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Abstract
The purpose of this short note is to show that the Christoffel–Darboux polynomial,
useful in approximation theory and data science, arises naturally when deriving the
dual to the problem of semi-algebraic D-optimal experimental design in statistics.
It uses only elementary notions of convex analysis. Geometric interpretations and
algorithmic consequences are mentioned.
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1 Introduction

In [1] the problem of optimal design of statistical experiments was revisited in the
broad framework of polynomial regressions on semi-algebraic domains. A numerical
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solution was proposed, based on the so-called moment-SOS (sums of squares) hier-
archy of semidefinite programming relaxations [2]. While optimality arguments were
used in [1] to derive many of the results, the dual to the problem of optimal experi-
mental design was not explicitly constructed and studied. It is the purpose of this note
to clarify this point in a self-contained and direct way. We believe that a significantly
shorter, separate, elementary derivation of the dual is welcome, and its interpretation
is informative.

We use elementary arguments of convex analysis to show how the Christoffel–
Darboux polynomial, ubiquitous in approximation theory and data science [3], arises
naturally in the dual to the D-optimal design problem.

2 Primal formulation of the approximate design problem

Let Sn denote the set of symmetric real matrices of size n. Given a vector vd(x)whose
elements form a basis of the vector space of real polynomials of degree up to d in the
vector indeterminate x ∈ R

n , let

Md (X ) :=
{
y ∈ R

nd : y =
∫
X

vd (x)dμ(x) for some positive Borel measure μ onX

}

denote the convex cone of moments of degree up to d on a given compact semi-
algebraic setX ∈ R

n with non-empty interior. This cone has dimension

nd := (n + d)!
n! d! .

Given a measure μ and its moment vector y ∈ M2d(X ), define the moment matrix

Md(y) :=
∫
X

vd(x)v�
d(x)dμ(x) ∈ S

nd

where the star denotes transposition. Each entry of the above matrix vd(x)v�
d(x) is a

polynomial of degree up to 2d, and hence it is a linear combination of elements in
basis vector v2d(x). Consequently, each entry of Md(y) is a linear combination of
entries of the moment vector y, whose dimension is n2d . It follows that Md can be
interpreted as a linear map from R

n2d to S
nd , and let M�

d denote its adjoint map from
S
nd to Rn2d , defined such that

trace(Md(y)X) = M�
d(X)y (1)

holds for all X ∈ S
nd and y ∈ R

n2d .
Given a matrix A ∈ R

m×nd , a vector b ∈ R
m , a vector c ∈ R

nd and a strictly
concave function φ from S

nd to R, consider the primal optimal design problem
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infy c�y − φ(Md(y))
s.t. Ay = b

y ∈ M2d(X )

(2)

where the infimum is with respect to vectors y ∈ R
nd .

3 Dual formulation of the approximate design problem

In problem (2) we introduce the matrix variable Y ∈ S
nd and equality constraint

Y = Md(y), the Lagrange multipliers X, z, p and the Lagrangian

f (X, z,p,Y, y) := c�y − φ(Y) + trace {X(Y − Md(y))} + z�(b − Ay) − p�y

whereX ∈ S
nd , z ∈ R

m and p belongs toP2d(X ), the convex cone of polynomials of
degree at most 2d that are positive on X, which is dual to the moment coneM2d(X )

according to the Riesz-Haviland Theorem [2, Theorem 3.1]. Use (1) to rearrange terms
as follows

f (X, z,p,Y, y) = b�z + {trace(XY) − φ(Y)} + {c� − z�A − M�
d(X) − p�}y.

The dual problem to (2) is obtained by constructing the dual function

g(X, z,p) := inf
Y∈Snd , y∈Rn2d

f (X, z,p,Y, y).

First observe that this function is bounded below only if

p� = c� − z�A − M�
d(X). (3)

Defining

φ�(X) := inf
Y∈Snd

{trace(XY) − φ(Y)}

as the concave conjugate function to φ, the problem of maximizing the dual function
becomes

supX,z b
�z + φ�(X)

s.t. c� − z�A − M�
d(X) ∈ P2d(X )

(4)

where the supremum is with respect to matrices X ∈ S
nd and vector z ∈ R

m . Letting
p(x) := M�

d(X)v2d(x) = vd(x)�Xvd(x), the conic constraint in dual problem (4) can
be formulated as a polynomial positivity constraint

(c� − z�A)v2d(x) ≥ p(x)

satisfied for all x ∈ X .
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Theorem 1 (Duality for optimal design) Problems (2) and (4) are in strong duality,
i.e. their values coincide.

Proof Weak duality, i.e. the value of primal problem (2) is greater than or equal to the
value of dual problem (4), follows from the inequality

φ�(X) + φ(Y) ≤ trace(XY)

which holds by definition of φ� for every positive semidefinite pair X, Y. Indeed, for
any feasible X, y, z it holds

0 ≤ (c� − z�A − M�
d(X))y = c�y − b�z − trace(XMd(y))

≤ c�y − b�z − φ�(X) − φ(Md(y))

and hence

c�y − φ(Md(y)) ≥ b�z + φ�(X).

Strong duality, i.e. the above inequality is an equality for any optimal values X̂, ŷ, ẑ
follows from concavity of function φ and the so-called Slater qualification constraint
[2, Section C.1], i.e. the existence of an interior point for primal problem (2): choose
e.g. the vector of moments of an atomic measure supported onX with more than nd
distinct atoms. Then the moment matrix Md(y) is positive definite. Equivalently, the
complementarity condition

p̂�ŷ = 0 (5)

holds for p̂� := c� − ẑ�A − M�
d(X̂) as in (3). ��

4 Christoffel–Darboux polynomial

In [1] various functions φ are considered, depending on the optimal design problem
of interest. In optimal design problem (2), let

φ(Y) := log detY, Ay :=
∫
X

dμ(x), b = 1, c = 0 (6)

i.e. we are minimizing over probability measures supported onX a function φ which
is the classical barrier function used in interior point methods for semidefinite pro-
gramming [5]. The domain of φ is the cone of positive definite matrices. This optimal
design problem has the same solution as the D-optimal design problem corresponding
to the positively homogeneous objective function (detY)−1/nd .

Theorem 2 Problem (2) with data (6) has a unique solution

ŷ ∈ M2d({x ∈ X : p(x) = nd})
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where p(x) := v�
d(x)M

−1
d (ŷ)vd(x) is the Christoffel–Darboux polynomial associated

to ŷ.

Proof Uniqueness of the solution ŷ follows from convexity of the feasibiliy set and
strict concavity of the objective function in problem (2). The solution ŷ is an interior
point, i.e. Md(ŷ) is positive definite. As explained in the proof of Theorem 1, the
Karush-Kuhn-Tucker (KKT) optimality conditions are necessary and sufficient for an
optimal solution, see e.g. [2, Section C.1]: all partial derivatives of the Lagrange dual
function f must vanish, and this implies that

∂ f

∂Y
= X̂ − ∂φ

∂Y
(Md(ŷ)) = 0

and hence that

X̂ = M−1
d (ŷ)

for an optimal primal-dual pair X̂, ŷ. From the complementarity condition (5) and
property (1) we deduce that the optimal ẑ satisfies

ẑ = −M�
d(M

−1
d (ŷ))ŷ = −trace(Md(ŷ)M

−1
d (ŷ)) = −nd .

Complementarity condition (5) means that an optimal vector of moments ŷ cor-
responds to a measure μ supported on the zero level set of the optimal positive
polynomial with coefficients p̂ := M�

d(M
−1
d (ŷ)) − nd , i.e. the algebraic set {x ∈ X :

p(x) = nd}. ��
The concave conjugate function is φ�(X) = nd + φ(X), its domain is the cone of

positive definite matrices, and from the proof of Theorem 2, the dual design problem
(4) has the simple form

supX log detX
s.t. nd − vd(x)�Xvd(x) ≥ 0, ∀x ∈ X .

(7)

Its solution is X̂ = M−1
d (ŷ) where ŷ is the unique solution of problem (2). The

Christoffel–Darboux polynomial p(x) = v�
d(x)X̂vd(x) is SOS since matrix X̂ is pos-

itive definite, and dual matrix X is such that nd ≥ vd(x)�Xvd(x) ≥ 0 for all x ∈ X .
From Theorem 2 the optimal sequence of moments ŷ in primal problem (2) has

a representing atomic measure μ whose atoms are given by the level set of the
Christoffel–Darboux polynomial. This sequence ofmoments is unique, but there could
be another measure, atomic or not, with the same moments.

Dual problem (7) has also an interpretation in computational geometry. Indeed if
d = 1 then x �→ p(x) = nd − vd(x)TXvd(x) is a quadratic polynomial and so the set
E := {x ∈ R

n : p(x) ≥ 0} is an ellipsoid that contains X , and log detX is related to
the volume of E . So the dual design problem is also equivalent to the problemof finding
the ellipsoid of minimum volume that contains X , which is the celebrated Löwner-
John ellipsoid problem. For d = 1 this was already observed in [6] and therefore (7)
can be considered as a generalization to the case d > 1 of the Löwner-John ellipsoid
problem with set X and with log detX as a proxy for the volume of E .
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5 Conclusion

In this note we use only elementary concepts of convex analysis to show that the
Christoffel–Darboux polynomial, so useful in approximation theory and data analysis
[3], also arises naturally in the dual problem of D-optimal experimental design with
semi-algebraic data, a standard convex optimization problem in statistics.Numerically,
problem (2) is solved with the moment-SOS hierarchy, i.e the moment coneM2d(X )

is relaxed with a hierarchy of projections of spectrahedra of increasing size.
As shown in [1], the Christoffel–Darboux polynomial can be used as a certificate

of finite convergence of the hierarchy: the contact points of its level set at nd withX
are the support of an optimal design. An algorithmic consequence is that an optimal
measure for the design problem is concentrated at the maximizers of the Christoffel–
Darboux polynomial on the domain. These maximizers can be found numerically with
the moment-SOS hierarchy, see [1, Section 5.2].

The dual design problem has also a nice interpretation in computational geometry
as an extension of the Löwner-John ellipsopid problem to (i) semi-algebraic domains
not necessarily convex and (ii) enclosing sets more general than ellipsoids.

Another interesting isssue is to study how the Christoffel–Darboux polynomial, or
its maximizers, are affected when the semi-algebraic set is perturbed. It is however
unclear whether our variational characterization of this polynomial can be useful for
that purpose.

The Christoffel–Darboux polynomial corresponds to a particular choice of a con-
vex function to be minimized in the design problem, namely the logarithmic barrier
function of the positive semidefinite cone. It would be insightful to study the polyno-
mials arising in the dual design problem corresponding to other convex functions of
the eigenvalues of positive semidefinite matrices [4].
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