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1. Introduction

1.1. Grid-less spike detection through the “continuous” LARS

New testing procedures based on the outcomes of �1 minimization methods have attracted a lot of 
attention in the statistical community. Of particular interest is the so-called “Spacing test ”, that we referred 
to as SST, based on the Least-Angle Regression Selection (LARS), that measures the significance of the 
addition of a new active variable along the LARS path, see [1, Chapter 6] for further details. Specifically, 
one is testing the relative distance between consecutive “knots ” of the LARS, for instance λ1,P and λ2,P . 
The first knot λ1,P is the maximal correlation between a response variable y ∈ CN and P predictors. The 
second knot λ2,P is then the correlation between some residuals and P − 1 predictors, and so on. This 
approach is now well referenced among the regularized methods of high-dimensional statistics and it can be 
linked to minimizing the �1-norm over P coordinates, see for instance [1, Chapter 6].

In this paper, we focus on �1-minimization over the space of signed measures and we ask for testing 
procedures based on these solutions. Indeed, in deconvolution problems over the space of measures [2]—e.g., 
Super-Resolution or line spectral estimation [3–8]—one may observe a noisy version of a convolution of a 
target discrete measure by some known kernel K and one may be willing to infer on the target discrete 
measure. In this case, testing a particular measure is encompassed by testing the mean of some “correlation” 
process Z, see Section 6 for further details.

In general deconvolution problems, remark that there is an uncountable number of predictors with 
valued in a hilbert space (not necessarily finite)—while there were P predictors previously when infer-
ring on vectors of RN in the high-dimensional statistics framework. Indeed, we are looking at corre-
lations Z(t) = 〈y, k(t)〉 between a response variable y and a “feature map” k(t) indexed by a contin-
uum, say for instance t ∈ K = [0, 2π). In this case, the set of predictors is uncountable and given by 
{k(t) ; t ∈ K}. Furthermore, k(t) is an element of the Reproducing Kernel Hilbert Space H (RKHS) 
defined by the convolution kernel K—assumed to be symmetric positive definite. In particular, the 
hilbert space H can be infinite dimensional. As an example, assume that one observes some Fourier co-
efficients of some discrete measure on the torus [0, 2π) and one is willing to infer on its support. A 
strategy would be to look at correlations between the response variable y ∈ CN and the Fourier curve 
k(t) = (cos(kt) ± ı sin(kt))−fc≤k≤fc ∈ CN for some frequency cut-off fc ≥ 1 so that N = 2fc + 1. It 
results in a complex valued correlation process Z(t) := 〈y, k(t)〉 =

∑
yke

ıkt indexed by t ∈ [0, 2π). In 
this case, the RKHS H has dimension N , the number of observed Fourier coefficients, and the convo-
lution kernel is given by the Dirichlet kernel, see Section 6. As an illustration, we present Fig. 1 where 
we take Z1 = Z and the red curve displays the absolute value of the correlation process Z. One can 
standardly show that |Z|(t) is the likelihood of the model that consists in one spike at point t. There-
fore, its maximal value λ1 can be interpreted as the Maximum Likelihood for models with one spike. 
Its argument maximal point t1 is then the Maximum Likelihood Estimator and one may be willing to 
consider it as a first estimation of the target discrete measure’s support. Then one can consider the resid-
uals Z2 = Z1 − a〈y, k(t1)〉 where a ∈ C is the weight of the estimated signal chosen so that we get 
the blue curve of Fig. 1, namely a second support point t2 should enter the model since the residu-
als |Z2| achieve their maximal absolute value at two locations, t1 and t2. More details can be found in 
Section 2.4.

In this framework, the LARS algorithm does not return a sequence of entries (among P possible coordi-
nates) and phases as in high-dimensional statistics but rather a sequence of locations t1, t2, . . . (among the 
continuum K = [0, 2π)) and phases. In this paper, we invoke the LARS to this framework—we referred to 
it as “continuous” LARS—for which an uncountable number of active variables may enter the model. We 
present this extension in Section 2 defining consecutive knots (λ1, λ2). One can wonder:
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Fig. 1. LARS for Super-Resolution: we fit a Dirichlet kernel (which is the Point Spread Function of Super-Resolution) at the maximal 
correlation point t1 until the maximal correlation in the residual is matched at a second point t2 �= t1. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The grid-less approach uses the Hessian and the first two “knots” (λ1, λ2) of the “continuous” LARS to build the test 
statistics SRice. We compare it to the grid approach that builds a test statistics SST using the knots (λ1,P , λ2,P ) computed from 
a P points grid discretization (X(tp))Pp=1 of the continuous process X.

• Can the Spacing test be used in the frame of Super-Resolution?
• Is there a grid-less procedure more powerful, in the sense of detecting spikes, than the Spacing tests 

constructed on thin grids?

Interestingly, as we will prove, the answer is no to the first question if no modifications of the test statistic is 
done. Furthermore, the way that the Spacing test can be fixed to be extended to a “grid-less” frame gives a 
new testing procedure SRice that accounts for the distance between consecutive knots (λ1, λ2) with respect 
to value of the Hessian R at some maximal point, see Fig. 2 for a global view on our approach.
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Fig. 3. [Under the null] Comparison of the empirical cumulative distribution of the two statistics SRice (blue line, see Theorem 4) 
and SST (green line) under the null hypothesis when applied to the consecutive knots (λ1, λ2) given by the “continuous” LARS in 
both cases. The diagonal (cdf of the uniform) is represented in dotted black line. The model is described by the Super-Resolution 
framework (see Section 6) with cutoff frequencies fc = 3, 5, 7 from left to right. The new test statistic SRice is exactly distributed 
w.r.t. the uniform law on [0, 1] under the null hypothesis.

1.2. A comparative study

When the predictors are normalized, the Spacing test (ST) statistics is given by the expression

SST(λ1,P , λ2,P ) := Φ(λ1,P )
Φ(λ2,P )

where Φ = 1 − Φ is the Gaussian survival function and Φ the standard normal cumulative distribution 
function. In the framework of high-dimensional statistics, this statistics is exactly distributed w.r.t. a uniform 
law on [0, 1] under the global null, namely SST can be considered as the observed significance [9,10]. It is 
clear that one should not use this testing procedure in the Super-Resolution framework since there is no 
theoretical guarantees in this case. Yet the practitioner may be tempted to replace (λ1,P , λ2,P ) by (λ1, λ2)
given by the “continuous” LARS. Unfortunately, this paper shows that the resulting test statistics SST is 
non conservative in this frame, i.e., it makes too many false rejections and one should avoid using it in 
practice, see the green line in Fig. 3.
To overcome this disappointing feature, one may be willing to consider thinner and thinner grids and look 
at the limit as P tends to infinity. In this case, one can show that λ1,P tends to the λ1 of “continuous” 
LARS, but λ2,P does not converge to λ2, it converges to λ2 as shown in (11). This results in a limit test 
that is a randomized version of the Spacing test that we referred to as SGrid and presented in Theorem 1.

The second approach is to take a thin grid and to use SST. This approach is perfectly valid, this test 
statistics follows a uniform distribution under the null and it should be compared to our new testing 
procedure SRice. This numerical investigation has been performed in the frame of Super-Resolution and it 
is presented in Fig. 4, more details can be found in Section 6.2. Fig. 4 gives the cumulative distribution 
functions of the test statistics under “sparse” alternatives, i.e., when true spikes are to be detected. The 
larger the power, the better the test detects spikes (abscissa represents the level of the test and the ordinate 
the probability to detect the spike). In these sets of experiments, we can note that

• The testing procedure SRice based on some Hessian and the whole process X(·) is uniformly better than 
the spacing test even if one takes very thin grids.

One can see that the power (the ability to detect sparse objects, Dirac masses here) of the grid methods 
seems to present a limit that is always improved by the continuous approach.
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Fig. 4. [Under the alternative] Empirical cumulative distribution under the alternative of the Rice test (blue) and the discrete grid 
tests with size 32 (green), 102 (red), 322 (purple) and 502 (cyan). The alternative is defined by a single atom at a random location 
with a weight log(N) = log(2fc + 1) (first row) or 

√
N (second row). In columns: fc = 3, 5, 7.

1.3. Contribution

For the first time, this paper paves the way to build new testing procedures in the framework of Super-
Resolution theory and line spectral estimation. In particular, we prove that we can rightfully construct 
global null exact testing procedures on the first two knots λ1 and λ2 of the “continuous” LARS when one 
has a continuum of predictors, see Theorems 1 and 4 and Fig. 3. These two new procedures offer the ability 
to test the mean of any stationary Gaussian process with known correlation function Γ and C2-paths. Fur-
thermore, one of these tests is unbiased, see Theorem 1 and they can be both studentized, see Theorems 2
and 8 and Fig. 6, when variance σ2 is unknown.

Notations and the formal problem formulation is described in Section 3. In Section 4, we present the test 
statistic SGrid which is constructed taking the limit of consecutive LARS knots (λ1,P , λ2,P ) on thinner and 
thinner grids (namely the number of predictors P tends to infinity). Section 5 is the theoretical construction 
of our grid-less test based on consecutive knots (λ1, λ2) of the “continuous” LARS. The main result concern-
ing the test statistic SRice is presented in this section. Applications to spike detection in Super-Resolution 
are developed in Section 6 and a Github page giving the Python code of the experiments can be found at 
https://github .com /ydecastro /super -resolution -testing. An appendix with the proofs can be found at the 
end of the paper.

The general construction of the “continuous” LARS is given in Section 2. This section is independent 
from the rest of the paper.

https://github.com/ydecastro/super-resolution-testing


450 J.-M. Azaïs et al. / Appl. Comput. Harmon. Anal. 48 (2020) 445–481
2. The “continuous” LARS

2.1. Cameron–Martin type assumption on the mean

The algorithm presented here can be used for a large class of complex processes Z. We consider a 
complex-valued Gaussian process Z indexed on a compact metric space K with covariance function K.

Remark 1. Note that this model encompasses our to-be-announced-framework (see Section 3) setting K =
[0, 2π) and K = 2σ2Γ with Γ the correlation of A1 defined in Section 3.1. We do not assume that the process 
is stationary in this section.

We assume that its covariance K is such that there exists σ > 0 such that

∀s �= t ∈ K, K(t, t) = 2σ2 and K(s, t) < 2σ2 . (1)

The scalar 2 accounts for the contribution of the real and the imaginary part of Z and σ2 is the variance of 
the real part of Z. We assume that Z has continuous sample paths.

We present here the underlying hypothesis on the mean of the Gaussian processes under consideration 
when using the LARS algorithm. This hypothesis is of Cameron–Martin type. Indeed, the main drawback 
that should be avoided is when the mean cannot be represented in the RKHS of the Gaussian process Z. 
We recall that we can define a reproducing Hilbert space of the covariance K, see [11, Chapter 2.6] for 
instance. Denote (H, 〈·, ·〉H) this complex Hilbert space. Also, we can invoke a Karhunen–Loève expansion 
of the process Z. Namely, there exist i.i.d. complex standard normal variables (gj)j≥1, a real orthonormal 
system (ej)j≥1 on L2(K) and σj > 0 such that

Z − EZ =
∑
j

σjgjej and
∑
j

σ2
j = 2σ2 < ∞,

where the identity holds almost surely in the Banach space of continuous functions on K equipped with the 
L∞-norm. By Mercer’s theorem, we know that

∀s, t ∈ K, K(s, t) =
∑
j

σ2
j ej(s)ej(t) ,

where the identity holds almost surely in the Banach space of continuous functions on K ×K equipped with 
the L∞-norm. We recall also that the Hilbert space H can be defined as

H :=
{∑

j

ajej |
∑
j

|aj |2
σ2
j

< ∞
}

with the inner product

〈∑
j

ajej ,
∑
j

bjej

〉
H

=
∑
j

ajbj
σ2
j

.

We observe Z and we want to estimate its mean EZ. Remark that almost surely it holds Z − EZ ∈ H, 
where H is the closure of H in the space of continuous functions equipped with the infinity norm, see e.g.
[11, Corollary 2.6.11]. Remark that H is also closed in L2(K). Denoting by E the L2 orthogonal space of H, 
one has L2(K) = H⊕E where the sum is orthogonal. We denote by P (resp. P⊥) the orthogonal projection 
onto H (resp. E). Since almost surely Z − EZ ∈ H, remark that almost surely P⊥(Z) = P⊥(EZ) and 
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this process can be observed and is deterministic. Without loss of generality, we assume that P⊥(EZ) = 0
subtracting P⊥(Z) to Z. Also, we assume that

P(EZ) ∈ H . (2)

Recall that P(EZ) = EZ and Assumption (2) gives that Z ∈ H using Z − EZ ∈ H.

2.2. Description of the “continuous” LARS

We assume that Z ∈ H and, as mentioned above, this assumption is equivalent to Assumption (2). 
Following standard references, e.g., [1, Chapter 5.6], the Least-Angle Regression Selection (LARS) algorithm 
can be extended to Gaussian processes. To the best of our knowledge, the LARS for complex Gaussian 
processes has never been introduced and we present its formulation here for the first time. Actually, the 
presentation given in this section can be applied to any RKHS setting. It results in a description of the LARS 
in infinite dimensional feature spaces and this framework has been dealt in [12]. However, note that the 
paper [12] only concerns real signed measures and their “doubling” dimension trick [12, page 546] cannot be 
used when dealing with complex measures. In particular, their result cannot be invoked in Super-Resolution 
where it is of utmost importance to deal with complex measures. This section presents the “continuous” 
LARS for Super-Resolution.

The LARS is a variable selection algorithm giving a sequence ((λk, μk))k≥1 where the knots are ordered 
such that λ1 ≥ λ2 ≥ . . . > 0 and μk ∈ (M(K, C), ‖ · ‖1) is a complex-valued measure. We recall that the 
space (M(K, C), ‖ · ‖1) is defined as the dual space of the space of continuous functions on K equipped with 
the L∞-norm. A pseudo-code is presented in Algorithm 1 and the technical details are presented below. 
When defining the “continuous LARS”, we assume that

K is (at least) four times differentiable. (AK)

Under this assumption, the process Z is twice differentiable in quadratic mean and once differentiable almost 
surely.

2.2.1. The first knot
Inspired by the Super-Resolution framework—presented in Section 6, we consider Z as some “correlation 

process” in the spirit of (18). In particular, the most correlated point can be defined by (9), namely

λ1 := max
t∈K

|Z(t)| .

Under Assumption (1), Proposition 16 shows that almost surely there exists a unique point t1 such that 
λ1 = |Z(t1)|. Define the “active set” function λ �→ A(λ) as

A(λ1) = A1 := (t1) ,

and A(λ) = ∅ for λ > λ1. The path λ �→ A(λ) for λ ≤ λ1 will be defined in the sequel. It is a piecewise 
continuously differentiable path representing the support of a discrete measure μ(λ) such that

‖Z −
∫
K

K(u, ·)dμ(λ)(u)‖∞ ≤ λ ,

namely the residual has L∞-norm less than λ. Set the first fitted solution to μ1 = 0 and the first residual 
to Z1 = Z for initialization purposes. Observe that
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Algorithm 1: Continous LARS.
Data: A correlation process Z indexed by K and its variance-covariance function K.
Result: A sequence ((λk, μk))k≥1 where the knots are ordered such that λ1 ≥ λ2 ≥ . . . > 0 and μk ∈ (M(K, C), ‖ · ‖1) is a 

complex-valued measure.
/* We initialize this Forward procedure computing λ1 and μ1 */

1 Set k = 1, λ1 := max
K

|Z| and μ1 = 0.
/* We use an “active set” Ak giving the support of the next solution μk+1 */

2 Set t1 := arg max
K

|Z| and A1 = (t1).
/* We use a “residual” Zk initialized with */

3 Set Z1 := Z.
/* We iterate the next commands until a stopping criterion is met */

4 Set k ← k + 1 /* Ak−1 =: (t1, . . . , tk−1) and λk−1 has been defined at the previous step. */
5 For λ > 0 and x = (x1, . . . , xk−1) ∈ Rk−1 define

a(λ, x) := (K(xi, xj))−1

⎛⎜⎜⎝
Z(x1) − (λ/λk−1)Zk−1(t1)

...
Z(xk−1) − (λ/λk−1)Zk−1(tk−1)

⎞⎟⎟⎠
hj(λ, x) :=

∂

∂t

[∣∣Z(t) −
k−1∑
i=1

ai(λ, x)K(xi, t)
∣∣2](xj)

and solve (h1(λ, x), . . . , hk−1(λ, x)) = 0 starting from (λ, x) = (λk−1, Ak−1) for 0 < λ ≤ λk−1. The solution path is denoted 
by x(λ) := (t1(λ), . . . , tk−1(λ)).

6 Set Z(λ)(·) := Z(·) −
k−1∑
i=1

ai(λ, x(λ))K(ti(λ), ·) and pick

λk := max
{
β > 0 ; ∃ t /∈ x(β), s.t. |Z(β)|(t) = β

}
and tk := arg maxs/∈x(λk)|Z

(λk)|(s) .

7 Set Ak = (t1(λk), . . . , tk−1(λk), tk) and

μk =
k−1∑
i=1

ai(λk, x(λk))δti(λk) and Zk(·) = Z
(λk)(·) = Z(·) −

k−1∑
i=1

ai(λk, x(λk))K(ti(λk), ·) .

8 Iterate from 4.

Z1(t1) = λ1 e
ıθ1 , (3)

|Z1(t1)| = λ1 ,

∀t ∈ K, Z1(t) = Z(t) −
∫
K

K(u, t)μ1(du) ,

∀t �= t1, |Z1(t)| < λ1 .

2.2.2. The second knot
We want to add an other point t2 to the active set and define a discrete measure μ2 supported on A1

while keeping the above inequalities true. First, we solve the least-squares fit given by

a = arg minc∈C

∥∥Z1(·) − cK(t1, ·)
∥∥2
H .

This program can be solved in closed form and it holds that a = Z(t1)/(2σ2). Then, for any 0 < λ ≤ λ1, 
define Z(λ) by

Z(λ)(t) = Z(t) + ( λ

λ1
− 1)Z(t1)

K(t1, t)
2σ2 ,
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and observe that |Z(λ)(t1)| = λ. Remark also that |Z(λ)| has a local maxima at point t = t1. Indeed, under 
(AK), the function X : (t, θ) �→ Re(e−ıθZ(t)) is continuously differentiable and it has t = t1 as global 
maximum by definition of t1 and λ1. Il follows from (7) that ẑ := (t1, θ1) is a local maxima of X and 
therefore t1 is a local maxima of |Z(λ)|.

Now, we keep track of the largest value of the “correlation” process |Z(λ)| on the complementary set 
of A1 while moving λ from λ1 toward zero. We define λ2 as the largest value for which there exists a point 
t /∈ A1 such that |Z(λ)|(t) = λ. Set

λ2 := max
{
β > 0 ; ∃ t /∈ A1, s.t. |Z(β)|(t) = β

}
,

and t2 := arg maxs/∈A1 |Z(λ2)|(s) . (4)

If t2 is not unique, we add all the solutions of (4) to the active set A2. For sake of readability, we assume 
that t2 is the only solution to (4). Then, update

A(λ) = A1 λ2 < λ ≤ λ1 ,

A(λ2) = A2 := (t1, t2) ,

μ2 = (1 − λ2/λ1)aδt1 ,

Z2(·) = Z(λ2)(·) = Z1(·) + (λ2/λ1 − 1)aK(t1, ·) ,

where, for all t ∈ K,

Z2(t) = Z1(t) + (λ1/λ2 − 1)aK(t1, t)

= Z(t) −
∫
K

K(u, t)μ2(du) ,

is the second residual associated to the second fitted solution μ2. Remark also that

∀t ∈ {t1, t2}, |Z2(t)| = λ2 ,

∀t �= {t1, t2}, |Z2(t)| < λ2 .

2.2.3. The other knots: moving the active set between knots
From this point we proceed iteratively. For k ≥ 3, we assume that we have found (λk−1, μk−1) and 

Ak−1 = (t1, . . . , tk−1) such that

A(λk−1) = Ak−1 ,

∀t ∈ K, Zk−1(t) := Z(t) −
∫
K

K(u, t)μk−1(du) ,

∀t ∈ Ak−1, |Zk−1(t)| = λk−1 ,

∀t /∈ Ak−1, |Zk−1(t)| < λk−1 .

We want to define the path λ �→ A(λ) for values λ ≤ λk−1 starting from A(λk−1) = Ak−1. We look for 
a path A(λ) = (t1(λ), . . . , tk−1(λ)) such that ti(λ) are continuously differentiable and there exists μ(λ)

supported on A(λ) such that the above inequalities hold true. This path will be defined on (λk, λk−1] for a 
value λk defined later.



454 J.-M. Azaïs et al. / Appl. Comput. Harmon. Anal. 48 (2020) 445–481
◦ Consider 0 < λ ≤ λk−1 and define

a(λ) = Mk−1(λ)−1

⎛⎜⎝ Z(t1(λ)) − (λ/λk−1)Zk−1(t1(λk−1))
...

Z(tk−1(λ)) − (λ/λk−1)Zk−1(tk−1(λk−1))

⎞⎟⎠
where we denote Mk−1(λ) = (K(ti(λ), tj(λ)))1≤i,j≤k−1 and we assume that Mk−1(λ) is invertible. If 
Mk−1(λ) is not invertible then we stop. The path A(λ) = (t1(λ), . . . , tk−1(λ)) will be defined later on. 
Note that A(λk−1) = (t1(λk−1), . . . , tk−1(λk−1)) = Ak−1 for λ = λk−1.

Remark 2. Note that the function 
∑k−1

i=1 ai(λk−1)K(ti(λk−1), ·) is the regression of Z onto the finite dimen-
sional space Span{K(ti(λk−1), ·) ; i = 1, . . . , k − 1}.

◦ Then, for any 0 < λ ≤ λk−1, define

μ(λ) :=
k−1∑
i=1

ai(λ)δti(λ) ,

Z(λ)(·) := Z(·) −
k−1∑
i=1

ai(λ)K(ti(λ), ·) ,

and observe that |Z(λ)(t)| = λ for all t ∈ {t1(λ), . . . , tk−1(λ)}. Indeed, it holds

Z(λ)(tj(λ)) = Z(tj(λ)) −
k−1∑
i=1

ai(λ)K(ti(λ), tj(λ)) ,

= Z(tj(λ)) − a(λ)�(Mk−1(λ))(0, . . . , 0, 1︸︷︷︸
jth

, 0, . . . , 0) ,

= Z(tj(λ)) − Z(tj(λ)) + (λ/λk−1)Zk−1(tj(λk−1)) ,

= λZk−1(tj(λk−1))/λk−1 ,

and recall that it holds |Zk−1(tj(λk−1))| = λk−1.
We will enforce that tj(λ) is a local maximum of |Z(λ)| imposing that its derivative is zero along the 

path A(λ) for λk < λ ≤ λk−1. This can be done invoking the implicit function theorem as follows. Define 
for λ > 0 and x = (x1, . . . , xk−1) ∈ Rk−1

F (λ, x) := (h1(λ, x), . . . , hk−1(λ, x))

where

a(λ, x) := (K(xi, xj))−1

⎛⎜⎝ Z(x1) − (λ/λk−1)Zk−1(t1(λk−1))
...

Z(xk−1) − (λ/λk−1)Zk−1(tk−1(λk−1))

⎞⎟⎠
hj(λ, x) := ∂

∂t

[∣∣Z(t) −
k−1∑
i=1

ai(λ, x)K(xi, t)
∣∣2](xj) (5)

Assume that the jacobian ∂F
∂x is invertible. If ∂F

∂x is not invertible then we stop. Therefore, the implicit 
function theorem implies that there exists a continuously differentiable path x(λ) := (t1(λ), . . . , tk1(λ)) such 
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that F (λ, x) = 0 is equivalent to x = (t1(λ), . . . , tk1(λ)) on a neighborhood of λ = λk−1. On this path, the 
derivative of t �→ |Z(λ)|2(t) at points t = tj(λ) is zero (thanks to (5)) while |Z(λ)|(tj(λ)) = λ. We deduce 
that there exists a neighborhood of λk−1 on which each point tj(λ) is a local maximum of |Z(λ)|.

Now, we keep track of the largest value of the “correlation” process |Z(λ)| on the complementary set 
of A(λ) while moving λ from λk−1 toward zero. We define λk as the largest value for which there exists a 
point t /∈ A(λ) such that |Z(λ)|(t) = λ. Set

λk := max
{
β > 0 ; ∃ t /∈ A(β), s.t. |Z(β)|(t) = β

}
,

and tk := arg maxs/∈{t1(λk),...,tk−1(λk)}|Z(λk)|(s) . (6)

If tk is not unique, we add all the solutions of (6) to the active set Ak. For sake of readability, we assume 
that tk is the only solution to (6).

◦ Update

A(λ) = (t1(λk), . . . , tk−1(λk)) λk < λ ≤ λk−1 ,

A(λk) = Ak := (t1(λk), . . . , tk−1(λk), tk) ,

μk = μ(λk) =
k−1∑
i=1

ai(λk)δti(λk) ,

Zk(·) = Z(λk)(·) = Z(·) −
k−1∑
i=1

ai(λk)K(ti(λk), ·) ,

where, for all t ∈ K,

Zk(t) = Z(t) −
∫
K

K(u, t)dμk(u) ,

is the kth residual associated to the kth fitted solution μk. Remark also that

∀t ∈ {t1, . . . , tk}, |Zk(t)| = λk ,

∀t �= {t1, . . . , tk}, |Zk(t)| < λk ,

and update k to k + 1 to iterate the procedure.

2.3. Equivalent expression of the second knot

First, observe that λ1 is defined as in (9) and that the two definitions agree. Indeed, recall that X(t, θ) =
Re (e−ıθZ(t)) so that maxX = max |Z| at point ẑ = (t1, θ1) with t1 as in (3). By optimality, it holds that 
λ1 = e−ıθ1Z(t1).

Then, the case k = 2 is interesting since λ2 is a statistic used in the test statistics described in the sequel. 
We will see that the two definitions agree here again, please refer to Section 3 for notations. For k = 2, it 
holds Z1 = Z and the least squares direction a is given by a = Z(t1)/(2σ2) and Z(λ) by

Z(λ)(t) = Z(t) + ( λ

λ1
− 1)Z(t1)

K(t1, t)
2σ2 ,

= Z(t) + eıθ1(λ− λ1)
K(t1, t)

2σ2
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Multiplying by e−ıθ and taking the real part, this latter can be equivalently written as

Re (e−ıθZ(λ)(t)) = X(z) + (λ− λ1) cos(θ1 − θ)K(t1, t)
2σ2 ,

where z = (t, θ) ∈ T. Now, recall that ρ(t, θ) := Γ(t) cos θ = cos(θ)K(0, t)/(2σ2) to compute

Re (e−ıθZ(λ)(t)) = X(z) + (λ− λ1)ρ(z − ẑ) . (7)

We deduce that

Re (e−ıθZ(λ)(t)) ≤ λ ⇔ X(z) − λ1ρ(z − ẑ) ≤ λ(1 − ρ(z − ẑ))

⇔ X(z) −X(ẑ)ρ(z − ẑ)
1 − ρ(z − ẑ) ≤ λ

⇔ X ẑ(z) ≤ λ

showing that the second knot λ2 is exactly the quantity defined in (10).

2.4. Illustration: the two first knots of super-resolution

The Super-Resolution process is defined in (18). It satisfies Condition (KLZ(N)) and Condition (NDZ(N))
of Section 5.2.1 with N = 2fc + 1. The first point is given by the maximum of the modulus of Z, see the 
red curve in Fig. 1. Observe that Z1 = Z and the maximum satisfies Z1(t1) = λ1 e

ıθ1 . Then, we compute

Z(λ)(t) = Z1(t) + ( λ

λ1
− 1)Z1(t1)

DN (t1 − t)
2Nσ2 ,

where DN denotes the Dirichlet kernel. For λ > λ2, the maximum of |Z(λ)| is achieved at a unique point, 
namely t1. For λ = λ2, a second point achieves the maximum. This transition defines Z2 := Z(λ2), see Fig. 1.

From this point, we can iterate fitting the least squares direction on the support {t1, t2} and decreas-
ing |Z2| while a third point achieves the maximum. Given the red curve in Fig. 1, it was not obvious that 
the second knot would have been t2 since other local maxima seemed more significant than t2 on the red 
curve.

3. Notations and problem formulation

3.1. Hypothesis testing problem

In this paper, our purpose is to test the mean value of a stationary complex-valued Gaussian process Z
with C2-paths indexed by [0, 2π). We assume that Z = A1 + ıA2 where A1 and A2 are two independent and 
identically distributed real-valued processes with C2-paths. Assume that the correlation function Γ of A1
(and A2) satisfies

∀t ∈ (0, 2π), |Γ(t)| < 1 (Anorm)

and let σ2 := Var(A1(·)) so that

Cov(A1(s), A1(t)) = σ2Γ(t− s) . (8)
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We denote by T := [0, 2π)2 the 2-dimensional torus. Assume that we observe a real-valued process (X(z))z∈T

indexed by T such that

∀z ∈ T, X(z) := A1(t) cos θ + A2(t) sin θ = Re
(
e−ıθZ(t)

)
,

where z = (t, θ) and Re(·) denotes the real part of a complex number. Remark that observing X is equivalent 
to observe Z since we can recover Z from X and conversely. Furthermore, we may assume that the process 
(X(z))z∈T satisfies

a.s. there is no point z ∈ T s.t. X ′(z) = 0 and det(X ′′(z)) = 0, (Adegen)

where X ′(z) and X ′′(z) denote the gradient and the Hessian of X at point z. Note that sufficient conditions 
for (Adegen) are given by [13, Proposition 6.5] applied to (X(z))z∈T. In particular if the distribution of X ′′(t)
is non degenerated, using [13, Condition (b) of Proposition 6.5], it implies that Assumption (Adegen) is met. 
Note also that Assumption (Adegen) is referred to as “Morse” process in [14]. Remark that (Anorm) and 
(Adegen) are mild assumptions ensuring that Z is a non-pathological process with C2-paths.

This paper aims at testing the following hypotheses:

H0 : “Z is centered ” against H1 : “Z is not centered ” .

Remark that this framework encompasses any testing problem whose null hypothesis is a single hypothesis 
on the mean of Z, subtracting the mean tested by the null hypothesis. Indeed, remark that Z can always 
be decomposed into

Z = Z0 + η ,

where Z0 = EZ is the deterministic noiseless response and η is some centered random additive perturbation 
of Z0. Given any function f0, one might be interested in testing whether Z0 = f0 or equivalently Z − f0

is centered. Not rejecting this hypothesis means that there is no evidence that the residual Z − f0 is not 
centered. On the other hand, rejecting the null means that the testing procedure have found some evidence 
that one should not consider that the residual Z − f0 is centered. Now, the same discussion can be made 
for X remarking that

X(z) = Re
(
e−ıθZ(t)

)
= X0(z) + N(z)

where we denote by X0(z) := Re
(
e−ıθZ0(t)

)
the deterministic noiseless response part and by N(z) :=

Re
(
e−ıθη(t)

)
some centered random additive perturbation of X0.

3.2. The first and second knots of a Gaussian process

As in high-dimensional statistics, we can define the first and second knots (λ1, λ2) as follows. If we model 
some spatial correlation by means of the process X, the most correlated point ẑ ∈ T and the maximal 
correlation λ1 are respectively the argument maximum and the maximum of X defined by

ẑ := arg maxz∈TX(z) and λ1 := X(ẑ) . (9)

Under Assumption (Anorm), one can check that the argument maximum is almost surely a singleton, 
see Proposition 16.
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To construct the second knot, given a fixed z ∈ T, one can equivalently consider two regressions of X(y), 
as follows.

• On the one hand, the regression on X(z) that will appear in the grid method of Section 4. Using a 
convenient normalisation related to the definition of the LARS knots, we set

∀y ∈ T \ {z}, Xz(y) := X(y) −X(z)ρ(z − y)
1 − ρ(z − y) = X(z) + X(y) −X(z)

1 − ρ(z − y) ,

where

∀z ∈ T, ρ(z) := Γ(t) cos θ ,

is the correlation function of the stationary Gaussian process X. One can check that Xz is a Gaussian 
process indexed by T \ {z} and independent of X(z).

• On the other hand, the regression on (X(z), X ′(z)) will be needed for convergence purposes in Section 5. 
With the convenient normalization, we set

∀y ∈ T \ {z}, X |z(y) := X(y) − ρ(z − y)X(z) + 〈ρ′(z − y), Λ̃−1X ′(z)〉
1 − ρ(z − y) ,

where ρ′ is the gradient of the correlation function ρ and Λ̃ := −ρ′′(0) is the variance-covariance matrix of 
the derivative process of X, namely X ′.

Since the derivative at ẑ is zero, note that X ẑ(·) = X |ẑ(·) and we define the second knot λ2 as

ŷ := arg maxy∈T\{ẑ}X
ẑ(y) and λ2 := X ẑ(ŷ) = X |ẑ(ŷ) , (10)

where we prove that (ŷ, λ2) are well defined and that ŷ is almost surely unique, see Proposition 16 and 
Remark 8. Furthermore, the couple (ŷ, λ2) can be equivalently defined using the extension of the LARS to 
our framework, the interested reader may consult Section 2.3.

4. Passing to the limit, the grid approach

The main idea of this section is to define a sequence of grids (Gn)n≥1 on T, to construct a sequence of 
test statistics (Sn)n≥1 from the values of the process X on Gn as in [10] and to pass to the limit as n → ∞. 
More precisely, we consider Gn to be the grid with mesh Δn := (2π)2−n on T (corresponding to P = 22n

grid points so that n = (log2 P )/2),

ẑn := arg maxz∈Gn
X(z) and λ1,n := max

z∈Gn

X(z) .

It is the maximum of the process X when indexing by the grid. We can also define the maximum of the 
regression when indexing by the grid, namely

λ2,n := max
y∈Gn\{ẑn}

X ẑn(y) .

The Hessian at the maximum (9) on T is denoted by X ′′ := X ′′(ẑ) (in particular it does not depend on 
the grid but on the maximum ẑ of X). By Assumption (Adegen), it is a random variable with values in the 
set of non degenerated negative definite matrices of size 2 × 2. We can define a non degenerated positive 
quadratic form (i.e., a metric) on R2 by ‖v‖X′′ = −v�X ′′v, for v ∈ R2. Using this metric, we can consider 
the corresponding Voronoi tessellation of Z2. It is a regular partition of R2 by parallelograms, invariant by 
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translations (1, 0) and (0, 1). Denote by Vo ⊂ [−1, 1]2 the Voronoi cell of the origin in this partition and by 
U := U(Vo) the uniform distribution on this cell. We understand the law U as a conditional law with respect 
to X ′′ and, conditionally to X ′′, this law is taken independent of (λ1, λ2), see Lemma 12. Conditionally to 
X ′′, define the randomized statistics

λ2 := λ2 ∨
{
λ1 + sup

k∈Z2\{0}

k�

‖Λ̃ 1
2 k‖

X ′′
(k − 2U
‖Λ̃ 1

2 k‖

)}
, (11)

where Λ̃ 1
2 is the square root of Λ̃ = −ρ′′(0) and a ∨ b = max(a, b). A proof of the following result is given 

in Appendix A.1.

Remark 3. Remark that we have taken dyadic grids here. Following the proof in Appendix A.1, one can 
exhibit how λ2 depend on the sequence of grids. The key result is Lemma 12 and we borrow its notation 
in this remark. In the general case where one consider a different type of sequence of grids, one still have 
independence between (ẑ− zn) and (λ1, λ2) but the law of the limit of Δ−1

n (ẑ− zn) (for some Δn that may 
depend on the grid sequence) may differ from U . We refer to this law (if it exists) as Vk where k ∈ Z2. The 
dependence in k depicts the fact cells defined by joining adjacent points of the grid might be topologically 
different (which is not the case in the dyadic case). It results that the definition of λ2 should be modified 
changing U by Vk. It does not change the main message here: the resulting test is randomized and (12) is 
non-conservative and should be avoided in practice.

Theorem 1. Under H0, Assumptions (Anorm) and (Adegen), the randomized test statistics

SGrid := Φ(λ1/σ)
Φ(λ2/σ)

∼ U([0, 1]) ,

where Φ denotes the standard Gaussian survival function. Moreover, the test with p-value SGrid is unbiased: 
under the alternative H1, it holds P{SGrid � α} � α for all α ∈ (0, 1).

Theorem 1 shows in particular that the statistics—referred to as the Spacing test statistics in the 
introduction—given by

SST = Φ(λ1/σ)
Φ(λ2/σ)

(12)

does not follow a U([0, 1]) distribution under H0 ans leads to a non-conservative test. Indeed, observe that 
almost surely λ2 ≤ λ2 so that SST ≥ SGrid almost surely. Note that the two test statistics differ on the 
event {λ2 �= λ2} = {λ2 < λ2}.

Now, when the variance σ2 is unknown, we can build an estimator σ̂2 defined in (16) and obtain a stu-
dentized version of the previous theorem. Please consult Section 5.2.1 for further details on the construction 
of the estimator σ̂ and on Conditions (KLZ(N)) and (NDZ(N)).

Theorem 2. Assume (Anorm), (Adegen), (KLZ(N)) and (NDZ(N)) where 2 � N < ∞, then the following 
test statistics TGrid satisfies

TGrid := Fm−1 (λ1/σ̂)
Fm−1

(
λ2/σ̂

) ∼ U([0, 1])

under H0 where m = 2N , Fm−1 is the Student cumulative distribution function with m − 1 degrees of 
freedom, Fm−1 = 1 − Fm−1 its survival function and σ̂2 is defined by (16).
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A proof can be found in Appendix A.2.

Remark 4. Only the first point of (NDZ(N)) is required for the proof. Moreover, if m = +∞, the Student 
distribution is to be replaced by a standard normal distribution.

5. The Rice method: a grid-less approach

In this section, we build our test statistic directly on the entire path of the process X in a grid-less manner. 
We assume that the process X satisfies Assumptions (Anorm) and (Adegen), and is centered (namely H0). 
As in the preceding section, we consider λ1 and λ2 defined by (9) and (10) respectively.

We denote X = σX̃ so that the covariance function of X̃ is the correlation function ρ of X, namely X̃ is 
the standardized version of X. Note that, by regression formulas and stationarity, it holds

∀z ∈ T, E
[
X̃ ′′(z)

∣∣(X̃(z), X̃ ′(z))
]

= −Λ̃X̃(z) ,

so that we can define the process R̃ by the decomposition

X̃ ′′(z) = −Λ̃X̃(z) + R̃(z)

where R̃(z) and X̃(z) are independent for any z ∈ T and Λ̃ = −ρ′′(0) is the variance-covariance matrix 
of X̃ ′(t). In particular, observe that

X ′′(ẑ) = −Λ̃X(ẑ) + R(ẑ) ,

where R(ẑ) = σR̃(ẑ). Using the Rice method of [13, Theorem 7.2] (see also [15]), it follows that the 
maximum λ1 has for density w.r.t the Lebesgue measure on R+ at point � > 0

(cst)(−1)d E
[
det(−Λ̃X(0) + R(0))1A�

∣∣X(0) = �,X ′(0) = 0
]
σ−1φ(σ−1�),

where φ denotes the standard Gaussian density, A� is the event {X(y) � �, ∀y ∈ T} and (cst), as in the 
following, denotes a positive constant. The numerical values (cst) may vary from an occurrence to another 
and it may depend on m and σ which are assumed fixed in our framework.

5.1. The known variance case

We begin by the known variance case. The main observation is that the method of [13, Theorem 7.2] can 
be extended to compute the joint distribution of (λ1, λ2, R(ẑ)) as follows.

• Denote S the set of symmetric matrices and pick a Borel set B on D := R2 × S.
• For every z ∈ T, recall that

∀y ∈ T \ {z}, X |z(y) := X(y) − ρ(z − y)X(z) + 〈ρ′(z − y), Λ̃−1X ′(z)〉
1 − ρ(z − y)

and define

∀z ∈ T, λz
2 := sup X |z(y) . (13)
y∈T\{z}
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Remark that, for fixed z ∈ T, λz
2 is a.s. finite by Lemma 9, X |z(·) is independent of (X(z), X ′(z)) and, 

by way of consequence, λz
2 is independent of (X(z), X ′(z)). Furthermore, note that since T is without 

boundary, for z = ẑ, one has X ′(z) = 0 and λz
2 = λ2 as defined by (10).

• Observe that on the event {∀y �= z, X(y) < X(z)} one has almost surely that z = ẑ, X(z) = λ1, 
λz

2 = λ2 and R(z) = R(ẑ). Also, a simple computation shows that

∀z ∈ T s.t. X ′(z) = 0, 1{z=ẑ} = 1{∀y �=z, X(y)<X(z)} = 1{0<λz
2<X(z)},

almost surely. Hence, by unicity of ẑ and recalling that the set {z ; X ′(z) = 0} is finite under (Adegen), 
we deduce that ∑

z:X′(z)=0

1{(X(z),λz
2,R(z))∈B}∩{0<λz

2<X(z)} = 1{(λ1,λ2,R(ẑ))∈B}.

• On D define smooth lower approximations ϕ(n)
B of the indicator function of B that converge when n

goes to infinity i.e.

∀(�1, �2, r) ∈ Ω, ϕ
(n)
B (�1, �2, r) −→ 1{(�1,�2,r)∈B}∩{0<�2<�1} .

• Apply Rice formula with weights [13, Theorem 6.4] (see also the proof of [13, Theorem 7.2]) to compute

E
[ ∑
z:X′(z)=0

ϕ
(n)
B

(
X(z), λz

2, R(z)
)]

= (cst)
∫
T

E
[
| det(−Λ̃X(z) + R(z))|ϕ(n)

B (X(z), λz
2, R(z))

∣∣∣ X ′(z) = 0
]
dz

= (cst)
∫
T

E
[
| det(−Λ̃X(z) + R(z))|ϕ(n)

B (X(z), λz
2, R(z))

]
dz

where the last equality relies on the fact that (X(z), λz
2, R(z)) is independent of X ′(z).

• Combining the previous observations and passing to the monotone limit as n tends to ∞ in the afore-
mentioned Rice formula with weights, we get that

P
{(

λ1, λ2, R(ẑ)
)
∈ B

}
= E

[ ∑
z:X′(z)=0

1{(X(z),λz
2,R(z))∈B}∩{0<λz

2<X(z)}

]
= (cst)

∫
T

E
[
| det(−Λ̃X(z) + R(z))|1{(X(z),λz

2 ,R(z))∈B}∩{0<λz
2<X(z)}

]
dz

= (cst) E
[
| det(−Λ̃X(0) + R(0))|1{(X(0),λ0

2,R(0))∈B}∩{0<λ0
2<X(0)}

]
,

= (cst) E
[
det(−Λ̃X(0) + R(0))1{0<λ0

2<X(0)}1{(X(0),λ0
2,R(0))∈B}

]
, (14)

by stationarity and using that, on the event {0 < λ0
2 < X(0)}, the matrix −X ′′(0) = Λ̃X(0) − R(0)

belongs to the set of positive definite symmetric matrices, namely S+.

Before stating the key result on the joint density of (λ1, λ2, R(ẑ)) we need to introduce a dominating 
measure. First, recall that X(0) is independent of the pair (λ0

2, R(0)). Then, observe that (λ0
2, R(0)) =
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σ × (λ̃0
2, R̃(0)) where λ̃0

2 is defined as in (13) for the process X̃. Denote μ1 the law of (λ̃0
2, R̃(0)) and note 

that it does not depend on σ. Denote μσ the law of (λ0
2, R(0)) and remark that for any Borel set B of R ×S, 

it holds μσ(σB) = μ1(B). Eventually, remark that

The law of (X(0), λ0
2, R(0)) is dominated by Leb(R) ⊗ μσ , (15)

where Leb(R) denotes the Lebesgue measure on R. As a consequence we can prove the following proposition.

Proposition 3. Under H0, the joint law L((λ1, λ2, R(ẑ))) of (λ1, λ2, R(ẑ)) satisfies for all (�1, �2, r) ∈ R2×S,

dL((λ1, λ2, R(ẑ)))
dLeb(R) ⊗ μσ

(�1, �2, r) = (cst) det(−Λ̃�1 + r)1{0<�2<�1}σ
−1φ(σ−1�1) ,

where Leb(R) ⊗ μσ is defined by (15) and S denotes the set of symmetric matrices.

Proof. Observe that the density at point �1 of X(0) with respect to the Lebesgue measure is σ−1φ(σ−1�1)
and recall (15). Now, for any Borel set B of R2 × S, note that

E
[
det(−Λ̃X(0) + R(0))1{(0<λ0

2<X(0)}1{(X(0),λ0
2,R(0))∈B}

]
=
∫
B

det(−Λ̃�1 + r)1{0<�2<�1}σ
−1φ(σ−1�1)d�1μσ(d(�2, r))

thanks to (14), which prove the result. �
We can now state our result when the variance is known.

Theorem 4. Set

∀r ∈ S+, ∀� > 0, Gr(�) :=
+∞∫
�

det(−Λ̃u + r)φ(uσ−1)du ,

where Λ̃ denotes the Hessian of the correlation function ρ of X at the origin. Under Assumptions (Anorm)
and (Adegen), the test statistic

SRice :=
GR(ẑ)(λ1)
GR(ẑ)(λ2)

∼ U([0, 1])

under H0.

Proof. Using Proposition 3, we know that the density of λ1 at �1 and conditional to (λ2, R(ẑ)) = (�2, r) is 
equal to

(cst) det(−Λ̃�1 + r)φ(σ−1�1)1{0<�2<�1}.

It is well known that, if a random variable Z has for cumulative density function F then F(Z) follows an 
uniform distribution on [0, 1]. This implies that, conditionally to (λ2, R(ẑ)) = (�2, r),

Gr(λ1) ∼ U([0, 1]).

Gr(�2)
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Since the conditional distribution does not depend on (�2, r), it is also the non conditional distribution and 
it yields

GR(ẑ)(λ1)
GR(ẑ)(λ2)

∼ U([0, 1]) ,

as claimed. �
5.2. The unknown variance case

5.2.1. Estimating the variance
When the variance σ2 is unknown in (8), we precise here the assumptions and the estimator we use 

to estimate the variance. In this section, except for explicit examples, we consider a real valued centered 
Gaussian process Y not necessarily stationary defined on the 2-dimensional torus T. Let m ≥ 2 (possibly 
infinite) and assume that Y admits an order m Karhunen–Loève expansion in the sense that

Y =
m∑
i=1

ζifi with Var(ζi) = σ2 and ∀t ∈ T,
m∑
i=1

|fi(t)|2 = 1 , (KL(m))

where the equality holds in L2(Ω) and (f1, . . . , fm) is a system of non-zero functions orthogonal on L2(T). 
Through our analysis, we need to consider one of the following assumptions.

• If m is finite,

∃(z1, . . . , zm) ∈ Tm pairwise distincts s.t.

(Y (z1), . . . , Y (zm)) is non degenerated. (ND(m))

• If m = ∞,

∀p ∈ N
	, ∃(z1, . . . , zp) ∈ Tp pairwise distincts s.t.

(Y (z1), . . . , Y (zp)) is non degenerated. ( ND(∞))

Recall that a Gaussian vector is called non-degenerated if its variance-covariance matrix is non-degenerated, 
i.e., it has full rank.

Some examples of process Y satisfying (KL(m)) and (ND(m)) with m = ∞ are given by the normalized 
Brownian motion and any Gaussian stationary process with a spectrum that admits an accumulation point, 
see [16, Page 203]. For instance, the process corresponding to the Super-Resolution problem satisfies (KL(m))
and (ND(m)) with m finite, namely m is twice the number of observed frequencies, see Section 6.

Definition 5. Let Y be a Gaussian process with constant variance σ2 = Var(Y (·)) and satisfying Assump-
tions (KL(m)) and (ND(m)) with m finite. The quantity

σ̂2
KL(Y ) := 1

m

m∑
i=1

ζ2
i ,

is called the Karhunen–Loève estimator of σ2.
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Remark 5. An explicit expression of the estimator σ̂2
KL is always possible from some set of pairwise dis-

joint points z1, . . . , zm′ with m′ � m. We only need to check that the variance-covariance matrix of the 
(Y (z1), . . . , Y (zm′)) has rank m.

Remark 6. Sufficiency considerations imply that σ̂2
KL is an optimal unbiased estimator for the mean-squared 

error by Rao–Blackwell theorem.

Given the aforementioned definition, we are now able to construct variance estimators for the pro-
cess X. We assume that the complex Gaussian process Z that define X satisfies the following hypotheses 
for some N ∈ N.

Z admits a complex Karhunen–Loève expansion of order N (KLZ(N))

and satisfies the following non-degeneracy conditions:

∀(t1, . . . , tN ) ∈ [0, 2π)N pairwise distincts,

(Z(t1), Z(t2), . . . , Z(tN )) is non degenerated and (NDZ(N))

(Z(t1), Z ′(t1), Z(t3), . . . , Z(tN )) is non degenerated.

Our aim is to build, for each z ∈ T, two estimators of the variance σ2 independently from X(z) or 
(X(z), X ′(z)). Indeed, in the following, we will distinguish two kinds of statistics. The first one is the limit 
of the finite dimensional statistic SGrid, see Section 4. The second one is the case of the maximum over T, 
see Section 5. Both cases won’t use the same estimation of σ2.

• In the grid situation, we define

Xz
norm(y) := X(y) − ρ(z − y)X(z)√

1 − ρ2(z − y)
,

where y belongs to T \ {z}, ρ(·) denotes the correlation function of the process X and set

σ̂2
z := σ̂2

KL
(
Xz

norm(·)
)

which is well defined, independent of X(z) and with constant variance σ2. Finally, we consider the 
variance estimator

σ̂2 = σ̂2
ẑ , (16)

defined at point ẑ given by (9).
• In the continuous case, we define

X |z
norm(y) := X(y) − ρ(z − y)X(z) + 〈ρ′(z − y), Λ̃−1X ′(z)〉√

1 − ρ2(z − y) + 〈ρ′(z − y), Λ̃−1ρ′(z − y)〉
,

where y belongs to T \ {z} and set

σ̂2
|z := σ̂2

KL
(
X |z

norm(·)
)
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which is well defined, independent of (X(z), X ′(z)) and with constant variance σ2. Finally, we consider 
the variance estimator

σ̂2
| = σ̂2

|ẑ , (17)

defined at point ẑ given by (9).

Proposition 6. Let Z satisfy (KLZ(N)) and (NDZ(N)) and set z ∈ T then the following claims are true 
under H0.

(a) σ̂2
z is well defined and follows a 

σ2χ2
2N−1

2N−1 distribution.

(b) σ̂2
|z is well defined and follows a 

σ2χ2
2N−3

2N−3 distribution.
(c) The process Xz

norm(·)/σ̂z is independent of σ̂z, and the process X |z
norm(·)/σ̂|z is independent of the random 

variable σ̂|z.

Proof. (a) Fix z = (t1, θ1) ∈ T. Since Z satisfies (NDZ(N)), there exists (t2, . . . , tN ) ∈ [0, 2π)N−1 pairwise 
different such that (Z(t1), Z(t2), . . . , Z(tN )) is non degenerated. Then, considering z1 = z, zN+1 = z +
(0, π/2) and

∀i ∈ {2, . . . , N}, zi = (ti, θ1) and zN+i = (ti, θ1 + π/2),

the vector V1 := (X(z1), . . . , X(z2N )) satisfies

2N = rank(X(z1), X(z2), . . . , X(z2N ))

= rank(X(z1), Xz
norm(z2), . . . , Xz

norm(z2N ))

= 1 + rank(Xz
norm(z2), . . . , Xz

norm(z2N ))

where rank denotes the rank of the covariance matrix of a random vector. Deduce that Xz
norm(·) satisfies 

(ND(2N − 1)). This, in turn, implies that the 2N functions

gi(·) = fi(·) − ρ(z − ·)fi(z)

are in fact in a space of dimension 2N − 1 and a Gram–Schmidt orthogonalization in L2(T) gives 
(KL(2N − 1)) for the process Xz

norm(·). Finally, from (Xz
norm(z2), . . . , Xz

norm(z2N )), we compute σ̂2
z that 

follows the desired distribution.

(b) In the case of the regression over (X(z), X ′(z)), remark that

∂θX(z) = X(t1, θ1 + π/2) = X(z2)

and ∂tX(z) = Re(e−ıθ1Z ′(t1)) where ∂θ (resp. ∂t) denote the partial derivative with respect to θ (resp. t). 
Because of hypothesis (NDZ(N)), the two vectors V1 and

V2 := (X(z1), X(z2),Re(e−ıθ1Z ′(t1)), Im(e−ıθ1Z ′(t1)), X(z5), . . . , X(z2N ))

have rank 2N so both are invertible functions of (Re(ζ1), Im(ζ1), . . . , Re(ζN ), Im(ζN )). In particular, 
Im(e−ıθ1Z ′(t1)) is a linear combination of V2. Let γ1 and γ2 be the coefficients associated to X(z3) and X(z4). 
By triangular combination, we deduce that the distribution of
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(X(z1), ∂θX(z1), ∂tX(z1), γ1X(z3) + γ2X(z4), X(z5), . . . , X(z2N ))

is non-degenerated and so that (γ1, γ2) �= (0, 0). Setting ψ such that

cos(ψ) = γ1√
γ2
1 + γ2

2
and sin(ψ) = γ2√

γ2
1 + γ2

2

we get the non-degeneracy of

(X(z1), ∂θX(z1), ∂tX(z1), X(z2N+1), X(z5), . . . , X(z2N ))

where z2N+1 = (t2, θ1 + ψ). Finally, similarly to the proof of the previous point, regression, scaling and 
independence prove that the rank of (X |z

norm(z5), . . . , X |z
norm(z2N+1)) is 2N − 3 so that X |z

norm(·) satisfies 
KL(2N − 3) and ND(2N − 3) and that σ̂2

|z is well defined and distributed as σ
2χ2

2N−3
2N−3 .

(c) This is a direct consequence of the independence of the angle and the norm for each marginal Gaussian 
vector build from Xz

norm or X |z
norm. �

Remark 7. When the complex process Z admits an infinite Karhunen–Loève decomposition, we need the 
following modified hypothesis

∀p ∈ N
	, ∀(t1, . . . , tp) ∈ [0, 2π)p pairwise distincts,

(Z(t1), Z(t2), . . . , Z(tp)) is non degenerated and (NDZ(∞))

(Z(t1), Z ′(t1), Z(t3), . . . , Z(tp)) is non degenerated.

Indeed, for every enter p ≥ 1, note that from the observation of the vector (Z(t1), Z(t2), . . . , Z(tp)) (resp. 
(Z(t1), Z ′(t1), . . . , Z(tp))) for pairwise disjoint points t1, . . . , tp, we can construct an estimator, say σ̂2

2p (resp. 
σ̂2
|2p), of σ2 with distribution σ2χ2

2p−1/(2p −1) (resp. σ2χ2
2p−3/(2p −3)) under H0. Making p tend to infinity, 

classical concentration inequalities and Borel–Cantelli lemma prove that σ̂2
2p (resp. σ̂2

|2p) converges almost 
surely to σ2 under H0. Thus the variance σ2 is directly observable from the entire path of X. We still denote 
σ̂2
z (resp. σ̂2

|z) this observation, where z = z1 = (t1, θ1).

5.2.2. Computing the joint law
Hence, suppose that we observe X = σX̃ where σ > 0 is unknown. Assume that Z satisfies (KLZ(N))

and (NDZ(N)), and set m = 2N . The regression of the Hessian on (X(z), X ′(z)) reads now

∀z ∈ T, X ′′(z) = −Λ̃X(z) + σR̃(z),

because X ′(z) is independent of (X(z), X ′′(z)) by stationarity. The variance being unknown, we estimate 
it using σ̂2

| which is defined by (17). For fixed z ∈ T, by Claims (b) and (c) of Proposition 6, we know that 
the following random variables or random processes

X(z) , X ′(z) , X
|z
norm(·)
σ̂|z

and σ̂|z

are mutually independent. As X |z
norm(·) = hz(·) X |z(·) where hz(·) is a deterministic function and as 

Lemma 15 shows that R(z) can be expressed as radial limits of X |z(·) at point z, we get that

X(z) , X ′(z) ,
(X |z(·)

,
R(z)) and σ̂|z are mutually independent,
σ̂|z σ̂|z
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and by consequence

X(z) , X ′(z) ,
( λz

2
σ̂|z

,
R(z)
σ̂|z

)
and σ̂|z are mutually independent.

We turn now to the Rice formula described previously and introduce the notation

T2,z := λz
2

σ̂|z
and T2 := T2,ẑ.

Denote Leb(R2) the Lebesgue measure on R2 and let μ1 be the joint law of the couple of random vari-
ables (T2,0, R(0)/σ̂|0). Under H0, note that X(0) is a centered Gaussian variable with variance σ2 and σ̂|0/σ

is distributed as a chi-distribution with m − 3 degrees of freedom, i.e., the law of density

fχm−3(s) = 21−m−3
2

Γ
(
m−3

2
)sm−4 exp(−s2/2)

where Γ is the Gamma function. Then the quadruplet (X(0), ̂σ|0/σ, T2,0, R(0)/σ̂|0) has a density with respect 
to Leb(R2) ⊗ μ1 at point (�1, s, t2, r) ∈ R3 × S equal to

(cst) sm−4 exp
(
−s2(m− 3)

2

)
σ−1φ(σ−1�1).

Using the same method as for the proof of Proposition 3 we have the following proposition.

Proposition 7. Assume that Z satisfies (Anorm), (Adegen), (KLZ(N)) and (NDZ(N)), and set m = 2N . 
Then, under H0, the joint distribution of 

(
λ1, ̂σ|/σ, T2, R(ẑ)/σ̂|

)
has a density with respect to Leb(R2) ⊗ μ1

at point (�1, s, t2, r) ∈ R3 × S+ equal to

(cst) det(−Λ̃�1 + σsr) sm−4 exp
(
−s2(m− 3)

2

)
φ(σ−1�1)1{0<σst2<�1},

where (cst) is a positive constant that may depend on m and σ.

Consequently, we derive the following result.

Theorem 8. Assume that Z satisfies (Anorm), (Adegen), (KLZ(N)) and (NDZ(N)), and set m = 2N . For 
all r ∈ S

+, define Hr(·) as

∀� > 0, Hr(�) :=
+∞∫
�

det
(
− Λ̃t1 + r

)
fm−1

(
t1

√
m− 1
m− 3

)
dt1,

where fm−1 is the density of the Student distribution with m − 1 degrees of freedom. Under the null H0, the 
test statistic

TRice :=
HR(ẑ)(T1)
HR(ẑ)(T2)

∼ U([0, 1]),

where T1 := λ1/σ̂|, T2 = λ2/σ̂| and σ̂| is defined by (17).
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Proof. First, using Proposition 7 and the change of variable t1 = �1
σs , the joint distribution of the quadruplet 

(T1, ̂σ|/σ, T2, R(ẑ)/σ̂|)) at point (t1, s, t2, r) is given by

(cst) det(σs(−Λ̃t1 + r))sm−3 exp
(
−s2(m− 3)

2

)
φ(st1)1{0<t2<t1}

= (cst) det(−Λ̃t1 + r)sm−1 exp

⎛⎝−
(
s

√
m− 3
m− 1

)2
m− 1

2

⎞⎠φ(st1)1{0<t2<t1}.

Second, note that if X and Y are two independent random variables of density fX and fY then the density 
of X/Y satisfies

fX/Y (z) =
∫
R

fX(zy)yfY (y)dy.

In our case, integrating over s and with the change of variable s ← s
√

(m− 1)/(m− 3), it holds

∫
R+

φ(st1)sm−1 exp

⎡⎣−(s√m− 3
m− 1

)2
m− 1

2

⎤⎦ds

= (cst)
∫
R+

φ

(
st1

√
m− 1
m− 3

)
ssm−2 exp

[
−s2(m− 1)

2

]
ds

= (cst)
∫
R+

φ

(
st1

√
m− 1
m− 3

)
sf χm−1√

m−1
(s)ds

= fm−1

(
t1

√
m− 1
m− 3

)
.

Putting together, the density of (T1, T2, R(ẑ)/σ̂) at point (t1, t2, r) is now given by

(cst) det(−Λ̃t1 + r)fm−1

(
t1

√
m− 1
m− 3

)
1{0<t2<t1} ,

and we conclude using the same trick as the one of Theorem 4. �
6. Applications to the super-resolution theory

6.1. Framework and results

Deconvolution over the space of complex-valued Radon measure has recently attracted a lot of atten-
tion in the “Super-Resolution” community—and its companion formulation in “Line spectral estimation”. 
A standard aim is to recover fine scale details of an image from few low frequency measurements—ideally 
the observation is given by a low-pass filter. The novelty in this body of work relies on new theoretical 
guarantees of the �1-minimization over the space of Radon measures with finite support. Some recent works 
on this topic can be found in the papers [7,2,6,3,8,17,18,5] and references therein.

An important example throughout this paper is given by the Super-Resolution problem which can be 
stated as follows. Let ν0 ∈ (M([0, 2π), C), ‖ · ‖1) a complex-valued Radon measure on the one dimensional 
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torus identified to [0, 2π) equipped with the natural circle-wise metric. Note that || · ||1 denotes the total 
variation norm on M([0, 2π)). The space (M([0, 2π), C), ‖ · ‖1) can be defined as the topological dual space 
of continuous functions on [0, 2π) equipped with the L∞-norm.

Let N = 2fc +1 where fc ≥ 1 is referred to as the “frequency cut-off”. Denote by DN the Dirichlet kernel 
defined by

∀t ∈ [0, 2π), DN (t) := sin(Nt/2)
sin(t/2) .

Consider the linear operator FN : M([0, 2π), C) → CN that maps any complex-valued Radon measure ν

onto its Fourier coefficients ck(ν) where

ck(ν) :=
∫
T

exp(−ıkx)ν(dx)

for integers k such that |k| � fc. Consider ζ = (ζk)k where ζk = ζ1,k + ıζ2,k and ζ�,k are i.i.d. standard 
Gaussian random variables for |k| � fc and � = 1, 2. In the Super-Resolution frame, we observe a perturbed 
version of the Fourier coefficients, namely

y = 1√
N

FN (ν0) + σζ .

Applying F	
N—the dual operator of FN , remark that we observe the trigonometric polynomial

Z := 1√
N

F	
N (y)

which reads as

∀t ∈ [0, 2π), Z(t) = 1
N

∫
T

DN (t− x)ν0(dx) + σ

fc∑
k=−fc

1√
N

ζk exp(ıkt). (18)

Hence, one observes Z and infers on ν0 assuming that it has finite support. To this purpose, consider the 
process X defined for all (t, θ) ∈ T by

X(t, θ) := Re(e−ıθZ(t)) = cos(θ) Re(Z(t)) + sin(θ) Im(Z(t)), (19)

where Re and Im denote the real and imaginary part of a complex number. When ν0 ≡ 0, remark that 
the processes A1 = Re(Z) and A2 = Im(Z) are two independent and identically distributed real-valued 
processes with C∞-paths. An elementary computation shows that X has correlation function ρ and A1 has 
correlation function Γ with

ρ(z − y) = cos(θ − α)Γ(t− s) where Γ(t− s) = DN (t− s)/N

for all z = (t, θ) and y = (s, α) in T. Remark that (Anorm) holds true for Γ. In this case, we are testing

H0 : “F	
N (FN (ν0)) ≡ 0 ” against H1 : “∃t ∈ [0, 2π), F	

N (FN (ν0))(t) �= 0 ” ,

or equivalently

H0 : “ν0 ≡ 0 ” against H1 : “∃t ∈ [0, 2π), ν0(t) �= 0 ” .
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Subtracting the known measure ν0, remark that this framework encompasses testing problem whose null 
hypothesis is any single hypothesis H0 : “ν0 ≡ ν0 ” against alternatives of the form H1 : “∃t ∈ [0, 2π), ν0(t) �=
ν0(t) ”.

Furthermore, we have the following propositions. First, we check that we can apply our results to the 
Super-Resolution process.

Proposition 9. The process X defined by (19) satisfies Condition (KL(m)) and Condition (ND(m)) with 
m = 2N = 4fc + 2.

Then, we derive a first result when the noise level σ is known.

Proposition 10. Under the null H0, the test statistic

SRice
SR = σ(α1λ1 + α2)φ(λ1/σ) + (α1σ

2 − α2
3)Φ(λ1/σ)

σ(α1λ2 + α2)φ(λ2/σ) + (α1σ2 − α2
3)Φ(λ2/σ)

∼ U([0, 1]),

where Φ is the standard Gaussian cumulative distribution function , Φ = 1 − Φ its survival function, φ its 
density function, (λ1, λ2) is defined by ((9), (10)) and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α1 = 1
3fc(fc + 1),

α2 = 1√
N

fc∑
k=−fc

(k2 − α1) × Re(ykeı(kt̂−θ̂)),

α3 = 1√
N

fc∑
k=−fc

k × Re(ykeı(kt̂−θ̂)).

Finally, we have the following result when the noise level σ is unknown.

Proposition 11. Under the null H0, the test statistic

TRice
SR = α1Fm−3(T1) + (α1T1 + α2)fm−3(T1) − γ−1

m α2
3Fm−1(T1)

α1Fm−3(T2) + (α1T2 + α2)fm−3(T2) − γ−1
m α2

3Fm−1(T2)
∼ U([0, 1]),

where Fd is the Student cumulative distribution function with d degrees of freedom, F d = 1 −Fd its survival 
function, fd its density function, T1 = λ1/σ̂|, T2 = λ2/σ̂|, σ̂| is defined by (17) and γm = m−3

m−2
Γ
(
m
2
)
Γ
(
m−3

2
)

Γ
(
m−1

2
)
Γ
(
m−2

2
) .

A proof of these propositions can be found in Appendix A.4.

6.2. A numerical study

A Python code (and a Jupyter notebook) illustrating the following numerical experiments can be found 
at: https://github .com /ydecastro /super -resolution -testing.

6.2.1. Computation of λ2
To build our test statistic SRice in the Super-Resolution context (namely SRice

SR ), we need to compute 
three quantities. The first one is λ1, the maximum of X(·) over the torus T. Its simple form allow us to use 
classical optimization routines, for instance scipy.optimize.minimize on Python, fminsearch on MATLAB or
optim on R both combined with global resolution options on T. The second one is R = R(ẑ) which appears 
in the test statistic through the coefficients α1, α2 and α3 that are simple functions of the observation y and 
ẑ. Finally, the third one is

https://github.com/ydecastro/super-resolution-testing
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λ2 = λẑ
2 = λ1 + max

y∈T

{
X(y) −X(ẑ)
1 − ρ(ẑ − y)

}
.

Contrary to λ1, there is some indetermination problem when y is close to ẑ. In particular, the approximation 
of ẑ is by definition not exact and the radial limits of X | are not numerically achieved. A way to get around 
that is the integral form of the remainder in Taylor’s theorem. In full generality, we compute

λẑ
2 − λ1 = max

y∈T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1∫
0

(1 − h) (y − ẑ)TX ′′(ẑ + h(y − ẑ))(y − ẑ) dh

1∫
0

(1 − h) (y − ẑ)T ρ′′(ẑ + h(y − ẑ))(y − ẑ) dh

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Denote by r = ||y − ẑ||2 the distance between y and ẑ. The numerical indetermination occurs for small 
values of r. But remark that one can factorize r2 in both the numerator and the denominator. This leads 
to the expression

λẑ
2 − λ1 = max

y∈T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1∫
0

(1 − h) (y − ẑ

r
)TX ′′(ẑ + h(y − ẑ))(y − ẑ

r
) dh

1∫
0

(1 − h) (y − ẑ

r
)T ρ′′(ẑ + h(y − ẑ))(y − ẑ

r
) dh

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which is more robust in practice. In the Super-Resolution case, elementary trigonometry identities give the 
following simpler form of the denominator

fc∑
k=−fc

(k cos(α) − sin(α))2 × sinc
(
r(k cos(α) − sin(α))

2

)2

where y − ẑ = (r cos(α), r sin(α)) and sinc denote the cardinal sine function, i.e.

sinc(x) =

⎧⎪⎪⎨⎪⎪⎩
sin x

x
if x �= 0,

1 if x = 0,

which is a numerically robust function. We conclude the optimization using the same routine as the one 
of λ1.

6.2.2. Monte-Carlo experiment
In this section we compare the cumulative distribution of several statistics of test in the case where the 

variance is known, namely

• The statistics of the Rice test SRice, given by Theorem 4, are displayed in blue.
• The statistics of the Spacing test SST, given by (12), are displayed in green.
• The statistics of the Spacing test on grids Gn given by Φ(λ1,n)/Φ(λ2,n) are displayed with a color that 

take the respective values green, red, purple and cyan for sizes equal to 32, 102, 322, 502.
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Fig. 5. Same as Fig. 2 except that (a) fc = 7, (b) the alternative is defined by two spikes at random locations (with a constraint of 
separation) (c) the weights are now from left to right (logN, logN); (logN, 

√
N); (

√
N, 

√
N).

Fig. 6. We compute three empirical cumulative distribution functions: under the null (dashed gray line), under one spike alternative 
of size logN (green line) and under one spike alternative of size 

√
N . The left panel uses the statistic S (known variance case) and 

the right panel the statistic T (unknown variance case). We witness a slight loss of power in this later case.

• The grid test, based on SGrid of Theorem 1 can be viewed as the limit of the discrete grid tests above 
as the size growths to infinity. As one can see in the figures, there is some evidence that this limit is 
numerically reached for a size n = 502.

We complete each graph by the diagonal to the cumulative distribution function of the uniform law on [0, 1]
displayed in black. All the figures are based on 2000 simulations of the corresponding statistics.

The first figure studies the distribution of SRice and SST under the Null. This figure is displayed in the 
introduction (see Fig. 3). The second figure deals with the grid statistic and SRice under various alternatives 
defined by a single spike and compares the power of the Rice test with the discrete grid tests, see Fig. 4. 
Finally, the third figure performs the same study but with an alternative defined by two atoms, see Fig. 5.

A last set of experiments is devoted to the computation of the testing procedure when the noise level is 
unknown, see Fig. 6.
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These latter numerical experiments were conducted using a Python code. The notebook testing-super-
resolution.ipynb available at github.com/ydecastro/super-resolution-testing allows to reproduce these exper-
iments.

6.3. Discussion

Fig. 3 suggests that the Spacing test is highly non-conservative which is a major drawback. For instance, 
when fc = 7, the empirical level of the Spacing test at a nominal level of 5% is in fact 11,3%, showing 
that this test is very non-conservative. For its part, the Rice test is exact as predicted by the theory. This 
numerical agreement prove that the numerical algorithm described in Section 6.2.1 is efficient.

In Fig. 4 and 5 we see that the power of the discrete grid tests may seem an increasing function of the 
number of points of the grid. This power seems to converge since the curves associated to 322 (purple) and 
502 (cyan) are almost indistinguishable. This suggests that the Rice test (blue) is always more powerful than 
the discrete grid test or the limit grid test. Consequently, it seems unbiased for any choice of alternative.

In conclusion the Rice test seems to be the best choice even if we are still not able to prove theoretically 
that it is unbiased.
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Appendix A. Proofs

We denote for random variables, Xn = oP (rn) and Yn = OP (rn) (for rn �= 0) means that r−1
n ‖Xn‖

converges to 0 in probability and r−1
n ‖Yn‖ is uniformly tight, respectively. Furthermore, we consider the 

following processes.

• The stationary process X(z) = X(t, θ) defined on T with covariance function given by Cov(X(y), X(z))
= σ2ρ(z − y) where we recall the correlation function is given by ρ(z − y) = cos(θ − α)Γ(t − s),

• For every z ∈ T, recall the regressions with respect to X(z)

∀y ∈ T \ {z}, Xz(y) = X(y) −X(z)ρ(z − y)
1 − ρ(z − y) = X(z) + X(y) −X(z)

1 − ρ(z − y) ,

Xz
norm(y) = X(y) − ρ(z − y)X(z)√

1 − ρ2(z − y)
.

• For every z ∈ T, recall the regressions with respect to (X(z), X ′(z))

∀y ∈ T \ {z}, X |z(y) = X(y) − ρ(z − y)X(z) + 〈ρ′(z − y), Λ̃−1X ′(z)〉
1 − ρ(z − y) ,

X |z
norm(y) = X(y) − ρ(z − y)X(z) + 〈ρ′(z − y), Λ̃−1X ′(z)〉√

1 − ρ2(z − y) + 〈ρ′(z − y), Λ̃−1ρ′(z − y)〉
.

In particular, recall that ẑ is defined by (9) so X ′(ẑ) = 0 and it yields that X ẑ = X |ẑ.
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A.1. Proof of Theorem 1

Since the variance is known, we consider without loss of generality that σ2 = 1. Using the metric given 
by the quadratic form represented by X ′′, we can consider the closest point zn of the grid Gn to ẑ by

zn = arg minu∈Gn
‖ẑ − u‖X′′ = arg minu∈Gn

〈ẑ − u,−X ′′(ẑ)(ẑ − u)〉 .

The main claim is that, while it holds λ1,n → λ1 a.s., we don’t have the same result for λ2,n, see Lemma 14. 
We begin with the following preliminary result, which is related to the result of Azaïs–Chassan [19].

Lemma 12. Under H0 and conditionally to X ′′, Δ−1
n (ẑ − zn) follows a uniform distribution on V0 and this 

distribution is independent from λ1 and λ2.

Proof. Remark that ẑ has uniform distribution on T by stationarity and this distribution is independent 
from λ1 and λ2. Let B be a Borelian in R2. Remark that ẑ − zn ∈ ΔnV0 by definition of zn and note that 
zn ∈ ΔnZ

2. Conditionally to X ′′, it holds

P{Δ−1
n (ẑ − zn) ∈ B} = P{Δ−1

n (ẑ − zn) ∈ B ∩ V0}

= P{(ẑ − zn) ∈ Δn(B ∩ V0)}

= P{ẑ ∈ Δn(B ∩ V0 + Z2)} .

Since ẑ has uniform distribution on T and since V0 + Z2 is a partition of R2, it holds that

P{ẑ ∈ Δn(B ∩ V0 + Z2)} = P{ẑ ∈ 2π(B ∩ V0 + Z2)} = Leb(R2)(2π(B ∩ V0))
Leb(R2)(2πV0)

,

where Leb(R2) denotes the Lebesgue measure on R2. �
Lemma 13. Under H0, it holds that

(a) X(ẑn) −X(zn) = oP (Δ2
n).

(b) P{ẑn �= zn} → 0 as n goes to ∞.
(c) Let F be any measurable function, then F (ẑn) − F (zn) tends to zero in probability at arbitrary speed.
(d) Almost surely, one has zn → ẑ and ẑn → ẑ as n goes to infinity.

Proof. Let ε > 0. By definition of zn and since V0 ⊂ [−1, 1]2, it holds that

‖ẑ − zn‖ �
√

2Δn , (A.1)

almost surely. Since X has C2-paths and by Taylor expansion, one has

X(ẑ) −X(zn) = (1/2)‖ẑ − zn‖2
X′′ + oP (Δ2

n) (A.2)

Since −X ′′ is positive definite, there exists M > 0 sufficiently large such that

(1/M)Id2 � −X ′′ � M Id2

where � denotes the Lowner ordering between symmetric matrices. Then, it holds
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∀z ∈ R2, (1/M)‖z‖2 ≤ ‖z‖2
X′′ � M‖z‖2 . (A.3)

From (A.1), (A.2) and (A.3), we deduce that

0 � X(ẑ) −X(ẑn) � X(ẑ) −X(zn) = OP (Δ2
n) , (A.4)

using the optimality of ẑ and ẑn.
By compactness of T, uniqueness of optimum ẑ ∈ R2 and C2-continuity of X, there exists η > 0 and a 

neighborhood N0 ⊂ R2 of ẑ ∈ R2 such that X(ẑ) − η � X(z) for any z /∈ N0 and

∀z ∈ N0, (1/4)||ẑ − z||2X′′ � X(ẑ) −X(z) � ||ẑ − z||2X′′ (A.5)

using again a Taylor expansion as in (A.2). Using (A.4), it holds that, on an event of probability at least 
1 − ε/4 and for n large enough, 0 � X(ẑ) − X(ẑn) ≤ η/2 implying that ẑn ∈ N0. Invoke (A.3), (A.4)
and (A.5) to deduce that ẑ − ẑn = OP (Δn).

Using Taylor formula again, we get that

X(ẑ) −X(ẑn) = (1/2)||ẑ − ẑn||2X′′ + oP (Δ2
n) . (A.6)

By optimality of ẑn and zn and using (A.2) and (A.6), one gets

0 � X(ẑn) −X(zn) ≤ (1/2)(||ẑ − zn||2X′′ − ||ẑ − ẑn||2X′′) + oP (Δ2
n) . (A.7)

Observing that ||ẑ − zn||2X′′ − ||ẑ − ẑn||2X′′ ≤ 0, we get (a).
Conditionally to X ′′ and in the metric defined by || · ||X′′ , there exists η′ > 0, such that the 

η′-neighborhood, denoted by Nη′ , of the boundary ∂V0 of V0 has relative volume (for the Lebesgue measure) 
less than ε/8. More precisely, Nη′ denotes the set of points in V0 ⊂ R2 with || · ||X′′ -distance less than η′ to 
the boundary of V0. In particular,

∀k ∈ Z2 \ {0}, ∀z ∈ V0 \Nη′ , ||z||X′′ + η′ � ||z − k||X′′ ,

by Cauchy–Schwarz inequality. Using Lemma 12 and by homogeneity, we deduce that it holds

∀g ∈ ΔnZ
2 \ {0}, ||ẑ − zn||X′′ + η′Δn � ||ẑ − g||X′′ ,

with probability at least 1 − ε/8. It follows that

∀g ∈ ΔnZ
2 \ {0}, ||ẑ − zn||2X′′ + (η′)2Δ2

n � ||ẑ − g||2X′′ ,

using that (a + b)2 � a2 + b2 for a, b � 0. Now, invoke (A.7) to get that

0 � − (η′)2

2 Δ2
n 1{zn �=ẑn} + oP (Δ2

n) .

On these events, we get that, for n sufficiently large, ẑn and zn must be equal except on an event of 
probability at most ε/4 + ε/8 ≤ ε. Furthermore, this result holds unconditionally in X ′′. We deduce that 
lim supP{zn �= ẑn} � ε, proving (b). Note that (c) is a consequence of the fact that, for n sufficiently large, ẑn
and zn must be equal except on an event of arbitrarily small size. In particular, it shows that supk�n ||zk−ẑk||
converges towards zero in probability, which is equivalent to almost sure converge of zn − ẑn towards zero. 
Claim (d) follows when remarking that (A.1) proves a.s. convergence of zn towards ẑ. �
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Lemma 14. As n tends to infinity, λ2,n converges in distribution to λ2.

Proof. Let β ∈ R be such that 0 < β < 1/2, say β = 1/4. Let ε ∈ (0, 1). We can write λ2,n = λA,n ∨ λB,n

with

λA,n := max
u∈Gn\{ẑn} s.t. ‖u−ẑn‖�Δβ

n

X ẑn(u) =: max
u∈Gn,A

X ẑn(u),

λB,n := max
u∈Gn s.t. ‖u−ẑn‖>Δβ

n

X ẑn(u) =: max
u∈Gn,B

X ẑn(u).

We first prove that λB,n → λ2 as n tends to infinity in distribution. By compactness, remark that there 
exists a constant Cr > 0 such that

1 − ρ(u) � Cr‖u‖2. (A.8)

It also holds that

X ẑn(u) = X(ẑn) + X(u) −X(ẑn)
1 − ρ(u− ẑn) , (A.9)

X ẑ(u) = X(ẑ) + X(u) −X(ẑ)
1 − ρ(u− ẑ) . (A.10)

Let us look to the rhs of (A.9) and (A.10). By Claim (d) of Lemma 13 and the continuous mapping theorem, 
note that X(ẑn) converges toward λ1 = X(ẑ) a.s. and we can omit these terms. It remains to prove that on 
Gn,B the second terms are equivalent. Because of Lemma 13, 1 − ρ(u − ẑn) converges to 1 − ρ(u − zn) at 
arbitrary speed. Remember that (A.1) gives ẑ− zn = OP (Δn) and it holds that ||u − ẑ|| > Δβ

n, on Gn,B . It 
follows that there exists C > 0 such that

1 − ρ(u− ẑn) � CΔ2β
n and 1 − ρ(u− ẑ) � CΔ2β

n , (A.11)

with probability greater than 1 −ε/2. As for the numerators, Eqs. (A.4) and (A.5) show that for all u ∈ Gn,B

∣∣∣X(u) −X(ẑn)
X(u) −X(ẑ) − 1

∣∣∣ = ∣∣∣X(ẑ) −X(ẑn)
X(u) −X(ẑ)

∣∣∣ = (cst) |X(ẑ) −X(ẑn)|
||u− ẑ||2 = OP (Δ2−2β

n )

In this sense, we say that X(u) − X(ẑn) is uniformly equivalent to X(u) − X(ẑ) on the grid Gn,B in 
probability. Using (A.11) and noticing that for any u ∈ T

|ρ(u− ẑ) − ρ(u− ẑn)| � ||ρ′||∞||ẑ − ẑn|| = OP (Δn) ,

the same result holds for the denominators, namely 1 − ρ(u − ẑn) is uniformly equivalent to 1 − ρ(u − ẑ) on 
the grid Gn,B in probability. We deduce that X ẑn(u) is uniformly equivalent to X ẑn(u) on the grid Gn,B in 
probability and, passing tho their maximum, one can deduce that λB,n converges to λ2 in probability.

We turn now to the study of the local part λA,n. Again, by Claim (c) of Lemma 13 we can replace ẑn
by zn in the numerator of the r.h.s in (A.9) and we forget the first term which limit is clearly λ1 almost 
surely. We perform a Taylor expansion at ẑ, it gives that

X(u) −X(ẑ) = (1/2)(u− ẑ)�X ′′(u− ẑ)(1 + oP (1)),

for any u ∈ Gn,A. Since zn − ẑ = OP (Δn), we also get that
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X(zn) −X(ẑ) = (1/2)(zn − ẑ)�X ′′(zn − ẑ) + oP (Δ2
n).

As for the denominator, invoke (A.1), (A.8) and Claim (c) of Lemma 13 to get that

1 − ρ(u− zn) � 2CrΔ2
n,

1 − ρ(u− ẑn) = 1 − ρ(u− zn) + oP (Δ2
n),

and 1 − ρ(u− ẑn) = (1/2)
(
(u− zn)�Λ̃(u− zn)

)
(1 + oP (1)),

where −Λ̃ denotes the Hessian at point 0 of ρ. Putting all together yields

X(u) −X(ẑn)
1 − ρ(u− ẑn) = (u− zn)�X ′′(u + zn − 2ẑ)

(u− zn)�Λ̃(u− zn)
(1 + oP (1)),

for any u ∈ Gn,A. Now we know that, in distribution, ẑ−zn = ΔnU and we know that u −zn = kΔn with k
belonging to a certain growing subset of Z2 which limit is Z2. Finally, conditionally to X ′′, we obtain that

max
u∈Gn,A\{ẑn}

X ẑn(u) −→ λ1 + sup
k∈Z2\{0}

k�

‖Λ̃ 1
2 k‖

X ′′ (k − 2U)
‖Λ̃ 1

2 k‖
,

in distribution. �
Eventually, consider the test statistic Sn := Φ(λ1,n)/Φ(λ2,n) and keep in mind that X

(
u + (0, π)

)
=

−X(u) and that if u belongs to Gn, 
(
u + (0, π)

)
also belongs. So Theorem 1 of [10] applies showing that, 

under the alternative, P{Sn � α} � α. It suffices to pass to the limit to get the desired result.

A.2. Proof of Theorem 2

We use the same grid argument as for the proof of Theorem 1.
Let t1, t2, . . . , tN be pairwise distinct points of [0, 2π), θ1 ∈ [0, 2π), m = 2N and set

z1 = (t1, θ1), . . . , zN = (tN , θ1), zN+1 = (t1, θ1 + π/2), . . . , zm = (tN , θ1 + π/2).

Because of the first assumption of (NDZ(N)), the distribution of (X(z1), . . . , X(zm)) is non degenerated. 
Consequently, following the proof of Proposition 6, we know that Xz1 satisfies KL(m − 1) and ND(m − 1). 
Denote g1, . . . , gm−1 the eigenfunctions of the Karhunen–Loève (KL) representation of X(0,0). Note that 
Xz1(·) has the same distribution as X(0,0)(. −z1) (stationarity) and that both are defined on the same space 
so the KL-eigenfunctions of Xz1 are g1(. − z1), . . . , gm−1(. − z1).

Now consider Az1 = (Az1
i,j)1≤i,j≤m−1 the matrix with entries Az1

i,j = gi(zj+1 − z1) which is invertible 
thanks to KL(m − 1) and ND(m − 1) and build so that

⎛⎜⎝ Xz1(z2)
...

Xz1(zm)

⎞⎟⎠ = Az1

⎛⎜⎝ ζ1
...

ζm−1

⎞⎟⎠ .

One possible explicit expression, among many others, of σ̂2
KL(X ẑn

norm(Gn)), the estimator of σ2 on the grid Gn, 
is
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σ̂2
n := σ̂2

KL(X ẑn
norm(Gn)) = 1

m− 1

∥∥∥∥∥∥∥
(
Aẑn

)−1

⎛⎜⎝ X(0,0)(z2 − ẑn)
...

X(0,0)(zm − ẑn)

⎞⎟⎠
∥∥∥∥∥∥∥

2

2

,

which is a composition of continuous functions of ẑn. In particular, as ẑn converges a.s. to ẑ (see Lemma 13, 
Claim (b)), we deduce that σ̂2

n converges a.s. to σ̂2
ẑ as n goes to infinity.

Finally, since the KL estimator is unique, this estimator coincide with the estimator σ̂2
2 of [10] and 

Theorem 3 of [10] implies that

Fm−1
(
λ1,n/σ̂n

)
Fm−1

(
λ2,n/σ̂n

) ∼ U([0, 1]).

Note that λn
1 converges almost surely to λ1 and λ2,n converges in distribution to λ2 (see Lemma 14) to 

complete the proof.

A.3. Proof of Proposition 9

(a). We can assume that Z defined by (18) is centered and, in this case, it holds

∀t ∈ [0, 2π) Z(t) = σ√
N

fc∑
k=−fc

ζk exp(ıkt), (A.12)

where we recall that N = 2fc +1 and ζk = ζk,1+ıζk,2 for k = −fc, . . . , fc are independent standard complex 
Gaussian variables. Formula (A.12) shows that Z satisfies (KLZ(N)).

(b). Let (t1, . . . , tN ) ∈ [0, 2π) be pairwise differents, θ ∈ [0, 2π) and set

⎛⎜⎝ Z(t1)
...

Z(tN )

⎞⎟⎠ =

⎛⎜⎝ exp(−ıfct1) . . . exp(ıfct1)
...

...
exp(−ıfctN ) . . . exp(ıfctN )

⎞⎟⎠
⎛⎜⎝ ζ1

...
ζN

⎞⎟⎠ =: At1,...,tN ζ,

where At1,...,tN is a Vandermonde matrix, invertible as soon as ti �= tj for all i �= j. This proves the first 
point of NDZ(N). For the second assertion, consider h > 0 such that h < min1≤i<j≤N−1(ti − tj) and the 
Gaussian vector

(Z(t1), . . . , Z(tN−1), Z(t1 + h))T =: At1,...,tN−1,t1+hζ,

where the covariance matrix At1,...,tN−1,t1+h satisfies

det(A∗
t1,...,t1+hAt1,...,t1+h) =

∏
1≤i<j≤N−1

| exp(ıti) − exp(ıtj)|2
N−1∏
j=1

| exp(ı(t1 + h)) − exp(ıtj)|2

= 4N(N−1)/2
∏

1≤i<j≤N−1
sin2

(
ti − tj

2

)N−1∏
j=1

sin2
(
tj − (t1 + h)

2

)
= sin2(h/2) × gt1,...,tN−1(h)

where gt1,...,tN−1(0) �= 0 if (ti)1≤i≤N−1 are pairwise distincts. Finally, denote by Rh the linear transformation 
involving the first and the last coordinate such that



J.-M. Azaïs et al. / Appl. Comput. Harmon. Anal. 48 (2020) 445–481 479
⎛⎜⎜⎜⎜⎝
Z(t1)

...
Z(tN−1)

Z(t1+h)−Z(t1)
h

⎞⎟⎟⎟⎟⎠ = Rh

⎛⎜⎜⎜⎜⎝
Z(t1)

...
Z(tN−1)
Z(t1 + h)

⎞⎟⎟⎟⎟⎠
and remark that

lim
h→0

det(A∗
t1,...,t1+hR

∗
hRhAt1,...,t1+h) = gt1,...,tN−1(0) × lim

h→0

sin2(h/2)
h2 = gt1,...,tN−1(0) × 1

4 �= 0

giving the desired non degeneracy condition.

A.4. Proof of Proposition 10 and Proposition 11

Easy computations give the following results for φ(·),

+∞∫
�

φ(t)dt = Φ(�),
+∞∫
�

tφ(t)dt = φ(�),
+∞∫
�

t2φ(t)dt = �φ(�) + Φ(�),

for fm−1(·),

+∞∫
�

fm−1

(
t

√
m− 1
m− 3

)
dt =

√
m− 3
m− 1 Fm−1

(
�

√
m− 1
m− 3

)
,

+∞∫
�

tfm−1

(
t

√
m− 1
m− 3

)
dt = (m− 3)

√
m− 3

(m− 2)
√
m− 1

Γ
(
m
2
)
Γ
(
m−3

2
)

Γ
(
m−1

2
)
Γ
(
m−2

2
) fm−3(�),

+∞∫
�

t2fm−1

(
t

√
m− 1
m− 3

)
dt = (m− 3)

√
m− 3

(m− 2)
√
m− 1

Γ
(
m
2
)
Γ
(
m−3

2
)

Γ
(
m−1

2
)
Γ
(
m−2

2
) × (�fm−3(�) + Fm−3(�)

)
,

and for R,

X ′′(ẑ) = −Λ̃X(ẑ) + R(ẑ),

= −
(
α1 0
0 1

)
X(ẑ) +

(
−α2 α3
α3 0

)
,

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α1 = 1
3fc(fc + 1),

α2 = 1√
N

fc∑
k=−fc

(k2 − α1) × Re(ykeı(kt̂−θ̂)),

α3 = 1√
N

fc∑
k=−fc

k × Re(ykeı(kt̂−θ̂)).

To conclude, use Proposition 9 to apply Theorem 4 and Theorem 8.
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Appendix B. Auxiliary results

B.1. Regularity of X |z and new expression of R(z)

Lemma 15. X |z(y) admits radials limits as y → z. More precisely for all λ in the unit sphere

lim
u→0

X |z(z + uλ) = λ�R(z)λ
λ�Λ̃λ

.

Proof. As u tends to zero

1 − ρ(uλ) = u2

2 (λ�Λ̃λ + o(1)).

Moreover, a Taylor expansion gives

X(z + uλ) = X(z) + uX ′
λ(z) + u2

2 X ′′
λ(z) + op(u2),

and

ρ′λ(uλ) = uρ′′λ(0) + op(u2) = −uΛ̃ + op(u2),

where (X ′
λ, ρ

′
λ) and (X ′′

λ , ρ
′′
λ) are directional derivative and directional Hessian. By consequence,

X |z(z + uλ) =
u2

2 X(z)λ�Λ̃λ + 〈ρ′(uλ), Λ̃−1X ′(z)〉 + uX ′
λ(z) + u2

2 X ′′
λ(z) + op(u2)

u2

2 (λ�Λ̃λ + o(1))

=
u2

2

(
X(z)λ�Λ̃λ + X ′′

λ(z) + op(1)
)

u2

2 (λ�Λ̃λ + o(1))

which tends to

λ�
(
Λ̃X(z) + X ′′(z)

)
λ

λ�Λ̃λ

as u tends to 0 since X ′′
λ(z) = λ�X ′′(z)λ. The result follows from X ′′(z) = −Λ̃X(z) + R(z). �

B.2. Maximum of a continuous process

The following result is borrowed from [20, Theorem 3] and [21].

Proposition 16. Let {Y (t) ; t ∈ T} be a Gaussian process with continuous sample paths defined on a compact 
metric space T . Suppose in addition that:

There is no two different points s, t ∈ T such that X(s) = X(t) a.s. (B.1)

Then almost surely the maximum of X on T is attained at a single point.

Observe that (Anorm) implies (B.1).
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Remark 8. Proposition 16 can be applied to the process X |ẑ which is not continuous on a compact set. We 
use the “pumping method” as follows. Use

(a) a parameterization of T as [0, 2π)2,
(b) polar coordinates for y ∈ T \ {ẑ} with origin at ẑ,
(c) the change of parameter

y = (ρ, θ) �→ ((ρ + 1), θ)

that transforms the non-compact set T \ {ẑ} into a compact set (we have inflated the “hole” {ẑ} into a 
ball centered around ẑ with radius one) on which the process X |ẑ is continuous thanks to Lemma 15.
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