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Abstract: We introduce Markov Random Geometric Graphs (MRGGs),
a growth model for temporal dynamic networks. It is based on a Marko-
vian latent space dynamic: consecutive latent points are sampled on the
Euclidean Sphere using an unknown Markov kernel; and two nodes are
connected with a probability depending on a unknown function of their
latent geodesic distance.

More precisely, at each stamp-time k we add a latent point Xk sampled
by jumping from the previous one Xk−1 in a direction chosen uniformly Yk

and with a length rk drawn from an unknown distribution called the latitude
function. The connection probabilities between each pair of nodes are equal
to the envelope function of the distance between these two latent points.
We provide theoretical guarantees for the non-parametric estimation of the
latitude and the envelope functions.

We propose an efficient algorithm that achieves those non-parametric
estimation tasks based on an ad-hoc Hierarchical Agglomerative Cluster-
ing approach. As a by product, we show how MRGGs can be used to detect
dependence structure in growing graphs and to solve link prediction prob-
lems.
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1. Introduction

In Random Geometric Graphs (RGG), nodes are sampled independently in la-
tent space Rd. Two nodes are connected if their distance is smaller than a
threshold. A thorough probabilistic study of RGGs can be found in [26]. RGGs
have been widely studied recently due to their ability to provide a powerful
modeling tool for networks with spatial structure. We can mention applications
in bioinformatics [16] or analysis of social media [17]. One main feature is to
uncover hidden representation of nodes using latent space and to model inter-
actions by relative positions between latent points.
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Furthermore, nodes interactions may evolve with time. In some applica-
tions, this evolution is given by the arrival of new nodes as in online collec-
tion growth [22], online social network growth [3, 19], or outbreak modeling [31]
for instance. The network is growing as more nodes are entering. Other time
evolution modelings have been studied, we refer to [28] for a review.

A natural extension of RGG consists in accounting this time evolution. In [12],
the expected length of connectivity and dis-connectivity periods of the Dynamic
Random Geometric Graph is studied: each node choose at random an angle in
[0, 2π) and make a constant step size move in that direction. In [29], a random
walk model for RGG on the hypercube is studied where at each time step a
vertex is either appended or deleted from the graph. Their model falls into the
class of Geometric Markovian Random Graphs that are generally defined in [8].

As far as we know, there is no extension of RGG to growth model for temporal
dynamic networks. For the first time, in this paper, we consider a Markovian
dynamic on the latent space where the new latent point is drawn with respect
to the latest latent point and some Markov kernel to be estimated.

Estimation of graphon in RGGs: the Euclidean sphere case Random
graphs with latent space can be defined using a graphon, cf. [23]. A graphon is
a kernel function that defines edge distribution. In [30], Tang and al. prove that
spectral method can recover the matrix formed by graphon evaluated at latent
points up to an orthogonal transformation, assuming that graphon is a positive
definite kernel (PSD). Going further, algorithms have been designed to estimate
graphons, as in [20] which provide sharp rates for the Stochastic Block Model
(SBM). Recently, the paper [7] provides a non-parametric algorithm to estimate
RGGs on Euclidean spheres, without PSD assumption.

We present here RGG on Euclidean sphere. Given n points X1, X2, . . . , Xn on
the Euclidean sphere Sd−1, we set an edge between nodes i and j (where i, j ∈
[n], i �= j) with independent probability p(〈Xi, Xj〉). The unknown function
p : [−1, 1] → [0, 1] is called the envelope function. This RGG is a graphon model
with a symmetric kernel W given by W (x, y) = p(〈x, y〉). Once the latent points
are given, independently draw the random undirected adjacency matrix A by

Ai,j ∼ B(p(〈Xi, Xj〉)) , i < j

with Bernoulli r.v. drawn independently (set zero on the diagonal and complete
by symmetry), and set

Tn :=
1

n
(p(〈Xi, Xj〉))i,j∈[n] and T̂n :=

1

n
A, (1)

We do not observe the latent point and we have to estimate the envelope p
from A only. A standard strategy is to remark that T̂n is a random perturbation
of Tn and to dig into Tn to uncover p.

One important feature of this model is that the interactions between nodes is
depicted by a simple object: the envelope function p. The envelope summarises
how individuals connect each others given their latent positions. Standard ex-
amples [6] are given by pτ (t) = 1{t≥τ} where one connects two points as soon



Markov random geometric graph 673

Fig 1. Graphical model of the MRGG model: Markovian dynamics on Euclidean sphere where
we jump from Xk onto Xk+1. The Yk encodes direction of jump while rk encodes its distance,
see (1).

as their geodesic distance is below some threshold. The non-parametric estima-
tion of p is given by [7] where the authors assume that latent points Xi are
independently and uniformly distributed on the sphere, which will not be the
case in the present paper.

A new growth model: the latent Markovian dynamic Consider RGGs
where latent points are sampled with Markovian jumps, the Graphical Model
under consideration can be found in Figure 1. Namely, we sample n points
X1, X2, . . . , Xn on the Euclidean sphere Sd−1 using a Markovian dynamic. We
start by sampling randomly X1 on Sd−1. Then, for any i ∈ {2, . . . , n}, we sample

• a unit vector Yi ∈ Sd−1 uniformly, orthogonal to Xi−1.
• a real ri ∈ [−1, 1] encoding the distance between Xi−1 and Xi, see (2).

ri is sampled from a distribution fL : [−1, 1] → [0, 1], called the latitude
function.

then Xi is defined by

Xi = ri ×Xi−1 +
√

1− r2i × Yi .

This dynamic can be pictured as follows. Consider that Xi−1 is the north pole,
then chose uniformly a direction (i.e., a longitude) and, in a independent manner,
randomly move along the latitudes (the longitude being fixed by the previous
step). The geodesic distance γi drawn on the latitudes satisfies

γi = arccos(ri) , (2)

where random variable ri = 〈Xi, Xi−1〉 has density fL(ri). The resulting model
will be referred to as the Markov Random Geometric Graph (MRGG) and is
described with Figure 1.
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Fig 2. Non-parametric estimation of envelope and latitude functions using algorithms of Sec-
tions 2 and 3. We built a graph of 1500 nodes sampled on the sphere S2 and using envelope p(1)

and latitude f
(1)
L (dot orange curves) defined in Section 5 by Eq.(11). The estimated envelope

is thresholded to get a function in [0, 1] and the estimated latitude function is normalized with
integral 1 (plain blue lines).

Temporal dynamic networks: MRGG estimation strategy Seldom
growth models exist for temporal dynamic network modeling, see [28] for a
review. In our model, we add one node at a time making a Markovian jump
from the previous latent position. It results in

the observation of (Ai,j)1≤j≤i−1 at time T = i ,

as pictured in Figure 1. Namely, we observe how a new node connects to the
previous ones. For such dynamic, we aim at estimating the model, namely enve-
lope p and respectively latitude fL. These functions capture in a simple function
on Ω = [−1, 1] the range of interaction of nodes (represented by p) and respec-
tively the dynamic of the jumps in latent space (represented by fL), where, in
abscissa Ω, values r = 〈Xi, Xj〉 near 1 corresponds to close point Xi 	 Xj while
values close to −1 corresponds to antipodal points Xi 	 −Xj . These functions
may be non-parametric.

From snapshots of the graph at different time steps, can we recover enve-
lope and latitude functions? This paper proves that it is possible under mild
conditions on the Markovian dynamic of the latent points and our approach is
summed up with Figure 3.

Define λ(Tn) := (λ1, . . . , λn) and resp. λ(T̂n) := (λ̂1, . . . , λ̂n) the spectrum

of Tn and resp. T̂n, see (1). Building clusters from λ(T̂n), Algorithm 1 (SCCHEi)
estimates the spectrum of envelope p while Algorithm 3 [1] (HEiC, cf. Section F

in Appendix) extracts d eigenvectors of T̂n to uncover the Gram matrix of the
latent positions. Both can then be used to estimate the unknown functions of
our model (cf. Figure 2).

Previous works The latent space approach to model dynamics of network
has already been studied in a large span of recent works. Most of them fo-
cus on block models with dynamic generalizations covering discrete dynamic
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Fundamental result

Spectral convergence of ̂Tn under

Markovian dynamic, see Section 2.1

⇓

Guarantee for the recovery of: Algorithm

(a) envelope p, see (6) ↔ SCCHEi

(b) latent distances ri, see (10) ↔ HEiC [1]

Fig 3. Presentation of our method to recover the envelope and the latitude functions.

evolution via hidden Markov models (cf. [24]) or continuous time analysis via
extended Kalman filter (cf. [32]). [33] and [11] use a Gamma Markov process
allowing to model evolving mixed membership in graphs using respectively the
Bernoulli Poisson link function and the logistic function to generate edges from
the latent space representation. While the above mentioned papers consider
community based random graphs with fixed size where edges and communities
change through time, we focus on growing RGGs on Euclidean sphere where
new nodes are added along time.
Non-parametric estimation of RGGs on Sd−1 has been investigated in [7] with
i.i.d. latent points. Estimation of latent point relative distances with HEiC Al-
gorithm has been introduced in [1] under i.i.d. latent points assumption. Phase
transitions on the detection of geometry in RGGs (against Erdös Rényi alter-
natives) has been investigated in [6].

For the first time, we introduce latitude function and non-parametric estima-
tions of envelope and latitude using new results on kernel matrices concentration
with dependent variables (see Appendix).

Outline Sections 2 and 3 present the estimation method with new theoreti-
cal results under Markovian dynamic. These new results are random matrices
operator norm control and resp. U-statistics control under Markovian dynamic,
presented in the Appendix at Section H and resp. Section G. The envelope adap-
tive estimate is built from a size constrained clustering (Algorithm 1) tuned by
slope heuristic Eq. (7), and the latitude function estimate (cf. Section 3.1) is
derived from estimates of latent distances ri. Our method can handle random
graphs with logarithmic growth node degree (i.e., new comer at time T = n
connects to O(log n) previous nodes), referred to as relatively sparse models,
see Section 4. Sections 5 and 6 investigate synthetic data experiments. We pro-
pose heuristics to solve link prediction problems and to test for a Markovian
dynamic. In a last section (Section 7), we dig deeper into the analysis of our
methods by studying their behaviour under model mispecification or under slow
mixing conditions. We conclude by presenting final remarks and future research
directions.
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Notations Consider a dimension d ≥ 3. Denote by ‖ · ‖2 (resp. 〈·, ·〉) the
Euclidean norm (resp. inner product) on Rd. Consider the d-dimensional sphere
Sd−1 := {x ∈ Rd : ‖x‖2 = 1} and denote by σ the uniform distribution on Sd−1.

For any matrixM = (mi,j)i,j ∈ RD1×D2 , we define ‖M‖2F :=
∑D1

i=1

∑D2

j=1 |mi,j |2
and the operator norm of M as ‖M‖ := supx∈SD2−1 ‖Mx‖2. For two real valued
sequences (un)n∈N and (vn)n∈N, denote un =

n→∞
O(vn) if there exist k1 > 0 and

n0 ∈ N such that ∀n > n0, |un| ≤ k1|vn|. For any x, y ∈ R, x ∧ y := min(x, y)
and x ∨ y := max(x, y). Given two sequences x, y of reals–completing finite
sequences by zeros–such that

∑
i x

2
i + y2i < ∞, we define the �2 rearrangement

distance δ2(x, y) as

δ22(x, y) := inf
π∈S

∑
i

(xi − yπ(i))
2 ,

where S is the set of permutations with finite support. This distance is useful
to compare two spectra.

2. Nonparametric estimation of the envelope function

One can associate with W (x, y) = p(〈x, y〉) the integral operator

TW : L2(Sd−1) → L2(Sd−1),

such that for any g ∈ L2(Sd−1),

∀x ∈ Sd−1, (TW g)(x) =

∫
Sd−1

g(y)p(〈x, y〉)σ(dy),

where σ is the Lebesgue measure on Sd−1. The operator TW is Hilbert-Schmidt
and it has a countable number of bounded eigenvalues λ∗

k with zero as only
accumulation point. The eigenfunctions of TW have the remarkable property
that they do not depend on p (cf. [9] Lemma 1.2.3): they are given by the real
Spherical Harmonics. We denote Hl the space of real Spherical Harmonics of
degree l with dimension dl and with orthonormal basis (Yl,j)j∈[dl] where

dl := dim(Hl) =

⎧⎨⎩
1 if l = 0
d if l = 1(
l+d−1

l

)
−
(
l+d−3
l−2

)
otherwise.

We define also for all R ∈ N, R̃ :=
∑R

l=0 dl. We end up with the following
spectral decomposition

p(〈x, y〉) =
∑
l≥0

p∗l
∑

1≤j≤dl

Yl,j(x)Yl,j(y) =
∑
k≥0

p∗kckG
β
k(〈x, y〉) , (3)

where λ(TW ) = {p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . } meaning that each eigen-

value p∗l has multiplicity dl; and Gβ
k is the Gegenbauer polynomial of degree k
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with parameter β := d−2
2 and ck := 2k+d−2

d−2 (cf. Appendix C). Since p is

bounded, one has p ∈ L2((−1, 1), wβ) where the weight function wβ is defined

by wβ(t) := (1− t2)β−
1
2 and

L2((−1, 1), wβ) :=
{
g : [−1, 1] → R

∣∣ ‖g‖22 :=

∫ 1

−1

|g(t)|2wβ(t)dt < +∞
}
.

Note that p can be decomposed as p ≡
∑

k≥0 p
∗
kckG

β
k and the Gegenbauer

polynomials Gβ
k are an orthogonal basis of L2((−1, 1), wβ).

We finally introduce for any resolution level R ∈ N the truncated graphon
WR which is obtained from W by keeping only the R̃ first eigenvalues, that is

∀x, y ∈ Sd−1, WR(x, y) :=

R∑
k=0

p∗k

dk∑
l=1

Yk,l(x)Yk,l(y).

Similarly, we denote for all t ∈ [0, 1], pR(t) =
∑R

k=0 p
∗
kckG

β
k(t).

Weighted Sobolev space The space Zs
wβ

((−1, 1)) with regularity s > 0 is

defined as the set of functions g =
∑

k≥0 g
∗
kckG

β
k ∈ L2((−1, 1), wβ) such that

‖g‖∗Zs
wβ

((−1,1)) :=

[ ∞∑
l=0

dl|g∗l |2 (1 + (l(l + 2β))s)

]1/2
< ∞.

2.1. Integral operator spectrum estimation with dependent variables

One key result is a new control of U -statistics with latent Markov variables
(cf. Section G) and it makes use of a Talagrand’s concentration inequality for
Markov chains. This article follows the hypotheses made on the Markov chain
(Xi)i≥1 by [10]. Namely, we work under the following assumption.

Assumption A The latitude function fL is such that ‖fL‖∞ < ∞ and makes
the chain (Xi)i≥1 uniformly ergodic.

Theorem 1 is a theoretical guarantee for a random matrix approximation of
the spectrum of integral operator with dependent latent variables. Theorem 5
in Appendix H gives explicitly the constants hidden in the big O below which
depend on the spectral gap of the Markov chain (Xi)i≥1.

Theorem 1. We consider that Assumption A holds and we assume the enve-
lope p has regularity s > 0. Then, it holds

E
[
δ22(λ(TW ), λ(Tn)) ∨ δ22(λ(TW ), λRopt(T̂n))

]
= O

([
n

log2(n)

]− 2s
2s+d−1

)
,

with λRopt(T̂n) = (λ̂1, . . . , λ̂R̃opt
, 0, 0, . . . ) and Ropt = �

(
n/ log2(n)

) 1
2s+d−1 �.

λ̂1, . . . , λ̂n are the eigenvalues of T̂n sorted in decreasing order of magnitude.
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Remark In Theorem 1 and Theorem 4, note that we recover, up to a log
factor, the minimax rate of non-parametric estimation of s-regular functions on
a space of (Riemannian) dimension d− 1. Even with i.i.d. latent variables, it is
still an open question to know if this rate is the minimax rate of non-parametric
estimation of RGGs.

Eq. (3) shows that one could use an approximation of (p∗k)k≥1 to estimate the
envelope p and Theorem 1 states we can recover (p∗k)k≥1 up to a permutation.
In most cases, the problem of finding such a permutation is NP-hard and we
introduce in the next section an efficient algorithm to fix this issue.

2.2. Size constrained clustering algorithm

Note the spectrum of TW is given by (p∗l )l≥0 where p∗l has multiplicity dl.

In order to recover envelope p, we build clusters from eigenvalues of T̂n while
respecting the dimension dl of each eigen-space of TW . In [7], an algorithm
is proposed testing all permutations of {0, . . . , R} for a given maximal reso-
lution R. To bypass the high computational cost of such approach, we pro-
pose an efficient method based on the tree built from Hierarchical Agglomera-
tive Clustering (HAC). In the following, for any ν1, . . . , νn ∈ R, we denote by
HAC({ν1, , . . . , νn}, dc) the tree built by a HAC on the real values ν1, . . . , νn
using the complete linkage function dc defined by ∀A,B ⊂ R, dc(A,B) =
maxa∈A maxb∈B ‖a− b‖2. Algorithm 1 describes our approach.

Algorithm 1 Size Constrained Clustering for Harmonic Eigenvalues (SCCHEi).

Data: Resolution R, matrix T̂n = 1
n
A, dimensions (dk)

R
k=0.

1: Let λ̂1, . . . , λ̂n be the eigenvalues of T̂n sorted in decreasing order of magnitude.
2: Set P := {λ̂1, . . . , λ̂R̃} and dims = [d0, d1, . . . , dR].
3: while All eigenvalues in P are not clustered do
4: tree ← HAC(nonclustered eigenvalues in P, dc)
5: for d ∈ dims do
6: Search for a cluster of size d in tree as close as possible to the root.
7: if such a cluster Cd exists then Update(dims, tree, Cd, d).
8: end for
9: for d ∈ dims do

10: Search for the group C in tree with a size larger than d and as close as possible
to d.

11: if such a group exists then Update(dims, tree, C, d) else Go to line 3.
12: end for
13: end while

Return: Cd0 , . . . , CdR , {λ̂R̃+1, . . . , λ̂n}

Algorithm 2 Update(dims, tree, C, d).
1: Save the subset Cd consisting of the d eigenvalues in C with the largest absolute values.
2: Delete from tree all occurrences to eigenvalues in Cd and delete d from dims.
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Given some resolution level R ∈ N, our estimator p̂R of the envelope func-
tion p is obtained from the clustering of the eigenvalues obtained by the SCCHEi
algorithm as follows

p̂R : t �→
R∑

k=0

p̂kckG
β
k(t) where ∀k ∈ {0, . . . , R}, p̂k :=

1

dk

∑
λ∈Cdk

λ. (4)

2.3. Theoretical guarantees

Let us recall that for any resolution level R ≥ 0,

λ(TWR
) = (λ∗

1, . . . , λ
∗
R̃
, 0, 0, . . . ) and λR(T̂n) = (λ̂1, . . . , λ̂R̃, 0, 0, . . . )

where λ̂1, . . . , λ̂n are the eigenvalues of T̂n sorted in decreasing order of magni-
tude. We order the eigenvalues λ̂1, . . . , λ̂R̃ and in the following we consider that

λR(T̂n)1 ≥ · · · ≥ λR(T̂n)R̃.

Theorem 2. Let us consider some resolution level R ∈ N. We keep the as-
sumptions of Theorem 1. We recall that we consider λR(T̂n)1 ≥ · · · ≥ λR(T̂n)R̃.

Then for n large enough, the clusters Cd0 , . . . , CdR
obtained from the SCCHEi

algorithm satisfy

δ22(λ(TWR
), λR(T̂n)) =

R∑
k=0

∑
λ̂∈Cdk

(λ̂− p∗k)
2.

Proof of Theorem 2
Let us denote

ΔG = min
0≤k �=l≤R, p∗

k �=p∗
l

|p∗k − p∗l | ∧ min
0≤k≤R, p∗

k �=0
|p∗k| > 0.

For any g ∈ (0, ΔG

4 ), the proof of Theorem 1 (cf. Appendix H) ensures that for
n large enough it holds

δ22(λ(TWR
), λR(T̂n)) ≤ g2. (5)

Let us recall that

δ22(λ(TWR
), λR(T̂n)) = inf

π∈S

∑
i≥1

(
λ(TWR

)π(i) − λR(T̂n)i

)2
.

The proof of Theorem 2 relies on the following two Lemmas. The proofs of these
Lemmas are postponed to Section D.
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Lemma 1. We keep the assumptions of Theorem 2. Then, for n large enough
for Eq. (5) to hold, one can choose a permutation π∗ such that

• π∗({1, . . . , R̃}) = {1, . . . , R̃}.
• δ22(λ(TWR

), λR(T̂n)) =
∑R̃

i=1(λ(TWR
)π∗(i) − λR(T̂n)i)

2.

Moreover, the function f∗ given by

f∗ : {1, . . . , R̃} → {p∗k, 0 ≤ k ≤ R}
i �→ λ(TWR

)π∗(i),

is non-increasing.

Lemma 2. We keep the assumptions and notations of Lemma 1. A cluster-

ing
(
Ĉdk

)
0≤k≤R

at depth R in the tree of the HAC algorithm applied to P :=

{λR(T̂n)1, . . . , λ
R(T̂n)R̃} is said to be of type (S) if it satisfies:

Ĉd0 ⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗0}, #Ĉd0 = d0,

Ĉd1 ⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗1}, #Ĉd1 = d1,

. . .

ĈdR
⊂{λR(T̂n)i | 1 ≤ i ≤ R̃, f∗(i) = p∗R}, #ĈdR

= dR.

Then the HAC algorithm with complete linkage applied to P reaches (after R̃−
R−1 iterations) a state

(
Ĉdk

)
0≤k≤R

of type (S). As a consequence, the SCCHEi

algorithm returns the clusters Cd0 = Ĉd0 , . . . , CdR
= ĈdR

.

Theorem 2 directly follows from the conclusion of Lemma 2 since we get that

R∑
k=0

∑
λ̂∈Cdk

(λ̂− p∗k)
2 =

R̃∑
i=1

(λR(T̂n)i − f∗(i))2 =

R̃∑
i=1

(λR(T̂n)i − λ(TWR
)π∗(i))

2

= δ22(λ(TWR
), λR(T̂n)),

where the first equality comes from the conclusion of Lemma 2, the second one
comes from the definition of f∗ from Lemma 1 and the last one comes from the
choice of π∗ from Lemma 1.

�

Theorem 2 ensures that under appropriate conditions, the SCCHEi leads to
a clustering of the eigenvalues of the adjacency matrix that achieves the δ2
distance between λ(TWR

) and λR(T̂n). Nevertheless, this is not a sufficient con-
dition to ensure that the L2 error between the true envelope function and our
plug-in estimator (cf. Eq. (4)) goes to 0 has n → +∞. This is due to identifiabil-
ity issues coming from the δ2 metric. This was already mentioned in [7, Section
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3.6], where the authors present the following example. Consider the case d = 3,
which implies β = 1/2, dk = 2k + 1, ck = 2k + 1. For μ > 0, let

pa =
1

2
c0G

β
0 + μc1G

β
1 + 0× c2G

β
2 + 0× c3G

β
3 + μc4G

β
4

pb =
1

2
c0G

β
0 + 0× c1G

β
1 + μc2G

β
2 + μc3G

β
3 + 0× c4G

β
4

Then the associated spectrum are

λ∗
a = (1/2, μ, μ, μ︸ ︷︷ ︸

3

, 0, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
7

, μ, μ, μ, μ, μ, μ, μ, μ, μ︸ ︷︷ ︸
9

)

λ∗
b = (1/2, 0, 0, 0︸ ︷︷ ︸

3

, μ, μ, μ, μ, μ︸ ︷︷ ︸
5

, μ, μ, μ, μ, μ, μ, μ︸ ︷︷ ︸
7

, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
9

)

which are indistinguishable in δ2 metric, although ‖pa − pb‖2 = μ
√
24.

Nevertheless, we can obtain a theoretical guarantee on the L2 error between
the true envelope function and our plug-in estimate using Theorem 2 if we
consider additional conditions on the eigenvalues (p∗k)k≥0.

Theorem 3. Assume that the envelope function p is polynomial of degree D ∈
N, i.e., p∗k = 0 for any k > D and p∗D �= 0. Assume also that all nonzeros p∗k for
k ∈ {0, . . . , D} are distinct and that R ≥ D. Then for n large enough it holds
with probability at least 1− n−8,

‖p̂R − p‖22 ≤ c
R̃

n
ln(n),

where c > 0 is a universal numerical constant.

Remarks

• The question of whether the problem of estimating p is NP-hard was still
completely open. Theorem 3 brings a first partial answer to this question
by showing that p can be estimated in polynomial time in the case where
p is a polynomial with all non-zero eigenvalues distinct.

• The proof of Theorem 3 is strictly analogous to the one of [7, Proposition
9]. In a nutshell, considering that the envelope function p is a polynomial
with all non-zeros eigenvalues p∗k distinct ensures that (since R ≥ D)

δ22(λ(TWR
), λR(T̂n)) = δ22(λ(TW ), λR(T̂n)),

which coincides with the L2 norm of the difference between p and its
estimate

p̂opt,R :=

R∑
k=0

p̂opt,kckG
β
k with p̂opt,k :=

1

dk

∑
i∈(π∗)−1([k̃+1,˜k+1])

λR(T̂n)i,

where π∗ is a permutation as defined in Lemma 1. Since we proved that for
n large enough, the clusters returned by the SCCHEi algorithm correspond
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to an allocation given by f∗, we deduce that the L2 norm between p and
our plug-in estimate p̂R is equal to the δ2 distance between spectra. The
result then comes directly using Theorem 1.

2.4. Adaptation: slope heuristic as model selection of Resolution

A data-driven choice of model size R can be done by slope heuristic, see [2] for a
nice review. One main idea of slope heuristic is to penalize the empirical risk by
κ pen(R̃) and to calibrate κ > 0. If the sequence (pen(R̃))R̃ is equivalent to the
sequence of variances of the population risk of empirical risk minimizer (ERM)

as model size R̃ grows, then, penalizing the empirical risk (as done in Eq. (7)),
one may ultimately uncover an empirical version of the U -shaped curve of the
population risk. Hence, minimizing it, one builds a model size R̂ that balances
between bias (under-fitting regime) and variance (over-fitting regime). First,
note that empirical risk is given by the intra-class variance below.

Definition 1. For any output (Cd0 , . . . , CdR
,Λ) of the Algorithm SCCHEi, the

thresholded intra-class variance is defined by

IR :=
1

n

⎡⎢⎣ R∑
k=0

∑
λ∈Cdk

⎛⎝λ− 1

dk

∑
λ′∈Cdk

λ′

⎞⎠2

+
∑
λ∈Λ

λ2

⎤⎥⎦ ,

and the estimations (p̂k)k≥0 of the eigenvalues (p∗k)k≥0 is given by

∀k ∈ N, p̂k =

{
1
dk

∑
λ∈Cdk

λ if k ∈ {0, . . . , R̂}
0 otherwise.

(6)

Second, as underlined in the proof of Theorem 1 (see Theorem 5 in the

Appendix), the estimator’s variance of our estimator scales linearly in R̃.
Hence, we apply Algorithm SCCHEi for R varying from 0 to Rmax (with

Rmax := max{R ≥ 0 : R̃ ≤ n}) to compute the thresholded intra-class variance
IR (see Definition 1) and given some κ > 0, we select

R(κ) ∈ argmin
R∈{0,...,Rmax}

{
IR + κ

R̃

n

}
. (7)

The hyper-parameter κ controlling the bias-variance trade-off is set to 2κ0

where κ0 is the value of κ > 0 leading to the “largest jump” of the function
κ �→ R(κ). Once R̂ := R(2κ0) has been computed, we approximate the envelope
function p using Eq. (6) (see Eq. (20) in Appendix for the closed form). We
denote this estimator p̂ and with the notations of Eq. (4) it holds p̂ = p̂R̂. In
Appendix E, we describe this slope heuristic on a concrete example and our re-
sults can be reproduced using the notebook Experiments1 in the Supplementary
Material.

1https://github.com/quentin-duchemin/Markovian-random-geometric-graph

https://github.com/quentin-duchemin/Markovian-random-geometric-graph
https://github.com/quentin-duchemin/Markovian-random-geometric-graph
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3. Nonparametric estimation of the latitude function

3.1. Our approach to estimate the latitude function in a nutshell

In Theorem 4 (see below), we show that we are able to estimate consistently
the pairwise distances encoded by the Gram matrix G∗ where

G∗ :=
1

n
(〈Xi, Xj〉)i,j∈[n] .

Taking the diagonal just above the main diagonal (referred to as superdiago-

nal) of Ĝ - an estimate of the matrix G to be specified - we get estimates of
the i.i.d. random variables (〈Xi, Xi−1〉)2≤i≤n = (ri)2≤i≤n sampled from fL. Us-

ing (r̂i)2≤i≤n the superdiagonal of nĜ, we can build a kernel density estimator
of the latitude function fL. In the following, we describe the algorithm used to
build our estimator Ĝ with theoretical guarantees.

3.2. Spectral gap condition and Gram matrix estimation

The Gegenbauer polynomial of degree one is defined by Gβ
1 (t) = 2βt, ∀t ∈

[−1, 1]. As a consequence, using the addition theorem (cf. [9, Lem.1.2.3 and
Thm.1.2.6]), the Gram matrix G∗ is related to the Gegenbauer polynomial of
degree one. More precisely, for any i, j ∈ [n] it holds

G∗
i,j =

1

2βn
Gβ

1 (〈Xi, Xj〉) =
1

nd

d∑
k=1

Y1,k(Xi)Y1,k(Xj). (8)

Denoting for all k ∈ [d] v∗k := 1√
n
(Y1,k(X1), . . . , Y1,k(Xn)) ∈ Rn, and V ∗ =

(v∗1 , . . . , v
∗
d) ∈ Rn×d, Eq. (8) becomes

G∗ :=
1

d
V ∗(V ∗)�.

We will prove that for n large enough there exists a matrix V̂ ∈ Rn×d where
each column is an eigenvector of T̂n, such that Ĝ := 1

d V̂ V̂ � approximates G∗

well, in the sense that the Frobenius norm ‖G∗− Ĝ‖F converges to 0. To choose

the d eigenvectors of the matrix T̂n that we will use to build the matrix V̂ , we
need the following spectral gap condition

Δ∗ := min
k∈N, k �=1

|p∗1 − p∗k| > 0. (9)

This condition will allow us to apply Davis-Kahan type inequalities.
Now, thanks to Theorem 1, we know that the spectrum of the matrix T̂n

converges towards the spectrum of the integral operator TW . Then, based on
Eq. (8), one can naturally think that extracting the d eigenvectors of the ma-

trix T̂n related with the eigenvalues that converge towards p∗1, we can approx-
imate the Gram matrix G∗ of the latent positions. Theorem 4 proves that the
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latter intuition is true with high probability under the spectral gap condition (9).
The algorithm HEiC [1] (cf. Section F for a presentation) aims at identifying

the above mentioned d eigenvectors of the matrix T̂n to build our estimate of
the Gram matrix G∗.

Theorem 4. We consider that Assumption A holds, we assume Δ∗ > 0, and
we assume that graphon W has regularity s > 0. We denote V̂ ∈ Rn×d the d
eigenvectors of the matrix T̂n associated with the eigenvalues returned by the
algorithm HEiC and we define Ĝ := 1

d V̂ V̂ �. Then for n large enough and for
some constant D > 0, it holds with probability at least 1− 5/n2,

‖G∗ − Ĝ‖F ≤ D

(
n

log2(n)

) −s
2s+d−1

. (10)

Based on Theorem 4, we propose a kernel density approach to estimate
the latitude function fL based on the super-diagonal of the matrix Ĝ, namely(
r̂i := nĜi−1,i

)
i∈{2,...,n}

. In the following, we denote f̂L this estimator.

4. Relatively sparse regime

Although this paper deals with the so-called dense regime (i.e. when the ex-
pected number of neighbors of each node scales linearly with n), our results
may be generalized to the relatively sparse model connecting nodes i and j with
probability W (Xi, Xj) = ζnp(〈Xi, Xj〉) where ζn ∈ (0, 1] satisfies
lim inf

n
ζnn/ logn ≥ Z for some universal constant Z > 0.

In the relatively sparse model, one can show following the proof of Theorem 1

that the resolution should be chosen as R̂ =
(

nζn
1+ζn log2 n

) 1
2s+d−1

. Specifying that

λ∗ = (p∗0, p
∗
1, . . . , p

∗
1, p

∗
2, . . . ) and T̂n = A/n, Theorem 1 becomes for a graphon

with regularity s > 0

E

[
δ22

(
λ∗,

λ(T̂n)

ζn

)]
= O

((
nζn

1 + ζn log
2 n

) −2s
2s+d−1

)
.

Figure 4 illustrates the estimation of the latitude and the envelope functions in
some relatively sparse regimes.
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Fig 4. Results of our algorithms for graph of size 2000 with functions p(1) and f
(1)
L of Eq.(11)

and sparsity parameter ζn = logk n/n, k ∈ {2, 3, 4}.

5. Experiments

In the following, we test our methods using different envelope and latitude
functions. Note that a common choice of connection functions in RGGs are
the Rayleigh fading activation functions which take the form

Rζ,η,r(ρ) = exp [−ζρη] , ζ > 0, η > 0.

Any Rayleigh function Rζ,η corresponds to the following envelope function

pζ,η : t �→ Rζ,η(2(1− t)),

so that it holds

∀x, y ∈ Sd−1, pζ,η(〈x, y〉) = Rζ,η(‖x− y‖2).

Let us also denote for any α, β > 0 g(·;α, β) the density of the beta distribution
B(α, β) with parameters (α, β). In this paper, we will study the numerical results
of our methods considering the following envelope and latitude functions

p(1) : x �→ 1x≥0, p(2) ≡ p0.5,1

f
(1)
L : r �→

{
1
2g(1− r; 2, 2) if r ≥ 0
1
2g(1 + r; 2, 2) otherwise

, f
(2)
L : r �→ 1

2
g

(
1− r

2
; 1, 3

)

and p(3) ≡ p0.25,3

f
(3)
L : r �→ 1

2
g

(
1− r

2
; 2, 2

)
. (11)

Note that considering the latitude function f
(2)
L (resp. f

(3)
L ) is equivalent to

consider that one fourth of the Euclidean distance between consecutive latent
positions is distributed as Z ∼ B(1, 3) (resp. Z ∼ B(2, 2)). With Figures 5, 6
and 7, we present the results of our experiments for the three different settings
described in Eq. (11). In each case, we work with a latent dimension d = 4 and
we show:
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1. the estimates of the envelope and latitude functions obtained with our
adaptive procedure working the graph of 1500 nodes (see Figures (a) and
(b)).

2. the corresponding clustering obtained by the SCCHEi algorithm for the
resolution level R determined by the slope heuristic (see Figures (c)).

Blue crosses represent the R̃ eigenvalues of T̂n with the largest magnitude,
which are used to form clusters corresponding to the R+ 1-first spherical
harmonic spaces. The red plus are the estimated eigenvalues (p̂k)0≤k≤R

(plotted with multiplicity) defined from the clustering given by our algo-
rithm SCCHEi (see Eq. (6)). Those results show that SCCHEi achieves a

relevant clustering of the eigenvalues of T̂n which allows us to recover the
envelope function.

3. the errors between the estimated functions and the true ones in δ2 metric
and in L2 norm for different size of graphs (see Figures (d) and (e)).
We notice that a significant decrease of the δ2 distance between spectra

does not necessarily means that the L2 norm between the estimated and
the true envelope functions shrinks seriously. We refer in particular to
Figures 5 and 7. The identifiability issue highlighted in Section 2.3 is
one of the possible explanations of this phenomenon. Nevertheless, these
experiments show that both the δ2 and L2 errors on our estimate of the
envelope or the latitude functions are decreasing as the size of the graph is
getting larger. Let us also recall that Theorem 3 ensures that the L2 error
on our estimate of the envelope function goes to zero as n grows when p
has a finite number of non zeros eigenvalues that are all distinct.

Fig 5. Results for d = 4, the envelope p(1) and the latitude f
(1)
L of Eq.(11).
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Fig 6. Results for d = 4, the envelope p(2) and the latitude f
(2)
L of Eq.(11).

Fig 7. Results for d = 4, the envelope p(3) and the latitude f
(3)
L of Eq.(11).
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6. Applications

In this section, we apply the MRGG model to link prediction and hypothesis
testing.

6.1. Markovian dynamic testing

As a first application of our model, we propose a hypothesis test to statistically
distinguish between an independent sampling the latent positions and a Marko-
vian dynamic. The null is then set to H0 : nodes are independent and uniformly
distributed on the sphere (i.e., no Markovian dynamic). Our test is based on

estimate f̂L of latitude and thus the null can be rephrased as H0 : fL = f0
L

where f0
L is the latitude of uniform law, dynamic is then i.i.d. dynamic.

Fig 8. Hypothesis testing.

Figure 8 shows the power of a hypothesis test with level 5% (Type I error).

One can use any black-box goodness-of-fit test comparing f̂L to f0
L, and we choose

χ2-test discretizing (−1, 1) in 70 regular intervals. Rejection region is calibrated
(i.e., threshold of the χ2-test here) by Monte Carlo simulations under the null.
It allows us to control Type I error as depicted by dotted blue line. We choose

alternative given by Heaviside envelope p(1) and latitude f
(1)
L of Eq. (11). We run

our algorithm to estimate latitude from which we sample a batch to compute the
χ2-test statistic. We see that for graphs of size larger than 1, 000, the rejection
rate is almost 1 under the alternative (Type II error is almost zero), the test is
very powerful.

6.2. Link prediction

Suppose that we observe a graph with n nodes. Link prediction is the task that
consists in estimating the probability of connection between a given node of the
graph and the upcoming node.

6.2.1. Bayes link prediction

We propose to show the usefulness of our model solving a link prediction prob-
lem. Let us recall that we do not estimate the latent positions but only the
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pairwise distances (embedding task is not necessary for our purpose). Denot-
ing by projX⊥

n
(·) the orthogonal projection onto the orthogonal complement of

Span(Xn), the decomposition of 〈Xi, Xn+1〉 defined by

〈Xi, Xn〉〈Xn, Xn+1〉

+
√
1− 〈Xn, Xn+1〉2

√
1− 〈Xi, Xn〉2〈

projX⊥
n
(Xi)

‖projX⊥
n
(Xi)‖2

, Yn+1〉, (12)

shows that latent distances are enough for link prediction. Indeed, it can be
achieved using a forward step on our Markovian dynamic, giving the posterior
probability (cf. Definition 2) ηi(D1:n) defined by∫

[−1,1]2

p
(
〈Xi, Xn〉r +

√
1− r2

√
1− 〈Xi, Xn〉2u

)
fL(r)w d−3

2
(u)

Γ( d−1
2

)

Γ( d−2
2

)
√
π
drdu,

(13)

where w d−3
2
(u) := (1− u2)

d−3
2 − 1

2 and where Γ : a ∈]0,+∞[ �→
∫ +∞
0

ta−1e−tdt.

Definition 2 (Posterior probability function). The posterior probability func-
tion η is defined for any latent pairwise distances D1:n = (〈Xi, Xj〉)1≤i,j≤n ∈
[−1, 1]n×n by

∀i ∈ [n], ηi(D1:n) = P (Ai,n+1 = 1 | D1:n) ,

where Ai,n+1 ∼ B (p(〈Xi, Xn+1〉)) is a random variable that equals 1 if there is
an edge between nodes i and n+ 1, and is zero otherwise.

We consider a classifier g (cf. Definition 3) and an algorithm that, given some
latent pairwise distances D1:n, estimates Ai,n+1 by putting an edge between
nodes Xi and Xn+1 if gi(D1:n) is 1.

Definition 3. A classifier is a function which associates to any pairwise dis-
tances D1:n = (〈Xi, Xj〉)1≤i,j≤n, a label (gi(D1:n))i∈[n] ∈ {0, 1}n.

The risk of this algorithm is as in binary classification,

R(g,D1:n) :=
1

n

n∑
i=1

P (gi(D1:n) �= Ai,n+1 | D1:n)

=
1

n

n∑
i=1

{
(1− ηi(D1:n))1gi(D1:n)=1 + ηi(D1:n)1gi(D1:n)=0

}
, (14)

where we used the independence between Ai,n+1 and gi(D1:n) conditionally on
σ(D1:n). Pushing further this analogy, we can define the classification error of
some classifier g by L(g) = E [R(g,D1:n)]. Proposition 1 shows that the Bayes
estimator - introduced in Definition 4 - is optimal for the risk defined in Eq. (14).

Definition 4 (Bayes estimator). We keep the notations of Definition 2. The
Bayes estimator g∗ of (Ai,n+1)1≤i≤n is defined by

∀i ∈ [n], g∗i (D1:n) =

{
1 if ηi(D1:n) ≥ 1

2
0 otherwise.
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Proposition 1 (Optimality of the Bayes classifier for the risk R). We keep the
notations of Definitions 2 and 4. For any classifier g, it holds for all i ∈ [n],

P (gi(D1:n) �= Ai,n+1 | D1:n)− P (g∗i (D1:n) �= Ai,n+1 | D1:n)

= 2

∣∣∣∣ηi(D1:n)−
1

2

∣∣∣∣× E
{
1gi(D1:n) �=g∗

i (D1:n) | D1:n

}
,

which immediately implies that

R(g,D1:n) ≥ R(g∗,D1:n) and therefore L(g) ≥ L(g∗).

6.2.2. Heuristic for link prediction

One natural method to approximate the Bayes classifier from the previous sec-
tion is to use the plug-in approach. This leads to the MRGG classifier introduced
in Definition 5.

Definition 5 (The MRGG classifier). For any n and any i ∈ [n], we define
η̂i(D1:n) as∫

p̂
(
r̂i,nr +

√
1− r2

√
1− r̂2i,nu

)
f̂L(r)w d−3

2
(u)

Γ( d−1
2

)

Γ( d−2
2

)
√
π
drdu, (15)

where p̂ and f̂L denote respectively the estimate of the envelope function and
the latitude function with our method and where r̂ := nĜ. The MRGG classifier
is defined by

∀i ∈ [n], gMRGG
i (D1:n) =

{
1 if η̂i(D1:n) ≥ 1

2
0 otherwise.

To illustrate our approach we work with a graph of 1500 nodes with d = 4, and
we consider the envelope and latitude functions defined in Eq. (11). The plots on
the left column of Figure 9 show that we are able to recover the probabilities of
connection of the nodes already present in the graph with the coming nodeXn+1.
Using the decomposition of 〈Xi, Xn+1〉 given by Eq. (12), orange crosses are
computed using Eq. (13). Green plus are computed similarly replacing p and fL
by their estimations p̂ and f̂L following Eq. (15). Blue stars are computed using
Eq. (13) by replacing fL by

wβ

‖wβ‖1
(with β = d−2

2 ) which implicitly supposes

that the points are sampled uniformly on the sphere.
With the plots on the left column of Figure 9, we compare the risk of the

random classifier - whose guess gi(D1:n) is a Bernoulli random variable with
parameter given by the ratio of edges compared to complete graph - with the
risk of the MRGG classifier (cf. Definition 5). These figures show that for a small
number of nodes, the risk estimate provided by the MRGG classifier can be
significantly far from the one of the Bayes classifier. However, when the number
of nodes is getting larger, the MRGG classifier gives similar results compared
to the optimal Bayes classifier. This risk estimate can be significantly smaller
than the one of the random classifier (see for example the plots corresponding

to the envelope p(2) and the latitude f
(2)
L ).
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Fig 9. ← On the left: Link predictions between the future node Xn+1 and the 10 first nodes
X1, . . . , X10. → On the right: Comparison between the risk (defined in Eq.(14)) of the MRGG
classifier, the random classifier and the risk of the optimal Bayes classifier.

7. Discussion

In this section, we want to push the investigation of the performance of our
estimation methods as far as possible. In Section 7.1 we study the robustness of
our methods under model mispecification before inspecting the influence of the
mixing time of the Markov chain (Xi)i≥1 on the estimation error in Section 7.2.
On a more theoretical side, we show that replacing the use of the complete
linkage by the Ward distance in the SCCHEi algorithm, Theorem 2 might not
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be true anymore. We conclude with some remarks and by highlighting future
research directions.

Fig 10. Studying the robustness of our method under model mispecification. We study
the evolution of power for Markovian Dynamic Testing when the mixture parameter ε
ranges (0, 1). We conduct this analysis for different values of n.

Fig 11. Studying the robustness of the estimation of the latitude function under model
mispecification. We plot our kernel density estimator of the latitude function for n =
1500, d = 3 and for ε ∈ {0.1, 0.5, 0.7}. We use the envelope p(1) and latitude function

f
(1)
L defined in Eq.(11).

7.1. Robustness to model mispecification

We consider a mixture model for the sampling scheme of the latent position.
We fix some ε ∈ (0, 1) and we draw X1 randomly on the sphere. Then at time
step i ≥ 2, the point Xi is sampled as follows:

• with probability 1 − ε, Xi is drawn following the Markovian dynamic
described in Section 1 (based on Xi−1).

• with probability ε, Xi is drawn uniformly on the sphere.

Figure 10 and Figure 11 show the numerical results obtained under this mispeci-
fied model. We consider the hypothesis testing question presented in Section 6.1
with the same settings namely d = 3 and the envelope and latitude functions p(1)

and f
(1)
L of Eq. (11). We can see that when ε = 0, the power of our test is 1 and

we always reject the null hypothesis (uniform sampling of the latent positions)
under the alternative. On the contrary, when ε = 1, the points are sampled
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uniformly on the sphere and we obtain a power of the order of the level of our
test (i.e. 5%) as expected. The larger the sample size n is, the greater ε can be
chosen while keeping a large power. In the case where n = 1500, one can afford
to sample 75% of latent positions uniformly (and the rest using our Markovian
sampling scheme) while keeping a power equal to 1. Figure 11 shows that the
larger ε is, the closer the estimated latitude function is to

wβ

‖wβ‖1
≡ 1

2 (since

d = 3) which corresponds to the density of a one-dimensional marginal of a
uniform random point on Sd−1.

7.2. Influence of mixing time on estimation error

In order to assert that the dependence of the latent variables has an influence
on the estimation of the unknown functions of our model, we would require a
minimax bound. The derivation of such minimax result is still an open problem,
even in the independent setting (cf. [7]). Nevertheless, by making explicit the
constants involved in concentration inequalities, we can show that the mixing
time of the latent Markovian dynamic affects our bound on the δ2 error between
spectra. For any r∗ ∈ (−1, 1), let us consider the following latitude function

fr∗

L (r) :=
1

I(r∗)
(1− r2)

d−3
2 1r∈(r∗,1), I(r∗) :=

∫ 1

r∗
(1− r2)

d−3
2 dr.

Note that the Markov transition kernel P of the chain (Xi)i≥1 using this latitude
function is the one that starting from a point x ∈ Sd−1 samples uniformly a point
in the set {z ∈ Sd−1 | ‖x − z‖22 ≤ 2(1 − r∗)}. In particular, when r∗ = −1, we
recover the uniform distribution on the sphere. It is clear that the closer r∗ to
one, the larger the mixing time of the chain. One can show that for any r∗ ∈
(−1, 1), the chain is uniformly ergodic by proving that there exist an integerm ≥
1, a constant δm > 0 and a probability measure ν such that

∀x ∈ Sd−1, ∀A ∈ Σ, Pm(x,A) ≥ δmν(A) (cf. Definition 9). (16)

Eq. (16) holds by considering for example ν = π the uniform distribution on
the sphere. It is straightforward to show that the smallest integer m(r∗) ≥ 1
satisfying Eq. (16) is larger than 2

1−r∗ .
2 Taking a closer look at the constants

involved in the concentration inequality from [10] (cf. [10, Section 3.1.1]), we
get that

E
[
δ22(λ(TW ), λ(Tn)) ∨ δ22(λ(TW ), λRopt(T̂n))

]
< C

[
n

log2(n)

]− 2s
2s+d−1

,

where C > m(r∗)2τ(r∗)2‖fr∗

L ‖∞ and τ(r∗) ≥ 1 is the Orlicz norm of some
regeneration time. Since for any 0 < r∗ < 1,

I(r∗) =

∫ 1

r∗
(1− r2)

d−3
2 dr =

∫ 1−r∗

0

e
d−3
2 ln(1−(r+r∗)2)dr

2Indeed, the latitude function fr∗
L allows to make a jump at each time step of size at

most 1− r∗. Since the length of the shortest arc on Sd−1 joining the north pole to the south
pole is 2, the result follows.
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Fig 12. Studying the influence of the mixing time of the chain on the L2 errors between
(i) the envelope function and its estimate (using our adaptive procedure), and (ii) the
latitude function and its estimate obtained with a kernel estimator.

= (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e
d−3
2 {ln(1−(r+r∗)2)−ln(1−(r∗)2)}dr

≤ (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e
− d−3

2

{
2rr∗+r2

1−(r∗)2

}
dr

≤ (1− (r∗)2)
d−3
2

∫ 1−r∗

0

e−
d−3
2 {2rr∗+r2}dr

≤ (1− (r∗)2)
d−3
2

∫ 1

0

e−
d−3
2 {2rr∗}dr

≤ (1− (r∗)2)
d−3
2

(
1 ∧ 1

r∗(d− 3)

)
,

we get that ‖fr∗

L ‖∞ ≥ 1
I(r∗) (1− (r∗)2)

d−3
2 ≥ r∗(d− 3). Finally we obtain

C >
2r∗

1− r∗
(d− 3),

where r∗ �→ 2r∗

1−r∗ (d− 3) is increasing in r∗ and diverges to +∞ when r∗ → 1−.
Hence, the closer r∗ is to one, the slower the chain is mixing, and the poorer is
our bound.

Figure 12 presents the result of the simulations using the latitude function fr∗

L
and the envelope function p : t �→ 1t≥0. We compute the L2 error between
the true and the estimated envelope functions (respectively the true and the
estimated latitude functions). When r∗ is getting closer to 1, the chain is mixing
slowly and we need to increase the sample size if we want to prevent the L2 errors
from blowing up. Graphs have been generated with a latent dimension d = 3
and by sampling the latent positions using our isotropic sampling procedure
with latitude function fr∗

L .
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7.3. Choice of the clustering algorithm for the SCCHEi

The SCCHEi algorithm relies on the clustering of the eigenvalues of the ad-
jacency matrix provided by the HAC with complete linkage. In this section,
we motivate the use of the HAC algorithm with complete linkage by showing
that the theoretical results from Section 2.3 could be much more involved to
establish by using another clustering procedure. Indeed, if one would consider
for example the HAC with the Ward distance, the theoretical result obtained
for the correctness of the SCCHEi algorithm (cf. Theorems 2 and 3) is likely to
be no longer true (even if the sample size n is chosen arbitrarily large). Let us
show this on a simple example.

We fix a resolution level R = 2 and we consider some ΔG > 0. We set
p∗0 = 4ΔG, p∗1 = 3ΔG, p∗2 = 2ΔG, and p∗k = 0 for all k ≥ 3. Let us consider

some g ∈ (0,ΔG/4) that can be taken arbitrarily small. Let us denote λR(T̂n) =

(λ̂1, . . . , λ̂R̃, 0, 0 . . . ) and assume that it holds λ̂1 = p∗0, λ̂2 = · · · = λ̂d+1 = p∗1
(we recall that d1 = d), λ̂d+2 = · · · = λ̂d+1+d2/2� = p∗2 + g and λ̂d+2+d2/2� =

· · · = λ̂1+d+d2 = p∗2 − g. To simplify the presentation, we will assume in the

following that d2 = (d+1)d
2 − 1 is even (which holds for example if d = 2k for

any k ≥ 1 odd). Figure 13 gives a visualization of this example.

×

p∗2

×

p∗1

×

p∗0

λ̂i, d+ 2 ≤ i ≤ d+ 1 + d2
2

λ̂i, d+ 1 + d2
2

≤ i ≤ d+ 1 + d2 λ̂i, 2 ≤ i ≤ d+ 1

λ̂1

g

Fig 13. Visualization of the eigenvalues of the envelope function of our example.

Applying the HAC algorithm (with the Ward distance) to the eigenvalues

(λ̂1, . . . , λ̂R̃), it is obvious that the state reached after R̃ − 4 = 1 + d + d2 − 4
iterations in the HAC procedure will be

Ĝ0 :={λ̂1}
Ĝ1 :={λ̂i | 2 ≤ i ≤ d}
Ĝ2 :={λ̂i | d+ 2 ≤ i ≤ d+ 1 + d2/2}
Ĝ3 :={λ̂i | d+ 2 + d2/2 ≤ i ≤ 1 + d+ d2}

Hence, in order to understand which clusters will be merged at the next step
of the HAC algorithm, we compute the Ward distance between the different
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clusters. Let us recall that for two finite and non-empty sets S, S′ ⊂ R with
respective cardinality #S and #S′, the Ward distance between S and S′ is
given by

dW (S, S′) :=
#S ×#S′

#S +#S′

⎛⎝ 1

#S

∑
xs∈S

xs −
1

#S′

∑
x′
s∈S′

x′
s

⎞⎠2

.

Ward distances between clusters

Ĝ1 Ĝ2 Ĝ3

Ĝ0
d

d+1 (Δ
G)2 d2

d2+2 (2Δ
G − g)2 d2

d2+2 (2Δ
G + g)2

Ĝ1
d×d2

2d+d2
(ΔG − g)2 d×d2

2d+d2
(ΔG + g)2

Ĝ2 d2 × g2

We deduce that all Ward distances between pair of clusters are scaling at least
linearly with d except the Ward distances between Ĝ0 and the other three clus-
ters Ĝ1, Ĝ2 and Ĝ3. Indeed, for any i ∈ {1, 2, 3}, dW (Ĝ0, Ĝi) remains bounded
independently of the latent dimension d. Hence, for any g ∈ (0,ΔG/4) which
can be chosen arbitrarily small, one can take d large enough to ensure that

max
{
dW (Ĝ0, Ĝi) , i ∈ {1, 2, 3}

}
< dW (Ĝ2, Ĝ3). (17)

We deduce that for any g ∈ (0,ΔG/4), we can choose d large enough to ensure
that Eq. (17) holds and thus the clusters merged between depths 4 and 3 from the

root of the HAC’s tree will not be Ĝ2 and Ĝ3. This means that the state obtained
at depth 3 from the root is not of type (S) (in the sense defined in Lemma 2).

If this is not a sufficient condition to state that the SCCHEi will fail to recover
the correct clusters, this example shows that the use of Ward distance can lead
to some unexpected clustering of the eigenvalues. Our example proves that using
the HAC algorithm with the Ward distance, the result of Lemma 2 does not hold
anymore. Namely, regardless of how large the sample size is chosen, there are
situations (in particular for a large latent dimension) where the states of type (S)
(cf. Lemma 2) are never reached in the HAC tree with the Ward distance. Hence
obtaining a theoretical guarantee for the clustering provided by the SCCHEi in
this framework may be impossible or at least much more involved.

7.4. Concluding remarks

7.4.1. Estimation of the latent dimension

The proposed methods implicitly assume that the latent dimension d is known.
The article [1] proved that the latent dimension d can be easily recovered in
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practice for n large enough provided that the spectral gap condition (9) holds.
In the following, we briefly describe their approach.
Given some matrix T̂n as input and some set of candidates D for the dimension d
(typically D = {2, 3, . . . , dmax}), apply the Algorithm HEiC (cf. Algorithm 3 in
Section F) for any dc ∈ D and store the returned value gap := gap(dc). Let us
recall that gap(dc) corresponds to the largest gap between a bulk of dc eigenval-

ues of T̂n and the rest of the spectrum (see the definition of Gap1 in Section F
for details). Once we have computed the different gaps, we pick the candidate dc
that led to the largest one. Given the guarantees provided by Proposition 4, the
previously described procedure will find the correct dimension, with high proba-
bility (on the event E with the notations of Proposition 4), if the true dimension
of the latent space is in the candidate set D.

7.4.2. Future research directions

Our work encourages the development of growth model in random graphs and in
particular the derivation of similar results in MRGGs with other latent spaces.
It would be also desirable to extend our methods to the case where we con-
sider more complex Markovian sampling of the latent positions, typically one
that is not isotropic. Our work leaves open the question of getting a theoretical
guarantee for the estimation of the latitude function. If we proved (with Theo-
rem 4) that we can consistently estimate the Gram matrix of the latent positions
in Frobenius norm, this is not sufficient to ensure that our kernel density es-
timator is consistent since we cannot ensure that 1

n−1

√∑n
i=2(ri − r̂i)2 tends

to 0 as n goes to +∞. Deriving a theoretical result regarding the estimation
of the latitude function seems challenging and we believe that it would require
significantly different proof techniques.

Supplementary Material

Appendix for “Markov random geometric graph, MRGG: A growth
model for temporal dynamic networks”
(doi: 10.1214/22-EJS1969SUPP; .pdf). Sections A to C: basic definitions and
complements. Sections D to F: algorithms and experiments. Sections G to I:
proofs of theoretical results.
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