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Abstract

We consider nonnegative time series forecasting framework. Based on recent advances in Nonnegative
Matrix Factorization (NMF) and Archetypal Analysis, we introduce two procedures referred to as Sliding
Mask Method (SMM) and Latent Clustered Forecast (LCF). SMM is a simple and powerful method based
on time window prediction using Completion of Nonnegative Matrices. This new procedure combines low
nonnegative rank decomposition and matrix completion where the hidden values are to be forecasted. LCF
is two stage: it leverages archetypal analysis for dimension reduction and clustering of time series, then it
uses any black-box supervised forecast solver on the clustered latent representation. Theoretical guarantees
on uniqueness and robustness of the solution of NMF Completion-type problems are also provided for
the first time. Finally, numerical experiments on real-world and synthetic data-set confirms forecasting
accuracy for both the methodologies.

1 Introduction

This article deals with forecasting and/or clustering of times series. We focus on applications where
one knows that times series at hand have some intrinsic structure, such as entry-wise nonnegativity. In
that case one can exploit Nonnegative Matrix Factorization (NMF) approaches which have been intro-
duced by [Paatero and Tapper, 1994] for spectral unmixing problems in analytical chemistry and pop-
ularized by [Lee and Seung, 1999]. For further details we refer the interested reader to the surveys
[Wang and Zhang, 2013, Gillis, 2015, Gillis, 2017] and references therein. NMF has been widely applied
in many different contexts: document analysis [Xu et al., 2003, Essid and Fevotte, 2013], hidden Markov
chain [Fu et al., 1999], representation learning in image recognition [Lee and Seung, 1999], community
discovery [Wang et al., 2011], and clustering methods [Turkmen, 2015]. This paper introduces two NMF-
like procedures for forecasting and clustering of time series. Forecasting for temporal time series has been
previously done before through a mixed linear regression and matrix factorization in [Yu et al., 2016],
matrix completion for one temporal time serie in [Gillard and Usevich, 2018], and tensor factorization
[de Araujo et al., 2017, Yokota et al., 2018, Tan et al., 2016].

Sliding Mask Method (SMM) inputs the forecast values and it can be viewed as a “nonnegative” matrix
completion algorithm under low nonnegative rank assumption. This framework raises two issues. A first
challenge is uniqueness of the decomposition, also referred to as identifiability of the model. In Theorem 2,
we introduce a new condition that ensures uniqueness from partial observation of the target matrix M.
An other challenge, as pointed by [Vavasis, 2009] for instance, is that solving exactly NMF decomposition
problem is NP-hard. Nevertheless NMF-type problems can be solved efficiently using (accelerated) proximal
gradient descent method [Parikh and Boyd, 2013] for block-matrix coordinate descent in an alternating pro-
jection scheme, e.g., [Javadi and Montanari, 2020a] and references therein. We rely on these techniques to
introduce algorithms inputting the forecast values based on NMF decomposition, see Section 2.3. Theorem 3
complements proving robustness of solutions of NMF-type algorithms when entries are missing or corrupted
by noise.

In practical situation, one may face a large number of time series to forecast, e.g. supply chain optimiza-
tion, electricity consumption forecast... In this case, one cannot forecast each time series separately and/or
clustering the set of time series without facing large algorithmic complexity. We can address this issue using
Latent Clustered Forecast (LCF). This method uses NMF decomposition M =WH as a dimension reduction
step. As we will see in Section 3, it performs forecast on rows of H (using any black-box supervised forecast
solver) and/or clustering on the rows of W.
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Acronym Name Objective Constraints: W≥ 0 +

NMF
Nonnegative Matrix Factorization

F1 H≥ 0[Cichocki and Zdunek, 2006]
SNMF Semi NMF [Gillis and Kumarg, 2015] F1
NNMF Normalized NMF F1 H≥ 0, W1= 1
SNNMF Semi Normalized NMF F1 W1= 1

AMF
Archetypal Matrix Factorization

F2 W1= 1, V≥ 0, V1= 1[Javadi and Montanari, 2020a]
ANMF Archetypal NMF F2 H≥ 0, V≥ 0, V1= 1
ANNMF Archetypal Normalized NMF F2 W1= 1, H≥ 0, V≥ 0, V1= 1

mNMF Mask NNMF F3 TN= X,W1= 1,H≥ 0
mAMF Mask AMF F4 TN= X,W1= 1, V≥ 0, V1= 1

Table 1: The seven block convex programs achieving matrix factorization of nonnegative matrices. The
objectives are F1 := ‖M−WH‖2

F and F2 := ‖M−WH‖2
F+λ‖H−VM‖2

F . The two last lines are SMM procedures
with sliding operator Π and objectives F3 := ‖N−WH‖2

F and F4 := ‖N−WH‖2
F +λ‖H−VN‖2

F .

Notation: Denote by A> the transpose of matrix A. We use Rn×p
+ to denote n× p nonnegative matrices.

It would be useful to consider a columns description of matrix A = [A1 · · ·An2
] and row decomposition

AT = [(A(1))> · · · (A(n1))>] for A ∈Rn1×n2 where Ak denotes the columns of A and A(k) denotes the rows of A.
Ai, j indicates the elements of matrix A. [n] represents the set {1,2, . . . , n}, while 1d is the all-ones vector of
size d. 1A is the indicator function ofA , such that 1A = 0 if conditionA is verified,∞ otherwise.

1.1 The time series forecasting problem

This article considers N ≥ 1 times series on the same temporal period with T ≥ 1 timestamps in a setting
where N ≥ T and possibly N � T . We would like to forecast the next F ≥ 1 times. Additionally, one may
also aim at clustering these N time series, and/or reduce the ambient dimension N × T while maintaining
a good approximation of these times series. The observed times series can be represented as a matrix M of
size N × T . A row M(i) of M represents a time series and a column M j of M represents a timestamp record.
We assume that there exists a target matrix M? with

M=M?
T + E ,

where E is some noise term and M?
T ∈R

N×T
+ is a sub-matrix

M? :=
�

M?
T

︸︷︷︸

past

M?
F

︸︷︷︸

future

�

of the target matrix of size N × (T + F) that can be split into timestamps up today M?
T ∈ R

N×T
+ and future

timestamps M?
F ∈R

N×F
+ to be forecast.

The statistical task is the following: given the observation M predict the future target values M?
F , and

incidentally the “denoised” M?
T .

1.2 Nonnegative and Archetypal Analysis

We aim to decompose nonnegative matrix M ∈ RN×T
+ as the product of nonnegative matrix W ∈ RN×K and

matrix H ∈ RK×T by minimizing the Frobenius norm of the difference between M and the reconstructed
matrix ÒM :=WH [Cichocki et al., 2009]:

min
W≥0,H≥0

‖M−WH‖2
F . (NMF)

Another approach consists in the Archetypal Analysis:

min
W≥0,W1=1
V≥0,V1=1

‖M−WH‖2
F +λ‖H−VM‖2

F , (AMF)

where λ > 0 is a tuning parameter, see for instance [Javadi and Montanari, 2020a]. Different normalisation
and constraints can be considered, we exhibit 7 variants in Table 1. We will be particularly interested in

min
W≥0,W1K=1N

H≥0

‖M−WH‖2
F . (NNMF)
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Figure 1: Nonnegative and Archetypal representations performs dimension reduction using H as decoding,
while coding is based on conic (resp. barycentric) coordinates (w.r.t. rows of H) in the non-normalized case
(resp. normalized case W1K = 1N ).

An important parameter is the so-called nonnegative rank K ≥ 1 [Gillis and Glineur, 2012b] that governs
dimension reduction performed by these matrix factorization, see Figure 1. Note that the left hand side
matrix W is always nonnegative and may be or may not be normalized so that W1K = 1N . Each row of the
observation M is then a weighted sum of rows of H, these weights being encoded by W. Hence, each time
series (row M(i)) is encoded by W(i) a row of W. Decoding is performed multiplying W(i) by H. When W
is normalized, the aforementioned factorisation algorithms search for the best polytope encapsulating the
cloud of point given by the rows of M. The points generating this polytope are the rows of H while each
cloud point (here a row M(i) of M) is localized thanks to its barycentric coordinates given by W(i), for further
details see [Gillis, 2014]. When W is not normalized, the aforementioned factorisation algorithms search
for the best cone encapsulating the cloud of point given by the rows of M. The rays generating this cone
are the rows of H while each cloud point (here a row M(i) of M) is localized thanks to its conic coordinates
given by W(i), for further details see [Ge and Zou, 2015].

The parameter λ in the archetypal analysis enforces some kind of reciprocity. In NMF, the cloud of points
given by the rows of M should be encapsulated by the rows of H. Archetypal analysis penalises the reciprocal:
the rows of H should be encapsulated in the convex/conic volume given by the cloud of points of the rows
of M. Both parameters K and λ can be tuned by cross-validation [Arlot and Celisse, 2010], as done in our
experiments, see Section 4.

1.3 Contribution: Towards Nonnegative Matrix Completion for Time series

We are interested in a Matrix Completion problem using Nonnegative Matrix Factorization. We consider
n× p matrices X0,X?,Z which, in the Sliding Mask Method (SMM), are linear transformations of matrices
M?,M?

T ,E respectively, see Section 2. Note that n := (B −W + 1)N > N and p := W P > F where B, W, F
will be introduced in Section 2.

Consider a “mask” operator T(N) that sets to zero N × F values of N. Namely, given N ∈Rn×p, define

T(N) =

�

N1 N2

N3 0N×F

�

,

where (Ni)
4
i=1 are blocks of N=

�

N1 N2

N3 N4

�

.

Our goal is the following matrix completion problem: Given a noisy and incomplete observation

X := T(X0) +F , (1)

whereF is some noise term, find a good estimate of the target X0. One can consider the Nonnegative Matrix
Completion referred to as Mask NNMF:

min
W1=1,W≥0

H≥0
TN=X

‖N−WH‖2
F , (mNMF)

where solutions N ∈ Rn×p are such that TN = X (observed values) and T⊥N = T⊥(WH) (forecast values).
This latter formulation is an instance of Matrix Completion [Nguyen et al., 2019]. Forecasting problem
reduces to Matrix Completion problem, whose aim is finding the nonnegative matrix factorization N'WH
of observed matrix X such that TN= X.

Remark 1. Problem (mNMF) is NNMF when T= I, where I is the identity operator.

Dropping H≥ 0, another approach is the Archetypal Matrix Completion referred to as Mask AMF:

min
W≥0,W1=1
V≥0,V1=1

TN=X

‖N−WH‖2
F +λ‖H−VN‖2

F (mAMF)

Remark 2. When T= I, Problem (mAMF) reduces to standard AMF formulation (AMF).
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1.3.1 Uniqueness from partial observations

Define the mask X? of X0 by

X? := T(X0) =:

�

X1 X2

X3 0N×F

�

,

where X1 ∈R(n−N)×(p−F), X2 ∈R(n−N)×F , and X3 ∈RN×(p−F) are blocks of X0. Let us consider

Ttrain(X0) := [X1 X2] , Ttest(X0) := [X3 0N×F ] ,

TT (X0) :=
� X1

X3

�

, TF (X0) :=
� X2

0N×F

�

.

Remark 3. Let X0 :=W0H0, H0 := [H0T H0F ], and W>0 := [W0
>
train W0

>
test], then

Ttrain(X0) =W0trainH0 , X3 =W0testH0T ,

TT (X0) =W0H0T , X2 =W0trainH0F .

At first glance, the coding-decoding scheme of Figure 1 can be ill-posed and/or not robust to noise. The
first issue is the uniqueness of the decomposition W0H0 given partial observations, namely proving that Partial
Observation Uniqueness (POU) property holds:

If T(WH) = T(W0H0)
Then (W,H)≡ (W0,H0) ,

(POU)

where ≡ means up to positive scaling and permutation: if an entry-wise nonnegative pair (W,H) is given
then (WPD,D−1P>H) is also a nonnegative decomposition WH = WPD ×D−1P>H, where D scales and P
permutes the columns (resp. rows) of W (resp. H). When we observe the full matrix X0 =W0H0, the unique-
ness issue has been addressed under some sufficient conditions on W,H, e.g., Strongly boundary closeness
of [Laurberg et al., 2008], Complete factorial sampling of [Donoho and Stodden, 2004], and Separability of
[Recht et al., 2012]. A necessary and sufficient condition exists:

Theorem 1 ([Thomas, 1974]). The decomposition X0 := W0H0 is unique up to permutation and positive
scaling of columns (resp. rows) of W0 (resp. H0) if and only if the K-dimensional positive orthant is the only
K-simplicial cone verifying

Cone(W>0 ) ⊆ C ⊆ Cone(H0) ,

where Cone(A) is the cone generated by the rows of A.

Our first main assumption is that:

• (A1) In the set given by the union of sets:

{C : Cone(W0train
>) ⊆ C ⊆ Cone(H0)}

⋃

{C : Cone(W>0 ) ⊆ C ⊆ Cone(H0T )} ,

the nonnegative orthant is the only K-simplicial cone.

It is clear that this property is implied by the following one, (A’1)⇒ (A1).

• (A’1) In the set

{C : Cone(W0train
>) ⊆ C ⊆ Cone(H0T )}

the nonnegative orthant is the only K-simplicial cone.

Given the standard definition:

Definition 1 ([Javadi and Montanari, 2020a]). The convex hull conv(X0) has an internal radius µ > 0 if it
contains an K − 1 dimensional ball of radius µ.

Our second main assumption is that:

• (A2) Assume that

conv(Ttrain(X0)
︸ ︷︷ ︸

=W0trainH0

) has internal radius µ > 0 . (A2)
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Theorem 2. Condition(A1) is sufficient for (POU).
If (A1) and (A2) holds, T(WH) = T(W0H0) and W01=W1= 1 then (W,H) = (W0,H0) up to permutation of
columns (resp. rows) of W (resp. H), and there is no scaling.

Proof. Proofs are given in Supplement Material.

Remark 4. By Theorem 1, observe that (A’1) is a necessary and sufficient condition for the uniqueness of the
decomposition X1 = W0trainH0T . Then, using (A’1) ⇒ (A1), we understand that if decomposition of X1 =
W0trainH0T is unique then (POU) holds.

1.3.2 Robustness under partial observations

The second issue is robustness to noise. To the best of our knowledge, all the results addressing this is-
sue assume that the noise error term is small enough, e.g., [Laurberg et al., 2008], [Recht et al., 2012], or
[Javadi and Montanari, 2020a]. In this paper, we extend these stability result to the nonnegative matrix
completion framework (partial observations) and we also assume that noise term ‖F‖F is small enough.

In the normalized case (i.e., W1 = 1), both issues (uniqueness and robustness) can be handle with the
notion of α-uniqueness, introduced by [Javadi and Montanari, 2020a]. This notion does not handle the
matrix completion problem we are addressing. To this end, let us introduce the following notation. Given
two matrices A ∈ Rna×p and B ∈ Rnb×p with same row dimension, and C ∈ Rna×nb , define the divergence
D(A,B) as

D(A,B) := min
C≥0 , C1nb

=1na

na
∑

a=1








A(a) −
nb
∑

b=1

CabB(b)









2

F
,

= min
C≥0 , C1nb

=1na

‖A−CB‖2
F .

which is the squared distance between rows of A and conv(B), the convex hull of rows ofB .
ForB ∈Rn×p define

eD(A,B) := min
C≥0 , C1n=1na

T(N−B)=0

‖A−CN‖2
F .

Definition 2 (Tα-unique). Given X0 ∈ Rn×p,W0 ∈ Rn×K ,H0 ∈ RK×p, the factorization X0 = W0H0 is Tα-
unique with parameter α > 0 if for all H ∈RK×p with conv(X0) ⊆ conv(H):

eD(H,X0)
1/2 ≥ eD(H0,X0)

1/2

+α
�

D(H,H0)
1/2 +D(H0,H)1/2

	

.

Our third main assumption is given by:

• (A3) Assume that

X0 =W0H0 is Tα-unique (A3)

Theorem 3. If (A2) and (A3) hold then there exists positive reals ∆ and Λ (depending on X0) such that, for
all F such that ‖F‖F ≤ ∆ and 0 ≤ λ ≤ Λ, any solution (ÒW, bH) to (mAMF) (if λ 6= 0) or (mNMF) (if λ = 0)
with observation (1) is such that:

∑

`≤[K]

min
`′≤[K]

‖H0` − bH`′‖2
2 ≤ c ‖F‖2

F ,

where c is a constant depending only on X0.

Proof. Proofs are given in Supplement Material.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we discuss the Sliding Mask Method (SMM), while
Section 3 is devoted to describe the Latent Clustered Forecast (LCF). Numerical experiments and conclusions
are presented in Sections 4 and 5, respectively. A repository on the numerical expermients can be found at
https://github.com/Luca-Mencarelli/Nonnegative-Matrix-Factorization-Time-Series.
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2 The Sliding Mask Method

2.1 Sliding window as forecasting

One is given N time series M(1), . . . ,M(N) ∈ RT over a period of T dates. Recall M ∈ RN×T is the matrix of
observation such that M> = [(M(1))> · · · (M(N))>] and assumed entry-wise nonnegative. We assume some
periodicity in our time series, namely that M? can be split into B matrix blocks of size N × P where P =
(T + F)/B, see Figure 2.

Figure 2: Target matrix M? can be split into B blocks of same time length P.

Given W ≥ 1 and a T × N matrix M, we define ˝(M) the linear operator that piles up W consecutive
sub-blocks in a row, as depicted in Figure 3. This process looks at W consecutive blocks in a sliding manner.
Note that ˝(M) is an incomplete matrix where the missing values are depicted in orange in Figure 3, they
correspond to the time-period to be forecasted. Unless otherwise specified, these unobserved values are set
to zero. Remark that ˝(M) has W columns blocks, namely W P columns and (B−W +1)N rows. By an abuse
of notation, we also denote

˝ :RN×(T+F)→R(B−W+1)N×W P

the same one-to-one linear matrix operation on matrices of size N × (T + F). In this case, X0 := ˝(M?) is a
complete matrix where the orange values have been implemented with the future values of the target M?

F .

Figure 3: The operator Π(M) outputs an incomplete (B−W +1)N ×W P matrix given by a mask where the
N F orange entries are not observed. These entries corresponds to future times that should be forecasted.

The rationale behind is recasting the forecasting problem as a supervised learning problem where one
observes, at each line of Π(M), the W P − F first entries and learn the next F entries. The training set is
given by rows 1, 3,5, 7 in Π(M) of Figure 3 and the validation set is given by rows 2,4, 6,8 where one aims
at predicting the F missing values from the W P − F first values of these rows.

2.2 Mask NNMF and Mask AMF

Consider a matrix completion version of NMF with observations

X := ˝(M) = ˝(M?
T )

︸ ︷︷ ︸

X?

+ ˝(E)
︸︷︷︸

Z

,

and

min
W1=1,W≥0,H≥0

‖X− T(WH)‖2
F , (2)

where the “mask” operator T is defined by zeroing the “future” values (in orange in Figure 3). Note that

T(Π(M?)
︸ ︷︷ ︸

X0

) = Π(M?
T ) = X? .

Moreover, note that Problem (2) is equivalent to mask NNMF (mNMF). If we drop the nonnegative con-
straints on H and consider the archetypal approach, we obtain mask AMF (mAMF). In particular, Theorem 3
applies proving that (mNMF) and (mAMF) are robust to small noise.
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2.3 Algorithms

2.3.1 Alternating Least Squares for (mNMF)

The basic algorithmic framework for matrix factorization problems is Block Coordinate Descent (BCD)
method, which can be straightforwardly adapted to (mNMF) (see Supplement Material). BCD for (mNMF)
reduces to Alternating Least Squares (ALS) algorithm (see Algorithm 1), when an alternative minimization
procedure is performed and matrix WH is projected onto the linear subspace TN = X by means of operator
PX, as follows:

N :=PX(WH) : TN= X and T⊥N=WH .

Algorithm 1: ALS for mNMF

1: Initialization: choose H0 ≥ 0,W0 ≥ 0, set N0 :=PX(H0W0) and i := 0.
2: while stopping criterion is not satisfied do
3: Hi+1 :=minH≥0 ‖Ni −WiH‖2

F
4: Wi+1 :=minW≥0,W1=1 ‖Ni −WHi+1‖2

F
5: set Ni+1 :=PX(Wi+1Hi+1)
6: i := i + 1
7: end while

Hierarchical Alternating Least Squares (HALS) is an ALS-like algorithm obtained by applying an ex-
act coordinate descent method [Gillis, 2014]. Moreover, an accelerated version of HALS is proposed in
[Gillis and Glineur, 2012a] (see Supplement Material).

2.3.2 Projected Gradient for (mAMF)

Proximal Alternative Linear Minimization (PALM) method, introduced in [Bolte et al., 2014] and applied to
AMF by [Javadi and Montanari, 2020a], can be also generalized to (mAMF) (see Algorithm 2).

Algorithm 2: PALM for mAMF

1: Initialization: chose H0, W0 ≥ 0 such that W01= 1, set N0 :=PX(W0H0) and i := 0.
2: while stopping criterion is not satisfied do
3: eHi := Hi − 1

γi
1
Wi>

�

HiWi −Ni
�

4: Hi+1 := eHi − λ

λ+γi
1

�

eHi −Pconv(Ni)(H̃i)
�

5: Wi+1 :=P∆
�

Wi − 1
γi

2

�

Hi+1Wi −Ni
�

Hi+1>
�

6: Ni+1 :=PX

�

Ni + 1
γi

3

�

Hi+1Wi+1 −Ni
�

�

7: i := i + 1
8: end while

Pconv(A) is the projection operator onto conv(A) and P∆ is the projection operator onto the (N − 1)-
dimensional standard simplex ∆N . The two projections can be efficiently computed by means, e.g., Wolfe
algorithm [Wolfe, 1976]) and active set method [Condat, 2016], respectively.

Theorem 4. Let ε > 0. If γi
1 > ‖W

i>Wi‖F , γi
2 > max

¦

‖Hi+1Hi+1>‖F , ε
©

, and γi
3 > 1, for each iteration

i, then the sequence
�

Hi ,Wi ,Ni
�

generated by Algorithm 2 converges to a stationary point of Ψ(H,W,N) :=
f (H) + g(W) + p(N) + h(H,W,N), where:

f (H) = λD(H,N) , g(W) =
∑K

k=1 1{Wk∈∆} ,

p(N) = 1{N=PX(WH)} , h(H,W,N) = ‖N−WH‖2
F .

Proof. Proof is given in Supplement Material.

Finally, the inertial PALM (iPALM) method, introduced for NMF in [Pock and Sabach, 2016], is general-
ized to (mAMF) in Algorithm 3.

Remark 5. If, for all iterations i, αi
1 = α

i
2 = 0 and β i

1 = β
i
2 = 0, iPALM reduces to PALM.

7



Algorithm 3: iPALM for mAMF

1: Initialization: H0, W0 ≥ 0 such that W01= 1, set N0 :=PX(W0H0), H−1 := H0, W−1 :=W0,
N−1 := N0, and i := 0.

2: while stopping criterion is not satisfied do
3: Hi

1 := Hi +αi
1

�

Hi −Hi−1
�

, Hi
2 := Hi + β i

1

�

Hi −Hi−1
�

4: eHi := Hi
1 −

1
γi

1
Wi>

�

Hi
2Wi −Ni

�

5: Hi+1 := eHi − λ

λ+γi
1

�

eHi −Pconv(Ni)(H̃i)
�

6: Wi
1 :=Wi +αi

2

�

Wi −Wi−1
�

, Wi
2 :=Wi

1 + β
i
2

�

Wi −Wi−1
�

7: Wi+1 :=P∆
�

Wi
1 −

1
γi

2

�

Hi+1Wi
2 − N i

�

Hi+1>
�

8: Ni
1 := Ni

1 +α
i
3

�

Ni −Ni−1
�

, Ni
2 := Ni

1 + β
i
3

�

Ni −Ni−1
�

9: Ni+1 :=PX

�

Ni
1 +

1
γi

3

�

Hi+1Wi+1 −Ni
2

�

�

10: i := i + 1
11: end while

2.3.3 Stopping criterion for normalized NMF

For NNMF, KKT conditions regarding matrix W are the following (see Supplement Material):

W ◦
�

(WH−N)H> + t 1>K
�

= 0 .

By complementary condition, it follows that, ∀ j, t i = ((WH−N)H>)i, j . Hence, we compute t i by selecting,
for each row W (i), any positive entry Wi, j > 0.

Remark 6. Numerically to obtain a robust estimation of t i , we can average the corresponding values calculated
per entry Wi, j .

Let εW, εH, and εR be three positive thresholds. The stopping criterion for the previous algorithms consists
in a combination of:

1. the maximum number of iterations;

2. the Frobenius norm of the difference of W and H at two consecutive iterations, i.e., the algorithm stops
if

‖Wi+1 −Wi‖F ≤ εW ∧ ‖Hi+1 −Hi‖F ≤ εH ;

3. a novel criterion based on KKT condition, i.e., the algorithm stops if

‖R(Wi+1)‖F + ‖R(Hi+1)‖F ≤ εR

where matrices R(W) and R(H) are defined as

R(W)i, j := |(WH−N)H>)i, j + t i |1{Wi, j 6=0} ,

R(H)i, j := |W>(WH−N))i, j |1{Hi, j 6=0} .

2.4 Large-scale data-set

Assume the observed matrix X= Π(M) is large scaled, namely one has to forecast a large number N of times
series (e.g. more than 100,000) and possibly a large number of time stamps T . The strategy, described in
Section 1.3.1 in [Cichocki et al., 2009] for NMF, is to learn the H ∈RK×T matrix from a sub-matrix Nr ∈Rr×T

of K ≤ r � N rows of N ∈Rn×T , and learn the W ∈RN×K matrix from a sub-matrix Nc ∈RN×c of K ≤ c� T
columns of N ∈RN×T . We denote by Hc the sub-matrix of H given by the columns appearing in Nc and Wr
the sub-matrix of H given by the columns appearing in Nc .

This strategy can be generalized to (mNMF) and (mAMF). For (mNMF) this generalization is straight-
forward, and for (mAMF) one need to change Steps 3-5 in Algorithm 2 as follows:

eHi := Hi −
1

γi
1

(Wi
r)
> �HiWi

r −Ni
r

�

Hi+1 := eHi −
λ

λ+ γi
1

�

eHi −Pconv(Ni)(H̃
i)
�

Wi+1 :=P∆

�

Wi −
1

γi
2

�

Hi+1
c Wi −Ni

c

�

(Hi+1
c )

>
�

.

Same approach is exploited for Algorithm 3.
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3 Latent Clustered Forecast

In this section we describe a second approach to time series forecasting problem, namely Latent Clustered
Forecast (LCF) (see Algorithm 4). Let

M? =W?H? =W?
�

H?T
︸︷︷︸

past

H?F
︸︷︷︸

future

�

=
�

M?
T

︸︷︷︸

past

M?
F

︸︷︷︸

future

�

.

Rather than directly forecasting the time series future data M?
F , we firstly forecast the profiles HF and we

secondly reconstruct M?
F . LCF initially cluster the N time series in I � N groups. For each cluster i ∈ [I],

matrix (M?
T )i is defined by selecting the time series belonging to cluster and is factorized as Wi(HT )i . Then,

(HF )i (i ∈ [I]) are forecasted by means of a black-box procedure, e.g., random forest regression. Finally, the
forecasted value are retrieved as MF :=Wi(HF )i .

Algorithm 4: LCF for time series forecasting
1: factorize M?

T 'W0H0
2: divide the rows of M?

T in I clusters
3: for each i ∈ [I] do
4: define (M?

T )i by selecting the time series in i
5: factorize (M?

T )i 'Wi(HT )i
6: forecast (HF )i
7: end for
8: MF :=W0HF

Remark 7. Algorithm 4 defines a class of algorithms, whose instances are defined by choosing clustering strategy
at Steps 2, matrix factorization approach at Steps 1 and 5, and forecasting algorithm at Step 6. Algorithm 4
can be trivially parallelized by implementing multi-threading for loop at Steps 4-6.

We implemented two specific procedures for clustering and forecasting steps, detailed in next subsections.

3.1 Clustering (Step 2)

We performs initially a (nonnegative) factorization of observed matrix M?
T ' W0H0. The clustering

of time series is based on weight matrix W0: the rationale of this strategy is considering time se-
ries as “similar” if the corresponding linear combination of the columns of (HT )0 has “similar weights”.
Hence, the full dendrogram of matrix W0 is computed via hierarchical clustering the rows of W0 with
complete linkage and `1 affinity, implemented in the Python sklearn 0.23 package under the routine
AgglomerativeClustering(compute_full_tree=True) [Pedregosa et al., 2011].

The dendrogram is explored from top to the bottom by looking at the children of each node (see Algo-
rithm 5). The node is split into two children if and only if at least one of its children has size at least d. If
it is not the case, the node is the leaf of the output tree. Algorithm 5 is executed at the root node of the full
dendrogram and returns the set of time series clusters.

Note that other clustering approaches might have been considered here. In practice, one need to pay
attention that clusters should have maximal size d. The choice of the size d is discussed for the numerical
experiments of Section 4.

Algorithm 5: Exploring dendrogram
1: Input: node s, cluster maximal dimension d
2: let child_1 and child_2 be the children of s
3: if size of child_1 ≤ d and size of child_2 ≤ d then
4: return the set of all children of node s
5: else
6: for all children c of s do
7: if size of c ≤ d then
8: return the set of all children of node c
9: else

10: recursively execute Algorithm 5 on node c
11: end if
12: end for
13: end if

9



Algorithm RRMSE(K,W) RMPE(K,W)

SMM on mAMF 5.24%(4,5) 6.60%(4,5)
SMM on mNMF 5.15%(4,5) 7.63%(4,4)
LCF 18.40%(10,–) 25.84%(4,–)
RFR 8.10% 7.98%

Table 2: Indices for weekly consumption data-set.

Algorithm RRMSE(K,W) RMPE(K,W)

SMM on mAMF 14.35%(4,5) 34.50%(4,20)
SMM on mNMF 14.17%(4,5) 41.90%(4,40)
LCF 21.22%(10,–) 52.97%(10,–)
RFR 14.50% 47.72%

Table 3: Indices for daily consumption data-set.

3.2 Forecasting (Step 6)

In order to forecast HF we apply deep learning approach. The samples are defined via sliding window trans-
formation: the time series are subdivided in overlapping intervals of time window D ≥ 1 and, in supervised
learning fashion, the relationship between the values of each interval (inputs) and the consecutive F (out-
puts) values is learnt by mean of a regression algorithm, e.g., random forest regression.

4 Numerical Experiments

The interested reader may find a github repository on the numerical experiments at https://github.com/
Luca-Mencarelli/Nonnegative-Matrix-Factorization-Time-Series

4.1 Real-world Data-sets

The numerical experiments refer to the weekly and daily electricity consumption data-set of N = 370 Por-
tuguese customers during the period 2011-2014 (T + F = 208 and T + F = 1456 for weekly and daily
measurements, respectively) [Trindade, 2016]. We chose the the last four weeks of 2014 as forecasting
period (F = 4 and F = 28 for weekly and daily consumption, respectively).

We tests both SMM and LCF with a random initialization of matrices H0,W0. Each entry in H0 is randomly
selected in [0, h] where h> 0 is chosen by practitioner. Each row of matrix W0 is randomly generated in the
corresponding standard simplex.

For SMM we implement both HALS for (mNMF) and PALM for (mAMF). Moreover, we consider two
different strategies to define matrix Π(M): with non-overlapping and overlapping sliding intervals (for the
overlapping case, we consider intervals with a common period of a week).

For LCF we consider different regression algorithms to forecast profiles HF , e.g., Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRU) deep neural networks with preliminary data standardization
[Shewalkar et al., 2019] and Autoregressive Integrated Moving Average (ARIMA) models [Douc et al., 2014]:
the best results in terms of forecasting quality and elapsed time are produced by random forest regression.
Maximal dimension d in Algorithm 5 is set equal to nonnegative rank. For the matrix factorizations we apply
PALM algorithm to Semi Normalized NMF (SNNMF)

Moreover, we have compared our method with other existing time series forecasting methods such as
Random Forest Regression (RFR) and EXponential Smoothing (EXS).

The quality of the forecasted matrix MF is measured by the relative root-mean-squared error (RRMSE)
and the relative mean-percentage error (RMPE):

RRMSE=
‖MF −M?

F‖F

‖M?
F‖F

, RMPE=
‖MF −M?

F‖1

‖M?
F‖1

.

We run all the test on a MacBook Pro mounting macOS Sierra with 2.6 GHz Intel Core i5 processor and
8 GB 1600 MHz DDR3 memory.

Tables 2-3 report the cross-validated RRMSE and RMPE on observed values obtained during the compu-
tational tests for each methods for the weekly and daily consumption data-set, respectively. In parenthesis
we detail the corresponding values of the eventual hyper-parameters K and W. SMM outperforms RFR, while
performances of LCF are comparable with RFR.
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Algorithm RRMSE(K,W) RMPE(K,W) CPU (sec.)

SMM on mAMF 0.28%(20,5) 0.27%(20,5) 210.07
SMM on mNMF 0.28%(20,5) 0.27%(20,5) 867.83
LCF with RFR 36.32% 35.78% 393.58
LCF with EXP 49.47% 49.73% 86.39
RFR 23.89% 22.88% 953.67
EXS 48.44% 48.11% 34.39

Table 4: Indices for low noise data-set.

Algorithm RRMSE(K,W) RMPE(K,W) CPU (sec.)

SMM on mAMF 0.79%(20,5) 0.83%(20,5) 5216.62
SMM on mNMF 0.59%(20,5) 0.57%(20,5) 5372.65
LCF with RFR 34.55% 34.57% 332.98
LCF with EXS 46.53% 46.02% 90.14
RFR 23.30% 21.75% 776.40
EXP 45.39% 44.10% 29.84

Table 5: Indices for medium noise data-set.

4.2 Synthetic Data-sets

Further computational experiments have been realized by consider three synthetic data-sets. Each data-set
has been generated by replicating 5000 small time series (with 10 time periods) 10 times and adding white
noise multiplied by a constant factor σ to each time series entry separately. We choose σ ∈ {0.005,0.1, 1}.
We refer to the three data-sets as “low noise”, “medium noise”, and “high noise”.

We tested the SMM both for mAMF and mNMF, and LCF with random forest, exponential smoothing,
SARIMAX model, and LSTM or GRU deep learning network as regression algorithm to extend the archetypes.
We set a time limit of 2 hours for all the methods: SARIMAX, LSTM and GRU exceed time limit. We com-
pare the proposed methodologies against the same regression methods applied to forecast each time series
separately.

In Tables 4-6 we report the performance indexes for each method. RFR stands for random forest, while
EXS for exponential smoothing. For the LCF methodology the best results is obtained with rank equal to
10 for the first matrix factorization and equal to 3 for the matrix factorization corresponding to the matrix
factorization for each cluster. Moreover, we set to 600 the number of clusters, obtaining 1800 archetypes to
forecast and significantly reducing the number of forecast time series.

For all the data-sets the SMM outperforms all the other methods in terms of performance indexes. As
the noise increases, the LCF methodology produces a forecast with performance indexes comparable with
the ones corresponding to the plain forecasting of each single time series.

The CPU time of SMM increases with the noise, but it significantly depend on the rank. For instance,
in the medium noise data-set a forecast comparable with the best one (reported in Table 5) is obtained for
rank equal to 10 in a CPU time of 1386.74 seconds.

EXS is the fastest method but one of the less accurate with respect to reconstruction error. LCF with
RFR is faster than the plain RFR by taking advantage from the smaller number of time series to extends.
Unfortunately, LCF with EXS is slower that EXS since the small number of extended time series does not
compensate the time devoted to performs the matrix factorization for each cluster.

5 Conclusions and Perspectives

In this paper, we have introduced and described two novel approaches for the time series forecasting problem
relying on nonnegative matrix factorization. We apply these algorithms to a realistic data-sets, namely
the daily and weekly Portuguese electricity consumption data-set, and synthetics data-sets, showing the
forecasting capabilities of the proposed methodology.

Moreover, we have shown several uniqueness and robustness theoretical results for the solution of the
matrix factorization problems faced by the two algorithms, namely the Sliding Mask Method and the Latent
Clustered Forecast.

The strength of the proposed methodology consists in its relatively loose assumptions, mainly by suppos-
ing that time series matrix can be efficiently described by a low rank nonnegative decomposition, and that
the time series are periodic for the Sliding Mask Method.
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Algorithm RRMSE(K,W) RMPE(K,W) CPU (sec.)

SMM on mAMF 30.85%(10,5) 29.86(10,5) 2120.79
SMM on mNMF 38.83%(10,5) 30.23%(10,5) 4576.86
LCF with RFR 35.40% 32.85% 427.90
LCF with EXS 37.51% 33.66% 191.94
RFR 33.84% 30.63% 772.89
EXP 37.13% 33.33% 28.86

Table 6: Indices for high noise data-set.

Future works consists in embedding side information in the forecasting procedure by extending algo-
rithms in [Mei et al., 2019] to the Sliding Mask Method and the Latent Clustered Forecast.
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A Proofs

A.1 Proof of Theorem 2

• We start by proving that Condition (A1) is sufficient for (POU).

Let H0 := [H0T H0F ], W>0 := [W0
>
train W0

>
test], H := [HT HF ], and W> := [W>train W>test]. Assumption (A1)

implies that decomposition W0trainH0 and W0H0T are unique. By Theorem 1, it holds

W0trainH0 =WtrainH=⇒ (W0train,H0)≡ (Wtrain,H)
W0H0T =WHT =⇒ (W0,H0T )≡ (W,HT ) ,

where≡ stands for equality up to permutation and positive scaling of columns (resp. rows) of W0 (resp. H0).
Hence, if (A1) holds, then

(W0trainH0 =WtrainH) ∧ (W0H0T =WHT ) =⇒ (W0,H0)≡ (W,H) . (3)

Moreover, note T(W0trainH0) = Ttrain(X0) = W0trainH0 and T(W0H0T ) = TT (X0) = W0H0T (same equations
holds for (W,H)). We deduce that T(W0H0) = T(WH) implies (W0trainH0 = WtrainH) ∧ (W0H0T = WHT ).
We deduce the result by (3).

• We prove that If (A1) and (A2) holds, T(WH) = T(W0H0) and W01 =W1 = 1 then (W,H) = (W0,H0)
up to permutation of columns (resp. rows) of W (resp. H), and there is no scaling.

By the previous point, we now that (A1) implies (W0,H0)≡ (W,H). So that there exist λ1, . . . ,λK positive
and a permutation σ(1), . . . ,σ(K) such that

∀i ∈ [n− N],∀k ∈ [K] , (W)(i)k = λσ(k)(W0)
(i)
σ(k) .

Recall that W1= 1 (resp. W01= 1) so that the rows of W (resp. W0) belongs to the affine space

A1 :=
¦

w ∈RK : 〈w,1〉= 1
©

.

Namely, for a given row i ∈ [n− N], we have

(W0)
(i)1= 1⇒

K
∑

k=1

(W0)
(i)
k = 1

W(i)1= 1⇒
K
∑

k=1

λσ(k)(W0)
(i)
σ(k) = 1

Which proves that (W0)(i) ∈A1 ∩Aλσ−1 , for all i ∈ [n− N], where

Aλσ−1 :=
¦

w ∈RK :
K
∑

k=1

λσ−1(k)wk = 1
©

,

is the affine space orthogonal to d := (λσ−1(1), . . . ,λσ−1(K)). We deduce that the rows (W0)(i) belong to the
affine space

A :=
¦

w ∈RK : 〈w,1〉= 1 and 〈w,d〉= 1
©

which is of:
• co-dimension 2 if d is not proportional to 1;
• co-dimension 1 if there exists λ > 0 such that d= λ1. In this latter case, λ= 1 and for all k ∈ [K], λk = 1,
namely there is no scaling of the columns.

IfA is of co-dimension 2 thenA is of dimension K −2 and Conv(W0,train) ⊆A cannot contain a ball of
dimension K − 1, which implies that Conv(Ttrain(X0)) ⊆A × H is of dimension at most K − 2 and it cannot
contain a ball of dimension K − 1 (i.e., co-dimension 1), whereA ×H = {x : ∃a ∈A s.t. x = a>H}. This
latter is a contradiction under (A2). We deduce thatA is of co-dimension 2, and so there is no scaling.

A.2 Proof of Theorem 3

This proof follows the pioneering work [Javadi and Montanari, 2020a]. In this latter paper, the authors
consider neither masks T nor nonnegative constraints on H as in (mNMF). Nevertheless,
1/ considering the hard constrained programs (4) and (6) below;
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2/ remarking that it holds eD(H,X)≤ D(H,X) and D(X,H)≤ D(X,H);
then a careful reader can note that their proof extends to masks T and nonnegative constraints on H. For
sake of completeness we reproduce here the steps that need to be changed in their proof. A reading guide
of the 60 pages proof of [Javadi and Montanari, 2020b] is given in Section B.

Step 1: reduction to hard constrained Programs (4) and (6)
Consider the constrained problem:

bH ∈ argmin
H

eD(H,X)

s.t. D(X,H)≤∆2
1 .

(4)

where

D(X,H) := min
W≥0 , W1=1

‖T(X−WH)‖2
F

Then (mAMF) can be seen as Lagrangian formulation of this problem setting ∆2
1 = D(X, bH(mAMF)),

where bH(mAMF) is a solution to (mAMF). We choose ∆1 so as to bound the noise level ‖F‖F

∆2
1 ≥ ‖F‖

2
F . (5)

Consider the constrained problem:

bH ∈ argmin
H≥0

eD(H,X)

s.t. D(X,H)≤∆2
2 .

(6)

Then (mNMF) can be seen as Lagrangian formulation of this problem setting ∆2
2 = D(X, bH(mNMF)),

where bH(mNMF) is a solution to (mNMF). We choose ∆1 so as to bound the noise level ‖F‖F

∆2
2 ≥ ‖F‖

2
F . (7)

Step 2: First bound on the loss
Denote D :=

�

D(H,H0)1/2 +D(H0,H)1/2
	

. By Assumption (A2) we have

z0 +UBK−1(µ) ⊆ conv(X0) ⊆ conv(H0) ,

where z0+UBK−1(µ) is a parametrization of the ball of center z0 and radius µ described in Assumption (A2)
with U a matrix whose columns are K − 1 orthonormal vectors. Using Lemma 6, we get that

µ
p

2≤ σmin(H0)≤ σmax(H0) ,

where σmin(H0),σmax(H0) denote its largest and smallest nonzero singular values. Then, since z0 ∈
conv(H0) we have z0 = H>0 α0 for some α0 s.t. α01= 1. It holds,

‖z0‖2 ≤ σmax(H0)‖α0‖2 ≤ σmax(H0). (8)

Note that

σmax(ÒH − 1z>0 )≤ σmax(ÒH) +σmax(1z>0 ) = σmax(ÒH) +
p

K‖z0‖2. (9)

Therefore, using Lemma 8 we have

D ≤ c

�

K3/2∆1/2κ(P0(ÒH)) +
σmax(ÒH)∆1/2K1/2

µ
+

K∆1/2‖z0‖2

µ

�

+ c
p

K‖F‖F , (10)

where∆1/2 equals∆1 for problem (4) and∆2 for problem (6), and κ(A) stands for the conditioning number
of matrix A. In addition, Lemma 9 implies that

L (H0,ÒH)1/2 ≤
1
α

max
�

(1+
p

2)
p

K ,
p

2κ(H0)
	

D . (11)
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Step 3: Combining and final bound
By Lemma 10 it holds

D ≤ c
� K3/2D∆1/2

α(µ− 2∆1/2)
p

2
+

K2σmax(H0)∆1/2

(µ− 2∆1/2)
p

2
+
DK1/2∆1/2

αµ

+
σmax(H0)∆1/2K

µ
+

K∆1/2‖z0‖2

µ

�

+ c
p

K‖F‖F . (12)

We understand that D = O∆1/2→0(∆1/2) and for small enough ∆1/2 there exists a constant c > 0 such that

D ≤ c∆1/2 + c
p

K‖F‖F

By (5) and (7), it yields that for small enough noise error ‖F‖F one has

D ≤ c‖F‖F ,

for some (other) constant c > 0. Plugging this result in (11) we prove the result.

A.3 Proof of Theorem 4

N 7→ ∇Nh(H,W,N) is Lipschitz continuous with moduli L = 2. The statement follows from Proposition 4.1
in [Javadi and Montanari, 2020a] and from Theorem 1 in [Bolte et al., 2014].

B Propositions and Lemmas

• Results that we can use directly from [Javadi and Montanari, 2020b]: Lemma B.1, Lemma B.2, Lemma
B.3.
• Results of [Javadi and Montanari, 2020b] that has to be adapted: Lemme B.4 (done in Lemma 6), Lemma
B.5 (done in Lemma 7), and Lemma B.6 (done in Lemma 8).

Proposition 5. For ÒH solution to (4) (or (6)) one has eD(ÒH ,X)≤ eD(H0,X).

Proof. Observe thatD(X,H0) = ‖F‖2
F . By (5) and (7), H0 is feasible for (4) (or (6)) then eD(ÒH ,X)≤ eD(H0,X)

Lemma 6 (Adapted version of Lemma B.4 of [Javadi and Montanari, 2020b]). If H is feasible for problem
(4) (or (6)) and has linearly independent rows, then we have

σmin(H)≥
p

2(µ− 2∆1/2) , (13)

where ∆1/2 equals ∆1 for problem (4) and ∆2 for problem (6).

Proof. Consider the notation and the outline of proof Lemma B.4 in [Javadi and Montanari, 2020b]. The
adaptation is simple here. The trick is to only consider rows in the training set, Ttrain(X0): the indice i of
proof of Lemma B.4 in [Javadi and Montanari, 2020b] correspond to the n− N first rows in our case (the
training set); and one should replace X0 by Ttrain(X0). This proof requires only feasibility of H and works no
matter if a nonnegative constraint on H is active (as in Program (6)).

Lemma 7 (Adapted version of Lemma B.5 of [Javadi and Montanari, 2020b]). For ÒH solution to (4) (or
(6)), it holds

eD(ÒH ,X0)
1/2 ≤ eD(H0,X0)

1/2 + c
p

K‖F‖F .

Proof. Consider the notation and the outline of proof Lemma B.5 in [Javadi and Montanari, 2020b]. Note
that Eq. (B.103) holds by Proposition 5. Form Eq. (B.104), the proof remains unchanged once one substi-
tutes D by eD.

Lemma 8 (Adapted version of Lemma B.6 of [Javadi and Montanari, 2020b]). For ÒH the optimal solution
of problem (4) (or (6)), we have

α(D(ÒH , H0)
1/2 +D(H0,ÒH)1/2)≤ c

�

K3/2∆1/2κ(P0(ÒH)) +
∆1/2

p
K

µ
σmax(ÒH − 1zT

0 )

�

+ c
p

K‖F‖F (14)

where P0 : Rd → Rd is the orthogonal projector onto aff(H0) (in particular, P0 is an affine map), and ∆1/2
equals ∆1 for problem (4) and ∆2 for problem (6).
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Proof. Invoke the proof of Lemma B.6 in [Javadi and Montanari, 2020b] using the fact that eD(H,X) ≤
D(H,X) and D(X,H)≤ D(X,H).

Lemma 9. Let H , H0 be matrices with linearly independent rows. We have

L (H0, H)1/2 ≤
p

2κ(H0)D(H0, H)1/2 + (1+
p

2)
p

KD(H , H0)
1/2 , (15)

where κ(A) stands for the conditioning number of matrix A.

Proof. See Lemma B.2 in [Javadi and Montanari, 2020b]

Lemma 10. It holds

κ(P0(ÒH))≤
� D
α(µ− 2∆1/2)

p
2
+

K1/2σmax(H0)

(µ− 2∆1/2)
p

2

�

.

Proof. The proof is given by Equations B.189-194 in [Javadi and Montanari, 2020b].

C Algorithms for mNMF

In this section we report Block Coordinate Descend (BCD) Algorithm (see Algorithm 6) and accelerated Hier-
archical Alternate Least Square (HALS) for mNMF (see Algorithm 7), which is a generalization of Algorithm
described in [Gillis and Glineur, 2012a] to the matrix factorization with mask.

Algorithm 6: BCD for mNMF

1: Initialization: choose H0 ≥ 0,W0 ≥ 0, and N0 ≥ 0, set i := 0.
2: while stopping criterion is not satisfied do
3: Hi+1 := update(Hi ,Wi ,Ni)
4: Wi+1 := update(Hi+1,Wi ,Ni)
5: Ni+1 := update(Hi+1,Wi+1,Ni)
6: i := i + 1
7: end while

Algorithm 7: accelerated HALS for mNMF

1: Initialization: choose H0 ≥ 0,W0 ≥ 0, nonnegative rank K , and α > 0. Set N0 =PX(W0H0),
ρW := 1+ n(m+ K)/(m(K + 1)), ρH := 1+m(n+ K)/(n(K + 1)), and i := 0.

2: while stopping criterion is not satisfied do
3: for k ≤ kW := b1+αρWc do
4: A := NHk>,B := HkHk>

5: for ` ∈ [K] do
6: C` :=

∑`−1
j=1 W k+1

j B j` +
∑K

j=`+1 W k
j B j`

7: W k
`

:=max(0, (A` − C`)/B``)
8: end for
9: WkW :=P∆(WkW)

10: end for
11: for k ≤ kH := b1+αρHc do
12: A :=WkWN,B :=WkW

>
WkW

13: for ` ∈ [n] do
14: C` :=

∑`−1
j=1 Hk+1

j B j` +
∑n

j=`+1 Hk
j B j`

15: Hk
`

:=max(0, (A` − C`)/B``)
16: end for
17: end for
18: Wi+1 :=WkW , Hi+1 := HkH

19: Ni+1 :=PX(Wi+1Hi+1)
20: i := i + 1
21: end while
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D KKT conditions for mNMF

In this section we determine the KKT condition for mNMF problem, namely

min
W1=1,W≥0

H≥0
TN=X

‖N−WH‖2
F =:F (N,W,H) . (mNMF)

Let us introduce the dual variables V ≥ 0, G ≥ 0, t ∈ Rn, and Z ∈ range(Π) such that T(Z ) = Z . The
Lagrangian of mNMF problem is

L (N,W,H,V,G , t,Z ) =F (N,W,H)− 〈W,V〉+ 〈W1K − 1N , t〉 − 〈H,G〉− 〈N−X,Z〉 .

The KKT condition are the following:

∇NL = N−WH−Z = 0 ⇐⇒ T(N−WH) =Z ∧ T⊥(N−WH) = 0 (16)

∇WL = (WH−N)H> −V− t 1>K = 0 ⇐⇒ V= (WH−N)H> − t 1>K (17)

∇HL =W>(WH−N)−G ⇐⇒G =W>(WH−N) (18)

〈W,V〉= 0 ⇐⇒ 〈W,∇WF − t 1>K 〉= 0 (19)

〈H,G〉= 0 ⇐⇒ 〈H,∇HF〉= 0 (20)

From the complementarity conditions (19), it follows:

Wi, j > 0=⇒ Vi, j = 0=⇒ t i = −(∇WF )i j ∀ j

In order to compute t i , we can select a row W (i), find any entry Wi, j > 0 and apply the previous formula.
In the practical implementation phase, in order to make numerically more stable the estimation of t i ’s, we
can adopt a slightly different strategy by averaging the values of t i computed per row entry Wi, j > 0.

E Details on electricity data-set tests

E.1 Sliding Mask Method

For the non-overlapping interval we test W ∈ {4,13, 16} and periodicity P = 4 and P = 28 for the weekly
and daily data-set, respectively. For the overlapping intervals we test W ∈ {2, 4,13, 26} with periodic-
ity P = 8 and P = 56 for the weekly and daily data-set, respectively. We select nonnegative rank in
{4,5, 8,10, 15,16, 20,30, 32} for weekly data-set and in {5, 10,20, 30,40,50, 60,70, 80,90, 100} for daily
data-set.

E.2 Latent Clustered Forecast

We consider nonnegative rank in K ∈ {5, 10,15} for the first and second nonnegative matrix factorization
and the maximal dimension d in Explore dendrogram Algorithm equal to K . For the matrix factorization we
apply PALM algorithm to Semi Normalized NMF (SNNMF).

19


	Introduction
	The time series forecasting problem
	Nonnegative and Archetypal Analysis
	Contribution: Towards Nonnegative Matrix Completion for Time series
	Uniqueness from partial observations
	Robustness under partial observations

	Outline

	The Sliding Mask Method
	Sliding window as forecasting
	Mask NNMF and Mask AMF
	Algorithms
	Alternating Least Squares for (mNMF)
	Projected Gradient for (mAMF)
	Stopping criterion for normalized NMF

	Large-scale data-set

	Latent Clustered Forecast
	Clustering (Step 2)
	Forecasting (Step 6)

	Numerical Experiments
	Real-world Data-sets
	Synthetic Data-sets

	Conclusions and Perspectives
	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Propositions and Lemmas
	Algorithms for mNMF
	KKT conditions for mNMF
	Details on electricity data-set tests
	Sliding Mask Method
	Latent Clustered Forecast


