-optimality, it turns out that the
unique optimal solution y	 ∈ M2d(X ) of problem (14) can be characterized in
terms of the Christoffel polynomial of degree 2d associated with an optimal mea-
sure μ whose moments up to order 2d coincide with y	. Notice that in the paradigm
of optimal design the Christoffel polynomial is the variance function of the mul-
tivariate polynomial regression model. Given a design, it is the variance of the
predicted value of the model and so quantifies locally the uncertainty of the esti-
mated response. We refer to [1] for its earlier introduction and the chapter [19],
Chapter 15, for an overview of its properties and uses.

DEFINITION 2 (Christoffel polynomial). Let y ∈R(n+2d
n ) be such that Md(y) �

0. Then there exists a family of orthonormal polynomials (Pα)|α|≤d ⊆ R[x]d sat-
isfying

Ly(PαPβ) = δα=β and Ly
(
xαPβ

) = 0 ∀α ≺ β,

where monomials are ordered with respect to the lexicographical ordering on N
n.

We call the polynomial

pd : x 	→ pd(x) := ∑
|α|≤d

Pα(x)2, x ∈ R
n,

the Christoffel polynomial (of degree d) associated with y.

The Christoffel polynomial2 can be expressed in different ways. For instance
via the inverse of the moment matrix by

pd(x) = vd(x)�Md(y)−1vd(x) ∀x ∈ R
n,

2Actually, what is referred to the Chistoffel function in the literature is its reciprocal x 	→ 1/pd(x).
In optimal design, the Christofel function is also called sensitivity function or information sur-
face [19].
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or via its extremal property

1

pd(t)
= min

P∈R[x]d

{∫
P(x)2 dμ(x) : P(t) = 1

}
∀t ∈ R

n,

when y has a representing measure μ—when y does not have a representing mea-
sure μ just replace

∫
P(x)2 dμ(x) with Ly(P

2)(= P �Md(y)P ). For more details,
the interested reader is referred to [8] and the references therein. Notice also that
there is a regain of interest in the asymptotic study of the Christoffel function as it
relies on eigenvalue marginal distributions of invariant random matrix ensembles;
see, for example, [12].

REMARK 3 (Equivalence theorem for D-optimality). In the case of D-optimal
designs, observe that

t	 := max
x∈X p	

d(x) = trace(Id) =
(
n + d

n

)
,

where p	
d given by (16) for q = 0. Furthermore, note that p	

d is the Christoffel
polynomial of degree d of the D-optimal measure μ	.

4.3. The SDP relaxation scheme. Let X ⊆ R
n be as defined in (4), assumed

to be compact. So with no loss of generality (and possibly after scaling), assume
that x 	→ g1(x) = 1 − ‖x‖2 ≥ 0 is one of the constraints defining X .

Since the ideal moment problem (15) involves the moment cone M2d(X ) which
is not SDP representable, we use the hierarchy (8) of outer approximations of the
moment cone to relax problem (15) to an SDP problem. So for a fixed integer
δ ≥ 1, we consider the problem

ρδ = max
y

φq

(
Md(y)

)
(17)

s.t. y ∈MSDP
2(d+δ)(X ), y0 = 1.

Since problem (17) is a relaxation of the ideal problem (15), necessarily ρδ ≥ ρ

for all δ. In analogy with Theorem 1, we have the following result characteriz-
ing the solutions of the SDP relaxation (17) by means of Sum-of-Squares (SOS)
polynomials.

THEOREM 3 (Equivalence theorem for SDP relaxations). Let q ∈ (−∞,1)

and let X ⊆ R
n be a compact semialgebraic set as defined in (4) and be with a

nonempty interior. Then:

(a) SDP problem (17) has a unique optimal solution y	 ∈ R(n+2d
n ).

(b) The moment matrix Md(y	) is positive definite. Let p	
d be as defined in (16),

associated with y	. Then p	 := trace(Md(y	)q) − p	
d is nonnegative on X and

Ly	(p	) = 0.
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In particular, the following statements are equivalent:

• y	 ∈ MSDP
2(d+δ)(X ) is the unique solution to problem (17);

• y	 ∈ {y ∈MSDP
2(d+δ)(X ) : y0 = 1} and p	 = trace(Md(y	)q) − p	

d∈ PSOS
2(d+δ)(X ).

PROOF. We follow the same road map as in the proof of Theorem 1.

(a) Let us prove that problem (17) has an optimal solution. The feasible set
is nonempty with finite associated value, since we can take as feasible point the
vector ỹ associated with the Lebesgue measure on X , scaled to be a probability
measure.

Let y ∈R(n+2d
n ) be an arbitrary feasible solution and yδ ∈ R(n+2(d+δ)

n ) an arbitrary
lifting of y—recall the definition of MSDP

2(d+δ)(X ) given in (7). Recall that g1(x) =
1−‖x‖2. As Md+δ−1(g1y) � 0 one deduces that Lyδ(x

2t
i (1−‖x‖2)) ≥ 0 for every

i = 1, . . . , n, and all t ≤ d + δ − 1. Expanding and using linearity of Ly yields
1 ≥ ∑n

j=1 Lyδ(x
2
j ) ≥ Lyδ (x

2
i ) for t = 0 and i = 1, . . . , n. Next, for t = 1 and i =

1, . . . , n,

0 ≤ Lyδ

(
x2
i

(
1 − ‖x‖2)) = Lyδ

(
x2
i

)︸ ︷︷ ︸
≤1

− Lyδ

(
x4
i

)−
n∑

j 
=i

Lyδ

(
x2
i x2

j

)
︸ ︷︷ ︸

≥0

,

yields Lyδ(x
4
i ) ≤ 1. We may iterate this argumentation until we finally obtain

Lyδ(x
2d+2δ
i ) ≤ 1, for all i = 1, . . . , n. Therefore by [11], Lemma 4.3, page 110

(or [9], Proposition 3.6, page 60), one has

(18) |yδ,α| ≤ max
{
yδ,0︸︷︷︸
=1

,max
i

{
Lyδ

(
x

2(d+δ)
i

)}} ≤ 1 ∀|α| ≤ 2(d + δ).

This implies that the set of feasible liftings yδ is compact and, therefore, the fea-
sible set of (17) is also compact. As the function φq is upper semicontinuous, the
supremum in (17) is attained at some optimal solution y	 ∈ R

s(2d). It is unique due
to convexity of the feasible set and strict concavity of the objective function φq ;
for example, see [19], Chapter 6.13, for a proof.

(b) Let Bα, B̃α and Cjα be real symmetric matrices such that∑
|α|≤2d

Bαxα = vd(x)vd(x)�,

∑
|α|≤2(d+δ)

B̃αxα = v(x)d+δvd+δ(x)�,

∑
|α|≤2(d+δ)

Cjαxα = gj (x)vd+δ−vj
(x)vd+δ−vj

(x)�, j = 1, . . . ,m.

Recall that it holds ∑
|α|≤2d

Bαyα = Md(y).
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First, we notice that there exists a strictly feasible solution to (17) because the
cone MSDP

2(d+δ)(X ) has a nonempty interior as a supercone of M2d(X ), which

has a nonempty interior by [10], Lemma 2.6. Hence, Slater’s condition3 holds
for (17). Further, by an argument in [19], Chapter 7.13) the matrix Md(y	) is non-
singular. Therefore, φq is differentiable at y	. Since additionally Slater’s condition
is fulfilled and φq is concave, this implies that the Karush–Kuhn–Tucker (KKT)
optimality conditions4 at y	 are necessary and sufficient for y	 to be an optimal
solution.

The KKT-optimality conditions at y	 read

λ	e0 − ∇φq

(
Md

(
y	)) = p̂	 with p̂	(x) := 〈

p̂	,v2d(x)
〉 ∈ PSOS

2(d+δ)(X ),

where p̂	 ∈ R
s(2d), e0 = (1,0, . . . ,0), and λ	 is the dual variable associated with

the constraint y0 = 1. The complementarity condition reads 〈y	, p̂	〉 = 0.
Recalling the definition (9) of the quadratic module PSOS

2(d+δ)(X ), we can ex-

press the membership p̂	(x) ∈PSOS
2(d+δ)(X ) more explicitly in terms of some “dual

variables” �j � 0, j = 0, . . . ,m,

1α=0λ
	 − 〈∇φq

(
Md

(
y	)),Bα

〉
(19)

= 〈�0, B̃α〉 +
m∑

j=1

〈
�j,Cj

α

〉
, |α| ≤ 2(d + δ).

Then, for a lifting y	
δ ∈ R(n+2(d+δ)

n ) of y	 the complementary condition 〈y	, p̂	〉 = 0
reads

(20)
〈
Md+δ

(
y	
δ

)
,�0

〉 = 0; 〈
Md+δ−vj

(
y	
δgj

)
,�j

〉 = 0, j = 1, . . . ,m.

Multiplying by y	
δ,α , summing up and using the complementarity conditions (20)

yields

λ	 − 〈∇φq

(
Md

(
y	)),Md

(
y	)〉

(21)

= 〈
�0,Md+δ

(
y	
δ

)〉︸ ︷︷ ︸
=0

+
m∑

j=1

〈
�j,Md+δ−vj

(
gj y	

δ

)〉
︸ ︷︷ ︸

=0

.

We deduce that

(22) λ	 = 〈∇φq

(
Md

(
y	
d,δ

))
,Md

(
y	
d,δ

)〉 = φq

(
Md

(
y	
d,δ

))
3For the optimization problem max{f (x) : Ax = b;x ∈ C}, where A ∈ R

m×n and C ⊆ R
n is a

nonempty closed convex cone, Slater’s condition holds, if there exists a feasible solution x in the
interior of C.

4For the optimization problem max{f (x) : Ax = b;x ∈ C}, where f is differentiable, A ∈ R
m×n

and C ⊆ R
n is a nonempty closed convex cone, the KKT-optimality conditions at a feasible point x

state that there exist λ	 ∈R
m and u	 ∈ C	 such that A�λ	 − ∇f (x) = u	 and 〈x,u	〉 = 0.
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by the Euler formula for homogeneous functions.
Similarly, multiplying by xα and summing up yields

λ	 − vd(x)�∇φq

(
Md

(
y	))vd(x)

=
〈
�0,

∑
|α|≤2(d+δ)

B̃αxα

〉
+

m∑
j=1

〈
�j,

∑
|α|≤2(d+δ−vj )

Cj
αxα

〉

= 〈
�0,v(x)d+δvd+δ(x)�

〉︸ ︷︷ ︸
σ0(x)

+
m∑

j=1

gj (x)
〈
�j,vd+δ−vj

(x)vd+δ−vj
(x)�

〉
︸ ︷︷ ︸

σj (x)

(23)

= σ0(x) +
n∑

j=1

σj (x)gj (x)

= p̂	(x) ∈ PSOS
2(d+δ)(X ).

Note that σ0 ∈ 
[x]2(d+δ) and σj ∈ 
[x]2(d+δ−dj ), j = 1, . . . ,m, by definition.

For q 
= 0, let c	 := (n+d
n

)[(n+d
n

)−1
trace(Md(y	)q)]1− 1

q . As Md(y	) is positive
semidefinite and nonsingular, we have c	 > 0. If q = 0, let c	 := 1 and replace
φ0(Md(y	)) by log detMd(y	), for which the gradient is Md(y	)−1.

Using Table 1, we find that c	∇φq(Md(y	)) = Md(y	)q−1. It follows that

c	λ	 (22)= c	〈∇φq

(
Md

(
y	)),Md

(
y	)〉 = trace

(
Md

(
y	)q) and

c	〈∇φq

(
Md

(
y	)),vd(x)vd(x)�

〉 (16)= p	
d(x).

Therefore, equation (23) is equivalent to p	 := c	p̂	 = c	λ	 −p	
d ∈ PSOS

2(d+δ)(X ).
To summarize,

p	(x) = trace
(
Md

(
y	)q)− p	

d(x) ∈ PSOS
2(d+δ)(X ).

We remark that all elements of PSOS
2(d+δ)(X ) are nonnegative on X and that (21)

implies Ly	(p	) = 0. Hence, we have shown (b).

The equivalence follows from the argumentation in (b). �

REMARK 4 (Finite convergence). If the optimal solution y	 of problem (17) is
coming from a measure μ	 on X , that is, y	 ∈M2d(X ), then ρδ = ρ and y	 is the
unique optimal solution of problem (15). In addition, by the proof of Theorem 1,
μ	 can be chosen to be atomic and supported on at least

(n+d
n

)
and at most

(n+2d
n

)
“contact points” on the level set � := {x ∈ X : trace(Md(y	)q) − p	

d(x) = 0}.

REMARK 5 (SDP relaxation for E-optimality). Theorem 3 holds also for
q = −∞. This is the E-optimal design case, in which the objective function is
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not differentiable at points for which the least eigenvalue has multiplicity greater
than 2. We get that y	 satisfies λmin(Md(y	)) − (

∑
α uαxα)2 ≥ 0 for all x ∈ X and

Ly	((
∑

α uαxα)2) = λmin(Md(y	)), where u = (uα)|α|≤2d is a nonzero eigenvector
of Md(y	) associated to λmin(Md(y	)).

In particular, the following statements are equivalent:

• y	 ∈MSDP
2(d+δ)(X ) is a solution to problem (17);

• y	 ∈ {y ∈MSDP
2(d+δ)(X ) : y0 = 1} and p	(x) = λmin(Md(y	))‖u‖2

2 −
(
∑

α uαxα)2 ∈ PSOS
2(d+δ)(X ).

Furthermore, if the least eigenvalue of Md(y	) has multiplicity one, then y	 is
unique.

4.4. Asymptotics. We now analyze what happens when δ tends to infinity.

THEOREM 4. Let q ∈ (−∞,1) and d ∈ N. For every δ = 0,1,2, . . . , let y	
d,δ

be an optimal solution to (17) and p	
d,δ ∈ R[x]2d the Christoffel polynomial asso-

ciated with y	
d,δ defined in Theorem 3. Then:

(a) ρδ → ρ as δ → ∞, where ρ is the supremum in (15).
(b) For every α ∈ N

n with |α| ≤ 2d , we have limδ→∞ y	
d,δ,α = y	

α , where y	 =
(y	

α)|α|≤2d ∈ M2d(X ) is the unique optimal solution to (15).
(c) p	

d,δ → p	
d as δ → ∞, where p	

d is the Christoffel polynomial associated
with y	 defined in (16).

(d) If the dual polynomial p	 := trace(Md(y	)q) − p	
d to problem (15) belongs

to PSOS
2(d+δ)(X ) for some δ, then finite convergence takes place, that is, y	

d,δ is the
unique optimal solution to problem (15) and y	

d,δ has a representing measure,
namely the target measure μ	.

PROOF. We prove the four claims consecutively:

(a) For every δ, complete the lifted finite sequence y	
δ ∈ R(n+2(d+δ)

n ) with zeros
to make it an infinite sequence y	

δ = (y	
δ,α)α∈Nn . Therefore, every such y	

δ can be
identified with an element of �∞, the Banach space of finite bounded sequences
equipped with the supremum norm. Moreover, inequality (18) holds for every y	

δ .
Thus, denoting by B the unit ball of �∞ which is compact in the σ(�∞, �1) weak-	
topology on �∞, we have y	

δ ∈ B. By Banach–Alaoglu’s theorem, there is an ele-
ment ŷ ∈ B and a converging subsequence (δk)k∈N such that

(24) lim
k→∞y	

δk,α
= ŷα ∀α ∈ N

n.

Let s ∈ N be arbitrary, but fixed. By the convergence (24), we also have

lim
k→∞Ms

(
y	
δk

) = Ms(ŷ)� 0;
lim

k→∞Ms

(
gj y	

δk

) = Ms(gj ŷ)� 0, j = 1, . . . ,m.
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Notice that the subvectors y	
d,δ = (y	

δ,α)|α|≤2d with δ = 0,1,2, . . . belong to a
compact set. Therefore, since φq(Md(y	

d,δ)) < ∞ for every δ, we also have
φq(Md(ŷ)) < ∞.

Next, by Putinar’s theorem ([9], Theorem 3.8), ŷ is the sequence of moments of
some measure μ̂ ∈ M+(X ), and so ŷd = (ŷα)|α|≤2d is a feasible solution to (15),
meaning ρ ≥ φq(Md(ŷd)). On the other hand, as (17) is a relaxation of (15), we
have ρ ≤ ρδk

for all δk . So the convergence (24) yields

ρ ≤ lim
k→∞ρδk

= φq

(
Md(ŷd)

)
,

which proves that ŷ is an optimal solution to (15), and limδ→∞ ρδ = ρ.
(b) As the optimal solution to (15) is unique, we have y	 = ŷd with ŷd defined

in the proof of (a) and the whole sequence (y	
d,δ)δ∈N converges to y	, that is, for

α ∈N
n with |α| ≤ 2d fixed

(25) lim
d,δ→∞y	

δ,α = lim
δ→∞y	

δ,α = ŷα = y	
α.

(c) It suffices to observe that the coefficients of Christoffel polynomial p	
d,δ are

continuous functions of the moments (y	
d,δ,α)|α|≤2d =(y	

δ,α)|α|≤2d . Therefore, by
the convergence (25) one has p	

d,δ → p	
d where p	

d ∈R[x]2d as in Theorem 1.

The last point follows directly observing that, in this case, the two programs (15)
and (17) satisfy the same KKT conditions. �

4.5. General regression polynomial bases. We return to the general case de-
scribed by a matrix A of size p × (n+d

n

)
such that the regression polynomials

satisfy F(x) = Avd(x) for all x ∈ X . Without loss of generality, we can assume
that the rank of A is p, that is, the regressors f1, . . . , fp are linearly independent.
Now, the objective function becomes φq(AMd(y)A�) at point y. Note that the
constraints on y are unchanged, that is:

• y ∈ M2d(X ), y0 = 1 in the ideal problem,
• y ∈ MSDP

2(d+δ)(X ), y0 = 1 in the SDP relaxation scheme.

We recall the notation Md(y) := AMd(y)A� and we get that the KKT conditions
are given by

∀x ∈X , φq

(
Md(y)

)− F(x)�∇φq

(
Md(y)

)
F(x)︸ ︷︷ ︸

proportional to p	
d(x)

= p	(x),

where:

• p	 ∈ M2d(X )	(= P2d(X )) in the ideal problem,
• p	 ∈ MSDP

2(d+δ)(X )	(= PSOS
2(d+δ)(X )) in the SDP relaxation scheme.

Our analysis leads to the following equivalence results in this case.
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PROPOSITION 5. Let q ∈ (−∞,1) and let X ⊆ R
n be a compact semialge-

braic set as defined in (4) and with nonempty interior. Problem (13) is a convex
optimization problem with an optimal solution y	 ∈ M2d(X ). Denote by p	

d the
polynomial

(26) x 	→ p	
d(x) := F(x)�Md(y)q−1F(x) = ∥∥Md(y)

q−1
2 F(x)

∥∥2
2.

Then y	 is the vector of moments—up to order 2d—of a discrete measure μ	 sup-
ported on at least p points and at most s points where

s ≤ min
[
1 + p(p + 1)

2
,

(
n + 2d

n

)]

(see [2], Section 2) in the set � := {x ∈ X : trace(Md(y)q) − p	
d(x) = 0}.

In particular, the following statements are equivalent:

• y	 ∈M2d(X ) is the solution to problem (15);
• y	 ∈ {y ∈ M2d(X ) : y0 = 1} and p	 := trace(Md(y)q) − p	

d(x) ≥ 0 on X .

Furthermore, if A has full column rank then y	 is unique.

The SDP relaxation is given by the program

(27) ρδ = max
y

φq

(
Md(y)

)
s.t. y ∈MSDP

2(d+δ)(X ), y0 = 1,

for which it is possible to prove the following result.

PROPOSITION 6. Let q ∈ (−∞,1) and let X ⊆ R
n be a compact semialge-

braic set as defined in (4) and with nonempty interior. Then:

(a) SDP problem (27) has an optimal solution y	
d,δ ∈R(n+2d

n ).
(b) Let p	

d be as defined in (26), associated with y	. Then p	 :=
trace(Md(y	

d,δ)
q) − p	

d(x) ≥ 0 on X and Ly	
d,δ

(p	) = 0.

In particular, the following statements are equivalent:

• y	 ∈MSDP
2(d+δ)(X ) is a solution to problem (17);

• y	 ∈ {y ∈ MSDP
2(d+δ)(X ) : y0 = 1} and p	 = trace(Md(y	)q) − p	

d ∈
PSOS

2(d+δ)(X ).

Furthermore, if A has full column rank then y	 is unique.

5. Recovering the measure. By solving step one as explained in Section 4,
we obtain a solution y	 of SDP problem (17). As y	∈MSDP

2(d+δ)(X ), it is likely
that it comes from a measure. If this is the case, by Tchakaloff’s theorem, there
exists an atomic measure supported on at most s(2d) points having these moments.
For computing the atomic measure, we propose two approaches: a first one which
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follows a procedure by Nie [17], and a second one which uses properties of the
Christoffel polynomial associated with y	.

These approaches have the benefit that they can numerically certify finite con-
vergence of the hierarchy.

5.1. Via Nie’s method. This approach to recover a measure from its moments
is based on a formulation proposed by Nie in [17]. Let y	 = (y	

α)|α|≤2d a finite
sequence of moments. For r ∈ N, consider the SDP problem

min
yr

Lyr (fr)

s.t. Md+r (yr )� 0,
(28)

Md+r−vj
(gj yr )� 0, j = 1, . . . ,m,

yr,α = y	
α, ∀α ∈ N

n, |α| ≤ 2d,

where yr ∈ R(n+2(d+r)
n ) and fr ∈ R[x]2(d+r) is a randomly generated polynomial

strictly positive on X , and again vj = �dj/2�, j = 1, . . . ,m. We check whether
the optimal solution y	

r of (28) satisfies the rank condition

(29) rankMd+r

(
y	
r

) = rankMd+r−v

(
y	
r

)
,

where v := maxj vj . Indeed if (29) holds, then y	
r is the sequence of moments

(up to order 2r) of a measure supported on X ; see [9], Theorem 3.11, page 66.
If the test is passed, then we stop, otherwise we increase r by one and repeat the
procedure. As y	 ∈ M2d(X ), the rank condition (29) is satisfied for a sufficiently
large value of r .

We extract the support points x1, . . . , x� ∈ X of the representing atomic measure
of y	

r , and y	, respectively, as described in [9], Section 4.3.
Experience reveals that in most cases it is enough to use the following polyno-

mial:

x 	→ fr(x) = ∑
|α|≤d+r

x2α = ∥∥vd+r (x)
∥∥2

2

instead of using a random positive polynomial on X . In problem (28), this corre-
sponds to minimizing the trace of Md+r (y)—and so induces an optimal solution y
with low rank matrix Md+r (y).

5.2. Via the Christoffel polynomial. Another possibility to recover the atomic
representing measure of y	 is to find the zeros of the polynomial p	(x) =
trace(Md(y	)q)−p	

d(x), where p	
d is the Christoffel polynomial associated with y	

defined in (16), that is, p	
d(x) = vd(x)�Md(y	)q−1vd(x). In other words, we com-

pute the set � = {x ∈ X : trace(Md(y	)q) − p	
d(x) = 0}, which due to Theorem 3

is the support of the atomic representing measure.
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To that end, we minimize p	 on X . As the polynomial p	 is nonnegative on X ,
the minimizers are exactly �. For minimizing p	, we use the Lasserre hierarchy
of lower bounds, that is, we solve the semidefinite program

min
yr

Lyr

(
p	)

s.t. Md+r (yr )� 0, yr,0 = 1,(30)

Md+r−vj
(gj yr )� 0, j = 1, . . . ,m,

where yr ∈ R(n+2(d+r)
n ).

Since p	
d is associated with the optimal solution to (17) for some given δ ∈ N,

by Theorem 3, it satisfies the Putinar certificate (23) of positivity on X . Thus, the
value of problem (30) is zero for all r ≥ δ. Therefore, for every feasible solution yr

of (30) one has Lyr (p
	) ≥ 0 [and Ly	

d
(p	) = 0 for y	

d an optimal solution of (17)].
When condition (29) is fulfilled, the optimal solution y	

r comes from a measure.
We extract the support points x1, . . . , x� ∈ X of the representing atomic measure
of y	

r , and y	, respectively, as described in [9], Section 4.3.
Alternatively, we can solve the SDP

min
yr

trace
(
Md+r (yr )

)
s.t. Lyr

(
p	) = 0,

(31)
Md+r (yr )� 0, yr,0 = 1,

Md+r−vj
(gj yr )� 0, j = 1, . . . ,m,

where yr ∈ R(n+2(d+r)
n ). This problem also searches for a moment sequence of a

measure supported on the zero level set of p	. Again, if condition (29) is holds,
the finite support can be extracted.

5.3. Calculating the corresponding weights. After recovering the support
{x1, . . . , x�} of the atomic representing measure by one of the previously presented
methods, we might be interested in also computing the corresponding weights
ω1, . . . ,ω�. These can be calculated easily by solving the following linear system
of equations:

∑�
i=1 ωix

α
i = y	

α for all |α| ≤ 2d , that is,
∫
X xαμ	(dx) = y	

α .

6. Examples. We illustrate the procedure on six examples: a univariate one,
four examples in the plane and one example on the three-dimensional sphere. We
concentrate on D-optimal designs, namely q = 0.

All examples are modeled by GloptiPoly 3 [5] and YALMIP [14] and solved
by MOSEK 7 [16] or SeDuMi under the MATLAB R2014a environment. We ran
the experiments on an HP EliteBook with 16-GB RAM memory and an Intel Core
i5-4300U processor. We do not report computation times, since they are negligible
for our small examples.
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6.1. Univariate unit interval. We consider as design space the interval X =
[−1,1] and on it the polynomial measurements

∑d
j=0 θjx

j with unknown param-

eters θ ∈ R
d+1. To compute the D-optimal design, we first solve problem (17). In

other words,

max
yδ

log detMd(yδ)

s.t. Md+δ(yδ)� 0,
(32)

Md+δ−1
((

1 − ‖x‖2)yδ

)
� 0,

yδ,0 = 1

for yδ ∈ R
s(2(d+δ)) and given regression order d and relaxation order d + δ, and

then taking the truncation y	 := (y	
δ,α)|α|≤2d of an optimal solution y	

δ . For in-
stance, for d = 5 and δ = 0 we obtain the sequence y	 ≈ (1,0,0.56,0,0.45,0,

0.40,0,0.37,0,0.36)�.
Then, to recover the corresponding atomic measure from the sequence y	 we

solve the problem

min
y

traceMd+r (yr )

s.t. Md+r (yr )� 0
(33)

Md+r−1
((

1 − x2)yr

)
� 0,

yα = y	
r,α, |α| ≤ 2d,

and find the points −1, −0.765, −0.285, 0.285, 0.765 and 1 (for d = 5, δ = 0,
r = 1). As a result, our optimal design is the weighted sum of the Dirac measures
supported on these points. The points match with the known analytic solution to
the problem, which are the critical points of the Legendre polynomial; see, for
example, [3], Theorem 5.5.3, page 162. In this case, we know explicitly the optimal
design, its support is located at the roots of the polynomial t → (1 − t2)P ′

d(t)

where P ′
d denotes the derivative of the Legendre polynomial of degree d , and its

weights are all equal to 1/(1 + d). Now, observe that the roots of p	 have degree 2
in the interior of [−1,1] (there are d − 1 roots corresponding exactly to the roots
of P ′

d ) and degree 1 on the edges [corresponding exactly to the roots of (1 − t2)].
Observe also that p	 has degree 2d . We deduce that p	 equals t → (1− t2)(P ′

d(t))2

up to a multiplicative constant. Calculating the corresponding weights as described
in Section 5.3, we find ω1 = · · · = ω6 ≈ 0.166 as prescribed by the theory.

Alternatively, we compute the roots of the polynomial x 	→ p	(x) = 6 − p	
5(x),

where p	
5 is the Christoffel polynomial of degree 2d = 10 on X and find the same

points as in the previous approach by solving problem (31); see Figure 1 for the
graph of the Christoffel polynomial of degree 10.

We observe that we get less points when using problem (30) to recover the
support for this example. This may occur due to numerical issues.
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FIG. 1. Polynomial p	 for Example 6.1.

6.2. Wynn’s polygon. As a first two-dimensional example, we take the poly-
gon given by the vertices (−1,−1), (−1,1), (1,−1) and (2,2), scaled to fit the
unit circle, that is, we consider the design space

X =
{
x ∈ R

2 : x1, x2 ≥ −1
4

√
2, x1 ≤ 1

3(x2 +√
2), x2 ≤ 1

3(x1 +√
2), x2

1 +x2
2 ≤ 1

}
.

Note that we need the redundant constraint x2
1 + x2

2 ≤ 1 in order to have an alge-
braic certificate of compactness.

As before, in order to find the D-optimal measure for the regression, we solve
problems (17) and (28). Let us start by analyzing the results for d = 1 and δ = 3.
Solving (17), we obtain y	 ∈ R

45 which leads to 4 atoms when solving (28) with
r = 3. For the latter the moment matrices of order 2 and 3, both have rank 4, so
Condition (29) is fulfilled. As expected, the 4 atoms are exactly the vertices of the
polygon.

Again, we could also solve problem (31) instead of (28) to receive the same
atoms. As in the univariate example, we get less points when using problem (30).
To be precise, GloptiPoly is not able to extract any solutions for this example.

For increasing d , we get an optimal measure with a larger support. For d = 2
we recover 7 points, and 13 for d = 3; see Figure 2 for the polygon, the supporting
points of the optimal measure and the

(2+d
2

)
-level set of the Christoffel polyno-

mial p	
d for different d . The latter demonstrates graphically that the set of zeros of(2+d

d

) − p	
d intersected with X are indeed the atoms of our representing measure.

In the picture, the size of the support points is chosen with respect to their corre-
sponding weights, that is, the larger the point, the bigger the respective weight.
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FIG. 2. The polygon (bold black) of Example 6.2, the support of the optimal design measure (red
points) where the size of the points corresponds to the respective weights, and the

(2+d
2

)
-level set of

the Christoffel polynomial (thin blue) for d = 1 (left), d = 2 (middle), d = 3 (right) and δ = 3.

The numerical values of the support points and their weights computed in the
above procedure (and displayed in Figure 2) are listed in the Supplementary Ma-
terial [2], Table 1.

To get an idea of how the Christoffel polynomial looks like, we plot in Figure 3
the 3D-plot of the polynomial −p	 = p	

d − (2+d
2

)
. This illustrates very clearly that

the zeros of p	 on X are the support points of the optimal design.

6.3. Ring of ellipses. As a second example in the plane, we consider an ellip-
soidal ring, that is, an ellipse with a hole in the form of a smaller ellipse. More
precisely,

X = {
x ∈R

2 : 9x2
1 + 13x2

2 ≤ 7.3,5x2
1 + 13x2

2 ≥ 2
}
.

We follow the same procedure as described in the former example; see Figure 4 for
the results. The values are again listed in the Supplementary Material [2], Table 1.

6.4. Moon. To investigate another nonconvex example, we apply our method
to the moon-shaped semialgebraic set

X = {
x ∈ R

2 : (x1 + 0.2)2 + x2
2 ≤ 0.36, (x1 − 0.6)2 + x2

2 ≥ 0.16
}
.

The results are represented in Figure 5 and for the numerical values the interested
reader is referred to the Supplementary Material [2], Table 1.

6.5. Folium. The zero level set of the polynomial f (x) = −x1(x
2
1 −2x2

2)(x2
1 +

x2
2)2 is a curve of genus zero with a triple singular point at the origin. It is called

a folium. As a last two-dimensional example, we consider the semialgebraic set
defined by f , that is,

X = {
x ∈ R

2 : f (x) ≥ 0, x2
1 + x2

2 ≤ 1
}
.

Figure 6 illustrates the results and the values are listed in the Supplementary Ma-
terial [2], Table 1.
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FIG. 3. The polynomial p	
d − (2+d

2
)

where p	
d denotes the Christoffel polynomial of Example 6.2

for d = 1 (top left), d = 2 (top right), d = 3 (bottom middle). The red points correspond to the(2+d
2

)
-level set of the Christoffel polynomial.

FIG. 4. The polygon (bold black) of Example 6.3 and the support of the optimal design measure
(red points) where the size of the points corresponds to the respective weights for d = 1 (left), d = 2
(middle), d = 3 (right) and δ = 3.
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FIG. 5. The polygon (bold black) of Example 6.4 and the support of the optimal design measure
(red points) where the size of the points corresponds to the respective weights for d = 1 (left), d = 2
(middle), d = 3 (right) and δ = 3.

6.6. The 3-dimensional unit sphere. Last, let us consider the regression for the
degree d polynomial measurements

∑
|α|≤d θαxα on the unit sphere X = {x ∈ R

3 :
x2

1 + x2
2 + x2

3 = 1}. Again, we first solve problem (17). For d = 1 and δ ≥ 0, we
obtain the sequence y	 ∈ R

10 with y	
000 = 1, y	

200 = y	
020 = y	

002 = 0.333 and all
other entries zero.

In the second step, we solve problem (28) to recover the measure. For r = 2, the
moment matrices of order 2 and 3 both have rank 6, meaning the rank condition
(29) is fulfilled, and we obtain the six atoms {(±1,0,0), (0,±1,0), (0,0,±1)} ⊆
X on which the optimal measure μ ∈ M+(X ) is uniformly supported.

For quadratic regressions, that is, d = 2, we obtain an optimal measure sup-
ported on 14 atoms evenly distributed on the sphere. For d = 3, meaning cubic re-
gressions, we find a Dirac measure supported on 26 points which again are evenly
distributed on the sphere. See Figure 7 for a display of the supporting points of the
optimal measures for d = 1, d = 2, d = 3 and δ = 0.

Using the method via Christoffel polynomials gives again less points. No so-
lution is extracted when solving problem (31) and we find only two supporting
points for problem (30).

FIG. 6. The polygon (bold black) of Example 6.5, the support of the optimal design measure (red
points) where the size of the points corresponds to the respective weights, and the

(2+d
2

)
-level set of

the Christoffel polynomial (thin blue) for d = 1 (left), d = 2 (middle), d = 3 (right) and δ = 3.
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FIG. 7. The red points illustrate the support of the optimal design measure for d = 1 (left), d = 2
(middle), d = 3 (right) and δ = 0 for Example 6.6.

6.7. Fixing some moments. Our method has an additional nice feature. Indeed
in problem (17) one may easily include the additional constraint that some mo-
ments (yα), α ∈ � ⊂ N

n
2d are fixed to some prescribed value. We illustrate this

potential on one example. For instance, with � = {(020), (002), (110), (101)}, let
y020 := 2, y002 := 1, y110 := 0.01 and y101 := 0.95. In order to obtain a feasible
problem, we scale them with respect to the Gauss distribution.

For the D-optimal design case with d = 1 and δ = 0 and after computing the
support of the corresponding measure using the Nie method, we get 6 points as
we obtain without fixing the moments. However, now four of the six points are
shifted and the measure is no longer uniformly supported on these points, but each
two opposite points have the same weight; see Figure 8 for an illustration of the
position of the points with fixed moments (blue) with respect to the position of the
support points without fixing the points (red).

FIG. 8. Support points recovered in Example 6.6 for the D-optimal design and d = 1 (red) and
the points which are recovered when additionally fixing some moments as described in Section 6.7
(blue).
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7. Conclusion. In this paper, we give a general method to build optimal de-
signs for multidimensional polynomial regression on an algebraic manifold. The
method is highly versatile as it can be used for all classical functionals of the infor-
mation matrix. Furthermore, it can easily be tailored to incorporate prior knowl-
edge on some multidimensional moments of the targeted optimal measure (as pro-
posed in [15]). In future works, we will extend the method to multi-response poly-
nomial regression problems and to general smooth parametric regression models
by linearization.
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SUPPLEMENTARY MATERIAL

Supplementary material of approximate optimal designs for multivariate
polynomial regression (DOI: 10.1214/18-AOS1683SUPP; .pdf). We provide the
proof of Theorem 1 and the detailed numerical results of the numerical examples
in supplement article [2].
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