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Abstract. In this article, we present optimization techniques using “Moment-Sum-of-Squares hier-
archies”. These techniques have recently been deployed in a successful manner in several Learning
problems. They are based on the decomposition into Sum-of-Squares of nonnegative polynomials and
they encode the moments of nonnegative measure on compact basic semi-algebraic sets.

1. A First Approach on Moment-SoS Hierarchies

1.1. Global Optimization. One important task in AppliedMathematics is to assess procedures that
can find a global minimizer x? of a function f over a space X . This can be simply written into the
form of the optimization program

min
x∈X

f(x)

A standard approach, dating back to Cauchy [11], is to use a local search of the minima thanks
to a gradient descent. This approach converges to critical points of the objective function and one
needs additional efforts to hopefully compute a global minimum.

An other approach, dating back to Hilbert [20], may rather focus on a suitable decomposition of
the objective function as a “sum-of-squares” (SoS), namely

(1) f = λ? +

K∑
k=1

gk h
2
k︸ ︷︷ ︸

p?

,

where λ? ∈ R is a constant, gk some non-negative functions and hk some functions. Furthermore,
if one can provide x? ∈ X such that

(2) p?(x?) :=

K∑
k=1

gk(x?)h2
k(x?) = 0 ,

then x? is a global minimum of f and the minimal value of f over X is λ?. We understand that
this discussion exhibits two important tasks: finding decompositions of the objective function as
in (1) and finding roots x? as in (2). These two tasks are closely related as we will see in the next
subsection.

1.2. A Problem of Moments. Assume that X is a compact subset of Rd and assume that f is a
multivariate polynomial, namely it holds that

f(x) =
∑

α : |α|≤r

fax
α ,

for fα ∈ R and denoting xα := xα1
1 . . . xαdd the monomials and

|α| =
d∑
k=1

αk ,

the degree of a monomial which allows to define the degree of a polynomial. Now, one can write

(3) min
x∈X

f(x) = min{
µ∈M(X ) :µ(X )=1

}∫
X
fdµ = min{

(mα)∈Mr(X ) :m0=1
}∑

α

fαmα ,
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where
◦ M(X ) is the set of nonnegative measure over X ;
◦ M r(X ) is the set of (mα)|α|≤r of moments of nonnegative measure over X , see Section 2
for further details;

◦ the condition µ(X ) = 1 (namely m0 = 1) ensures that the first moment is one, i.e., µ is a
probability measure over X .

Now, let us have a look of the aforementioned equality. On the left hand side we have a “hard”
objective function f that has to be optimized over a “simple” space X , while on the right hand side
we have a “simple” linear objective function, namely

(mα)α 7→
∑
α

fαmα ,

that has to be optimized over a “hard” space M r(X ). This “trick” has been successfully used in
Optimal Transport theory by Kantorovich [22]. In our case, it reduces the problem of global opti-
mization of multivariate polynomials to finding the most correlated sequence of moments to the
coefficients of the objective polynomial.

1.3. Lagrangian Duality. The global optimization problem (3) is in fact a linear program over the
cone of truncated moments M r(X ). From this point, one can consider the following Lagrangian
expression

L((mα), (cα), λ) :=
∑
α

fαmα −
∑
α

cαmα + λ(1−m0)− ıCr(X )((cα))

where the dual variables are (cα)|α|≤r with cα ∈ R and λ ∈ R. We denote by
◦ Cr(X ) the set of coefficients (cα)|α|≤r of nonnegative polynomials of degree atmost r overX ;
◦ ıC(X )((cα)) the indicator function of this set, namely it is 0 if (cα)|α|≤r belongs to Cr(X )
and∞ otherwise.

Remark that

∀(mα)|α|≤r ∈M r(X ) , ∀(cα)|α|≤r ∈ Cr(X ) ,
∑
α

cαmα =

∫
X

(∑
α

xα)dµ ,

where (mα)|α|≤r is represented by µ. Then, it is standard to deduce that the “dual cone” (see [5,
Page 96] for instance) of Cr(X ) is exactlyM r(X ) and vice versa, namely
◦ If

∑
α

cαmα ≥ 0 for all (mα)|α|≤r ∈M r(X ) then (cα)|α|≤r ∈ Cr(X );

◦ If
∑
α

cαmα ≥ 0 for all (cα)|α|≤r ∈ Cr(X ) then (mα)|α|≤r ∈M r(X ).

We deduce that the primal expression is given by

(4) inf
(mα)

sup
(cα),λ

L((mα), (cα), λ) = inf
(mα)

{∑
α

fαmα : m0 = 1 and (mα)|α|≤r ∈M r(X )
}

;

and the dual expression is
sup

(cα),λ

inf
(mα)

L((mα), (cα), λ) = sup
λ∈R

{
λ : (fα − λ1α=0)|α|≤r ∈ Cr(X )

}
,(5)

= max{
λ : f(x)≥λ , ∀x∈X

}λ .
The optimal value λ? of λ is the minimum of f over X and there is no duality gap in view of (3).
The complementary conditions between the primal optimal solutions (m?

α) and the dual optimal
solutions (c?α), λ? give that

f = λ? + p? ,(6) ∑
α

(fα − λ?1{α=0})m
?
α =

∫
X

(f − λ?)dµ? =

∫
X
p?dµ? = 0 ,(7)
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where µ? reprensents the moments (m?
α)|α|≤r and p?(x) =

∑
|α|≤r c

?
αx

α is a nonnegative polyno-
mial over X .

Now, one can look at a discrete probability measure µ? representing (m?
α)|α|≤r . Indeed, the set

of moments (mα)|α|≤r of probability measures over X , namely

M0
r(X ) := M r(X ) ∩

{
(mα)|α|≤r : m0 = 1

}
⊂ Rr(d) ,

is a compact convex set, where r(d) =
(
r+d
r

)
. By Caratheodory’s theorem, (m?

α)|α|≤r is a convex
combination of r(d) extreme points of M0

r(X ). One can remark that M0
r(X ) is the convex hull of

the moment curve
{

(xα)|α|≤r : x ∈ X
}
, namely

M0
r(X ) = conv hull

({
(xα)|α|≤r : x ∈ X

})
,

and hence the extreme points of M0
r(X ) are included in the moment curve, which is exactly the

moments of the Dirac masse δx at point x ∈ X . We understand that there exists a discrete mea-
sure µ? representing the moments (m?

α)|α|≤r , so that

(8) µ? :=

K∑
k=1

akδx?k ,

where 1 ≤ k ≤ r(d), x?k ∈ X distincts and ak ≥ 0 so that
∑K
k=1 ak = 1. Note that (7) shows that

the support {x?k : k ∈ [K]} of µ? is included in the set of roots x? of p?.
Remark 1. As a conclusion, one can remark that solving the Lagrangian formulation of the problem of
global optimization leads to optimal solutions giving a decomposition (6) of the same flavor of Hilbert
decomposition (1) and solution points x? (as introduced in (2)) given by (7) and a well chosen solution µ?
as in (8).
1.4. Outline: Moment-SoSHierarchies and their applications. The issue in practice is to represent
the cone M r(X ). In Section 2, we will show that M r(X ) is characterized by countably many
inequalities that can be represented using countably many (indexed by δ ≥ 0) semidefinite matrices
of growing sizes r+δ. These constraints can be written as Semi-Definite Programs (SDP) which can
be solved approximately using an interior point method, see for instance [1] on this latter aspect.

The strategy is to certify a finite number δ = 0, . . . ,∆ − 1 of these constraints and to forget
the other constraints for δ ≥ ∆. This leads to an outer approximation of M r(X ) which is SDP
representable, see for instance Section 2.3 et Section 2.5. Given an arbitrarily small positive real ε,
we call “ε-approximate solution” any pointm∆ ofRr that is admissible for these ∆ constraints and
such that the objective function at this point, namely

∑
α fαm

∆
α , is ε close to the objective function

at the true solution point, namely
∑
α fαm

?
α.

Remark 2. We call a polynomial time algorithm for this kind of problems an algorithm such that, given
the bit length description of the input, say L,
◦ the number a certified constraints ∆ satisfies ∆ = O(logL);
◦ the SDPmatrices involved in describing the constraints at pointm∆ have Frobenius norm bounded
byO(exp(poly(L));

◦ an ε-approximate solution up to ε = Ω(exp(−poly(L)) is sufficient for the purpose of interest;
as presented for instance in [1, Section 3.3].

As we will detail in Section 2, on a “compact basic semi-algebraic set” (see (9) for a definition) the
Putinar’s Positivstellensatz [29] shows that positive polynomials are Sum-of-Squares (SoS) polyno-
mials, see Section 2.2. Then we will see that SoS polynomials can be parametrized by semidefinite
matrices, see Section 2.4. Using this characterization, one can show that sequences of moments
can be equivalently described using “Hierarchies” of semidefinite matrices referred to as “Moment-
SoS Hierarchies”. These hierarchies corresponds to SDP programs leading to a construction of an
approximate solution pointm∆. Polynomial time solvability (in the sense defined above) of various
combinatorial problems using Moment-SoS Hierarchies has been studied for at least 3 decades,
see for instance [4] and references therein.

Besides, these Moment-SoS hierarchies have been used in Statistical Learning recently and we
will present these developments in Section 3.
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1.5. Related works. Over the last 20 years, Moment-SoS hierarchies have been popularized since
they also give a measure of the complexity of some optimization programs, if not the limit of poly-
nomial time algorithms. In particular, a famous conjecture (the ”Unique Game Conjecture” [4])
implies that no polynomial algorithm can improve the bound given by the SoS hierarchies.

Wewould like to point out that the developments inMoment-SoS hierarchies as been presented
in [25] with the first proof of convergence of the hierarchiy and it has been used in optimal con-
trol in [27]. Problems in optimal control for linear systems, formulated as a primal LP (as in (3))
on measures and with dual LP on continuous functions (as in (5)), can be solved numerically with
primal-dual moment-SoS SDP hierarchies as shown in [12, 13]. Formulating optimal control prob-
lems as moment problems was a classical research topic in the 1960s, where optimal control laws
were sought in measures spaces (completions of Lebesgue spaces) to allow for oscillations and con-
centrations, see e.g. [24] or the overview in [19, Section III]. In the case of linear optimal control of
an ordinary differential equation of order n, it was proved in [28] that there is always an n-atomic
optimal measure solving problem primal LP (as in (3)). The idea of using SoS relaxation in optimiza-
tion can be traced back to the 80’s (see [25] and [9] for historical account). Furthermore, the use
of Linear Matrix Inequalities in control has been studied in [8] for instance.

Recently, these hierarchies have been deployed in problems such as tensor decomposition [3],
dictionary learning [3], robustness ofmatrix completion [14], tensor PCA [6], among others. In addi-
tion, the SoS hierarchies have been introduced by [17] to solve the problemof “Super-Resolution” [10]
in all dimensions, which can be lead by minimizing the L1-norm (total variation norm of a signed
measure) on the space of signed measures. The Super-Resolution framework can be understood
as recovering a spiked signal from few linear measurements and the SoS hierarchies allow to com-
pute an estimate of these spikes in a grid-less manner (referred to as “Off-The-Grid”). Companion
problems are “Line Spectral Estimation” [30] or “Off-The-Grid Compressed Sensing” [31]. Indepen-
dently, SoS hierarchies have been used to solve the problem of optimal design of experiments in
Statistics by [16].

2. Representing Multivariate Moments

2.1. The “full ” moment cone, its dual and its projections. Given a positive measure µ ∈M(X ) and
α ∈ Nn, we may call the sequence m = (mα)α∈Nd the “full ” moment sequence of µ. Conversely,
we say that m = (mα)α∈Nd has a representing measure, if there exists a measure µ ∈ M(X ) such
thatm is its moment sequence. The “full ” moment cone is given by

M(X ) :=
{
m = (mα)α∈Nd s.t. ∀α ∈ Nd, mα =

∫
X
xα dµ, µ ≥ 0

}
.

One can characterize full sequences of algebraic moments thanks to the Riesz-Haviland extension
theorem, see [26, Theorem 3.1] for example. This representation theorem shows that the dual
cone of M(X ) is exactly the cone C(X ) of (sequence of coefficients of) nonnegative polynomials
over X .

In the sequel we will not distinguish between a polynomial and its sequence of coefficients.
Note that we assimilate polynomials p of degree at most r with a vector of dimension r(d) =

(
r+d
r

)
,

which contains the coefficients of p in the chosen basis.

2.2. Putinar’s Positivstellensatz. Recall that r(d) =
(
r+d
r

)
. The moment matrix of a truncated se-

quence m2r = (mα)|α|≤2r is the r(d) × r(d)-matrix Mr(m) with rows and columns respectively
indexed by integer d-tuples α, β ∈ Nd, |α|, |β| ≤ r and whose entries are given by

Mr(m)(α, β) = mα+β .

It is symmetric and linear in m. Further, if m has a representing measure, then Mr(m) is positive
semidefinite (writtenMr(y) < 0). Similarly, we define the localizing matrix of a polynomial

g =
∑
|α|≤n

gαx
α ∈ R[x]n ,
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of degree n and a sequence m2r+n = (mα)|α|≤2r+n as the r(d) × r(d) matrixMr(gm) with rows
and columns respectively indexed by α, β ∈ Nd, |α|, |β| ≤ r and whose entries are given by

Mr(gm)(α, β) =
∑
γ∈Nd

gγmγ+α+β .

We deduce the following proposition.

Proposition 1. If m has a representing measure whose support is contained in {x ∈ Rn : g(x) > 0},
thenMr(m) < 0 andMr(gm) < 0 for g ∈ R[x]n.

We would like to obtain the converse of Proposition 1, this would lead to a characterization of
the set of sequences of moments of nonnegative measures. Consider m polynomials g1, . . . , gm
and assume that

(9) X :=
{
x ∈ Rd s.t. ∀i ∈ [m], gi(x) ≥ 0

}
has an “algebraic certificate of compactness ” meaning that there exists finite sets J0, J1, . . . , Jm and
polynomials (h

(0)
j )j∈J0 , (h

(1)
j )j∈J1 , . . . , (h

(m)
j )j∈Jm so that{

x ∈ Rd s.t.
∑
j∈J0

(h
(0)
j )2(x) +

m∑
i=1

[ ∑
j∈Ji

(h
(i)
j )2(x)

]
gi(x) ≥ 0

}
is compact.

When X is compact, such algebraic certificate of compactness can be enforced adding the poly-
nomial gm+1(x) = R − ‖x‖22 to the gi’s, with R > 0 sufficiently large. The set defined by (9) is
referred to as a compact basic semi-algebraic set. Using Putinar’s theorem [29], one may prove the
following important result, see for instance the book [26, Theorem 3.8].

◦ First Important Representation: The sequence m = (mα)α∈Nd has a representing measure
µ ∈ M(X ) if and only if for all r ∈ N the matrices Mr(m) and Mr(gjm) for j = 1, . . . ,m, are
positive semidefinite.

2.3. SDPApproximations of theMoment Cone. Letting vj := ddj/2e, for j = 1, . . . ,m, denote half
the degree of the gj , by Putinar’s theorem [29], we can approximate the moment coneM2r(X ) by
the following semidefinite representable cones for δ ∈ N:

MSDP
2(r+δ)(X ) :=

{
mr,δ ∈ R(d+2r

d ) : ∃mδ ∈ R(d+2(r+δ)
d ) such that

mr,δ = (mδ,α)|α|≤2r and

Mr+δ(mδ) < 0, Mr+δ−vj (gjmδ) < 0, j = 1, . . . ,m
}
.

By semidefinite representablewemean that the cones are projections of linear sections of semidef-
inite cones. Since M2d(X ) is contained in every (MSDP

2(d+δ)(X ))δ∈N, they are outer approximations
of the moment cone. Moreover, they form a nested sequence, so we can build the hierarchy

(10) M2r(X ) ⊆ · · · ⊆MSDP
2(r+2)(X ) ⊆MSDP

2(r+1)(X ) ⊆MSDP
2r (X ).

This hierarchy actually converges, meaning

M2r(X ) =

∞⋂
δ=0

MSDP
2(r+δ)(X ) ,

see for instance the book [26, Theorem 3.8].

2.4. SOS Approximations of Nonnegative Polynomials. Further, let Σ[x]r ⊆ R[x]2r be the set of
all polynomials that are sums of squares of polynomials (SOS) of degree at most 2r, i.e.,

Σ[x]r =
{
σ ∈ R[x]2r : σ(x) =

k∑
i=1

hi(x)2 for some hi ∈ R[x]r and some k ≥ 1
}
.
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The topological dual of MSDP
2(d+δ)(X ) is the cone of coefficients of the polynomials of a quadratic

module, which we denote by CSOS
2(d+δ)(X ). It is given by

CSOS
2(r+δ)(X ) :=

{
h = σ0 +

m∑
j=1

gjσj :σ0 ∈ Σ[x]r+δ, σj ∈ Σ[x]r+δ−νj , j = 1, . . . ,m ,

and deg(h) ≤ 2r
}
.

It is the set of polynomials of degree at most 2r which are Sum-of-Squares. Write
vn(x) :=( 1︸︷︷︸

degree 0

, x1, . . . , xd︸ ︷︷ ︸
degree 1

, x2
1, x1x2, . . . , x1xd, x

2
2, . . . , x

2
d︸ ︷︷ ︸

degree 2

, . . . , . . . , xd1, . . . , x
n
d︸ ︷︷ ︸

degree n

)>

for the column vector of the monomials ordered according to their degree, and where monomials
of the same degree are ordered with respect to the lexicographic ordering. It holds that, see for
instance [26, Proposition 2.1],
◦ Second Important Representation: One has h ∈ CSOS

2(d+δ)(X ) if and only if h has degree less than
2d and there exist real symmetric and positive semidefinite matrices Q0 and Qj , j = 1, . . . ,m of
size

(
d+r+δ
d

)
×
(
d+r+δ
d

)
and

(
d+r+δ−νj

d

)
×
(
d+r+δ−νj

d

)
respectively, such that for any x ∈ Rd

h(x) = σ0(x) +

m∑
j=1

gj(x)σj(x)

= vr+δ(x)>Q0vr+δ(x) +

m∑
j=1

gj(x)vr+δ−νj (x)>Qjvr+δ−νj (x) .

The elements of CSOS
2(r+δ)(X ) are polynomials of degree at most 2d which are non-negative on X .

Hence, it is a subset of C2r(X ), the set of nonnegative polynomials of degree at most 2r, and it
holds that
(11) C2r(X ) ⊇ · · · ⊇ CSOS

2(r+2)(X ) ⊇ CSOS
2(r+1)(X ) ⊇ CSOS

2r (X ).

Remark 3. Note that (10) represents the Lasserre’s hierarchy which a nested sequence of outer SDP
approximations of the moment cone while its dual, namely (11), represents the SoS hierarchy which a
nested sequence of inner SOS representations of the nonnegative polynomials.

2.5. SDP Relaxations. Using (10), one can substitute the cone of truncated moment M2r(X ) by
an outer SDP approximationMSDP

2(r+δ)(X ). For instance, the primal program (4) can be approximate
by the SDP program

inf
(mα)

{∑
α

fαmα : m0 = 1 and (mα)|α|≤2r ∈MSDP
2(r+δ)(X )

}
;

its dual is also a SDP program given by

λ?δ := sup
λ∈R

{
λ : (

∑
α

fαx
α − λ) ∈ CSOS

2(r+δ)(X )
}

;

which is the SDP relaxation of (5). This latter can be understood as follows. The optimal value λ?δ ,
given by the aforementioned dual, is the larget value λ such that (

∑
α fαx

α − λ) ∈ CSOS
2(r+δ)(X ).

Actually, it is straightforward that{
λ ∈ R : (

∑
α

fαx
α − λ) ∈ CSOS

2(r+δ)(X )
}

= (−∞, λ?δ ]

and that λ?0 ≤ λ?1 ≤ λ?2 ≤ . . . ≤ limδ λ
?
δ = λ?, see for instance [26, Theorem 5.6(a)].

Remark 4. It can be important to notice that if
(12) (

∑
α

fαx
α − λ?) ∈ CSOS

2(r+δ?)(X ) for some δ? ,
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then the relaxation of order δ? is exact, it holds that λ?δ? = λ? and there exists a measure µ? representing
the primal solution (m?

α)|α|≤2r ∈MSDP
2(r+δ?)(X ). In particular, one has (m?

α)|α|≤2r ∈M2r(X ).
If one can show by an ad hoc argument that (12) holds true then

min{
(mα)∈Mr(X ) :m0=1

}∑
α

fαmα = min{
(mα)∈MSDP

2(r+δ)
(X ) :m0=1

}∑
α

fαmα

and the SDP relaxation (r.h.s.)returns the exact solution (m?
α)|α|≤r of the moment problem (l.h.s.). The

objective value at the solution point is λ?.

3. Some examples from Statistical Learning

Recently,Moment-SoS Hierarchies have been deployed in Statistical Learning and we will briefly
present some examples here.

3.1. Spiked Tensor PCA. A central question in Statistical Learning seeks to identify the statistical
limit of a problem, that is to describe the limit of the signal-to-noise ratio for which the maximum
likelihood estimator converges to the parameter to be estimated. Once this limit is established, a
fundamental question is whether a polynomial time algorithm reaches this bound, namely if there
exists a polynomial time algorithm finding the maximum of the likelihood (or equivalently the min-
imum x? of f , the opposite of the likelihood).

We will present an example here in which the Moment-SoS Hierarchies gives the computational
limit. In a series of papers including [6], the authors are interested in detecting a rank one tensor u⊗d
from a noisy observation Y ∈ Rnd

Y = λu⊗d + Z

where λ > 0 is a “signal-to-noise” ratio, u ∈ Rn such that ||u||2 = 1 and Zi1,...,id ∼iid N (0, 1/n)
for i1 ≤ . . . ≤ id and Z then complemented by symmetry. The maximum likelihood consists of
calculating the rank one tensor x⊗d most correlated with Y , which is the maximum on x ∈ Rn such
that ||x||2 = 1 of likelihood (objective function, polynomial in x)

〈Y, x⊗d〉 = λ〈u, x〉d +
∑

i1,...,id

Zi1,...,idxi1 . . . xid .

The d-homogeneous polynomial (indexed by the sphere)
∑
i1,...,id

Zi1,...,idxi1 . . . xid is centered
(zero mean) and its maximum is O(1) with high probability. We deduce the statistical bound
λ = O(1) for which we can estimate u consistently.

To calculate the maximum of the likelihood x 7→ 〈Y, x⊗d〉 one has to calculate the maximum
of a polynomial on the sphere. Lasserre hierarchies are designed to solve this problem. One can
show [21] that the 4th order relaxation of these hierarchies allows to compute a consistent es-
timator of u when λ = O(n

d−2
4 ), it is the computational limit (we do not know if it is optimal).

This upper bound can also be reached using a spectral estimator. We see that in order to find the
computational limit we use the Lasserre hierarchies.

An interesting question then is whether this gap is optimal. In particular, it is relevant to find
a heuristic that would tend to prove why a polynomial time algorithm can not exist below the
limit λ = O(n

d−2
4 ). The idea is then to look at the critical points for which the value of the objective

function is close to its maximum. This analysis is the theory of ”Landscapes” studied in particular by
Gerard Ben Arous and Andrea Montanari [6]. For the problem of spiked tensor PCA it is possible
to show that below the computational limit the likelihood has an exponentially large number of
critical points close to the maximum and that these critical points have a Hessian of which almost
all the eigenvalues are negative.

3.2. Sparse Deconvolution. Another interesting avenue for Lasserre hierarchies is their recent de-
velopments in `1 minimization on the space of measures, referred to as “Off-The-Grid” methods
[31, 2, 15]. Let us introduce some notation to present the framework. Consider the Banach space
E := (C(X ,R), ‖ · ‖∞) of real-valued continuous functions over X endowed with the supremum
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norm. Recall that its topological dual space E? := (M(X ), ‖ · ‖1) is the Banach space of real Borel
measures endowed with the total variation norm ‖ · ‖1 that can be defined as

∀µ ∈ E? , ‖µ‖1 := sup
‖f‖∞≤1

∫
X
f dµ .

Consider Φ(x) = (ϕ1(x), . . . , ϕn(x)) ∈ R[x]n a multivariate polynomial function and b ∈ Rn. As-
sume that ∫

X
Φ dµ0 = b0 ,

and one would like to infer µ0 from the observation of b. Note that there exists a matrix A with
n rows and an integer r such that Φ(x) = A(xα)|α|≤r . Obviously, there exists an infinite number
of solutions to the aforementioned equation but one would like to recover one solution that is
“sparse” meaning that it is atomic with few atoms here. Indeed, assume that the target measure
satisfies

µ0 =

K∑
k=1

a0
kδx0

k

then a powerful strategy is to consider the following primal program
(PBME) µ̂ ∈ arg min

{µ∈E? :
∫
X Φ dµ=b0}

||µ||1 .

In this setting, one would like to recover a signed measure µ from a finite number of linear mea-
surements. This extremal moment problem has been intensively studied in various fields of Math-
ematics at the beginning of the 20th century: Arne Beurling [7] initiated the theory of extension
functions in Harmonic Analysis when studying the minimal total variation norm function among all
bounded variation functions with prescribed Fourier transform on a given domain. The aforemen-
tioned estimator µ̂ solution to (PBME) was recently studied in [15] (referred to as “Beurling Minimal
Extrapolation”, BME for short) and [10] for instance.

Our ability to solve (PBME) is intimately related to our capability to represent nonnegative mea-
sures. Indeed, observe that

PBME = arg min
{µ+,µ−≥0 :

∫
X Φ d(µ+−µ−)=b0}

∫
X

dµ+ +

∫
X

dµ− ,

using Borel-Jordan decomposition into positive and negative partsµ = µ+−µ−. Denoting (m±α )|α|≤r
the first moments of µ± ≥ 0, it holds that

PBME = arg min
{(m±α )|α|≤r :A((m+

α )|α|≤r−(m+
α )|α|≤r)=b0}

m+
0 +m−0 ,

for which Moment-SoS hierarchies can be deployed. For further details, please refer to the pa-
per [17]. In particular, we understand that PBME can be SDP relaxed using a Lasserre’s hierarchy.

3.3. TheOptimal Design Problem. The optimum experimental designs are computational and the-
oretical objects that minimize the variance of the best linear unbiased estimators in regression
problems. In this frame, the experimenter models response yi of a random experiment whose in-
put parameters are represented by a vector xi ∈ Rd with respect to known regression functions
Φ := (ϕ1, . . . , ϕp), namely for all i ∈ [N ], one has yi =

∑p
j=1 θjϕj(xi) + εi where θ ∈ Rp are

unknown parameters that the experimenter wants to estimate, εi is some noise and xi is chosen
by the experimenter in a design space X ⊂ Rd. Assume that the distinct points among x1, . . . , xN
are the points x1, . . . , xs, for some s ∈ [N ], and let Ni denote the number of times the particular
point xi occurs among x1, . . . , xN , for all i ∈ [s]. This would be summarized by

(13) ζ :=

(
x1 · · · xs
N1

N · · · Ns
N

)
,

whose first row gives the points in the design space X where the inputs parameters have to be
taken and the second row tells the experimenter which proportion of experiments (“frequencies”)
have to be done at these points. The goal of the design of experiment theory is then to assess
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which inputs parameters xi and frequencies wi := Ni/N the experimenter has to consider. For
a given ζ , the standard analysis of the Gaussian linear model shows that the minimal covariance
matrix (with respect to Loewner ordering) of unbiased estimators can be expressed in terms of the
Moore-Penrose pseudoinverse of the information matrix which is defined by

(14) I(ζ) :=

s∑
i=1

wiΦ(xi)Φ
>(xi) .

As a matter of fact, one major aspect of design of experiment theory seeks to maximize the infor-
mation matrix over the set of all possible ζ . Notice the Loewner ordering< is partially ordered and,
in general, there is no greatest element among all possible matrices I(ζ). The standard approach
is to consider some statistical criteria, namely the Kiefer’s φp-criteria [23], in order to describe and
construct the “optimum designs” with respect to those criteria. Observe that the information ma-
trix I(ζ) belongs to S+

p , the space of symmetric nonnegative definite matrices of size p, and define,
for all q ∈ [−∞, 1], a criterion φq where for positive definite matricesM it holds

φq(M) :=


( 1
p trace(Mq))1/q if q 6= −∞, 0

det(M)1/p if q = 0
λmin(M) if q = −∞

and for nonnegative definite matrices M it reads φq(M) := ( 1
p trace(Mq))1/q if q ∈ (0, 1], and

zero otherwise. Those criteria are meant to be real valued, positively homogeneous, non constant,
upper semi-continuous, isotonic (with respect to the Loewner ordering <) and concave functions.
In particular, we search for solutions to the following optimization problems
(15) ζ? ∈ arg max

ζ as in (13)
φq(I(ζ)) ,

where the maximum is taken over all design matrices ζ of the form (13) and q ∈ [−∞, 1].
Observe that the set of admissible designs described by (13) is any combination of s pairwise

distinct support points xi in the design space X and number of replications Ni at xi such that∑
iNi = N . It appears that the set of admissible frequencies wi = Ni/N is discrete and contained

in the set of rational numbers of the form a/N where a is an integer. Hence, notice that (15) is
a discrete optimization problem with respect to frequencies wi. To the best our of knowledge,
this combinatorial problem is extremely difficult both analytically and computationally. A popular
solution is then to consider “approximate” designs defined by

(16) ζ :=

(
x1 · · · xs
w1 · · · ws

)
,

where wi are varying continuously from 0 to 1 and
∑s
i=1 wi = 1. Accordingly, any solution to (15)

where the maximum is taken over all matrices of type (16) is called “approximate optimal design”.
Moreover, we assume that Φ ⊂ Rn[x]p where ϕ`(t) :=

∑
k∈{0,...,n}d a`,kt

k. Notice that these as-
sumptions cover a large class of problems in optimal design theory, see for instance [18, Chapter 5].
Define, for all µ ≥ 0, the information matrix (with an abuse of notation)

I(µ) =
(∫
X
ϕiϕjdµ

)
1≤i,j≤p

=
( ∑
k,t∈{0,...,d}n

ai,kaj,tmk+t(µ)
)

1≤i,j≤p
.

Note that I(µ) =
∑
|α|≤2dmα(µ)Aα where for all α ∈ {0, . . . , 2d}d,

Aα :=
( ∑
k+`=α

ai,kaj,`

)
i,j
.

Further, set µ =
∑`
i=1 wiδxi and observe that I(µ) =

∑`
i=1 wiΦ(xi)Φ

>(xi) as in (14). Recall that
the φq-criteria for q ∈ [−∞, 1] are isotonic with respect to the Loewner ordering < and then, for
all X ∈ S+

p and for all µ ∈ E?,

(17)
{ ∑
α∈{0,...,2d}d

mα(µ)Aα −X < 0
}
⇒
{
φq(I(µ)) ≥ φq(X)

}
9



We deduce the following Linear Matrix Inequality (LMI) equivalent formulation of our problem
(18) ζ? ∈ arg max

X∈D0(X ,Φ)
φq(X) ,

where the feasible set D0(X ,Φ) is given by

D0(X ,Φ) :=
{
X ∈ S+

p :
∑
|α|≤2d

mα(µ)Aα −X < 0, µ =

s∑
i=1

wiδxi ≥ 0,

s∑
i=1

wi = 1
}
,

and designs ζ can be identified with atomic probabilities µ. In particular, note that ζ? is identified to
µ? such that X? =

∑
α∈{0,...,2d}d mα(µ?)Aα, since that, by isotonicity, the constraint (17) is active

at the solution point X? of (18) .
Interestingly, one can show that (18) can be efficiently solved using moment-SoS hierarchies,

see [16]. Indeed, one essentially need to represent (mα)α∈{0,...,2d}d the first moments of measures
µ =

∑s
i=1 wiδxi that appears in the constraint of (18). In practice, we may witness finite conver-

gence of the hierarchies so that the solution of the SDP relaxation is exactly the solution to (18).
The optimal design points x? are the roots of some SoS polynomial as in (2). This polynomial can
be computed using Moment-SoS hierarchies in practice, see Figure 1.
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Figure 1. First SoS polynomials p? (as in (2)) constructed on the Wynn polytope,
see [16] for further details.
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