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Abstract
We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner.
Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our
approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator
functions of simple polygons.
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1 Introduction

By promoting solutions with a certain specific structure, the
regularization of a variational inverse problem is a way to
encode some prior knowledge on the signals to recover. The-
oretically, it is now well understood which regularizers tend
to promote signals or images which are sparse, low rank or
piecewise constant. Yet, paradoxically enough, most numer-
ical solvers are not designed with that goal in mind, and the
targeted structural property (sparsity, low rank or piecewise
constancy) only appears “in the limit”, when the algorithm
converges.

Several recent works have focused on incorporating struc-
tural properties in optimization algorithms. In the context
of �1-based sparse spikes recovery, it was proposed to
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switch from, e.g. standard proximal methods (which require
the introduction of an approximation grid) to algorithms
which operate directly in a continuous domain: interior point
methods solving a reformulation of the problem [10,12] or
a Frank–Wolfe/conditional gradient algorithm [9] approx-
imating a solution in a greedy way. More generally, the
conditional gradient algorithm has drawn a lot of interest
from the data science community, for it provides iterates
which are a sum of a small number of atoms which are pro-
moted by the regularizer (see the review paper [26]).

In the present work, we explore the extension of these
fruitful approaches to the total (gradient) variation regular-
ized inverse problem

min
u∈L2(R2)

Tλ(u)
def.= 1

2
‖�u − y‖2 + λ |Du| (R2) , (Pλ)

where |Du|(R2) denotes the total variation of (the gradient
of) u and � : L2(R2) → R

m is a continuous linear map such
that

∀u ∈ L2(R2), �u =
∫
R2

u(x) ϕ(x) dx , (1)

with ϕ ∈ [
L2(R2)

]m ∩ C0(R2, R
m). Such variational

problems have been widely used in imaging for the last
decades, following the pioneering work of Rudin, Osher and
Fatemi [33]. A typical application is the reconstruction of an
unknown image u0 from a set of noisy linear measurements
y = �u0 + w, where w ∈ R

m is some additive noise.
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The total variation term in (Pλ) is known to promote
piecewise constant solutions. It has been shown that some
solutions are sums of at most m indicator functions of sim-
ple sets (see [7,8]). However, when u0 is a simple piecewise
constant image, there are evidences that solutions are usually
made of amuch smaller number of shapes. In such situations,
it is highly desirable to design numerical solvers preserving
this structure, and able to accurately estimate the jump set
of solutions. This could be particularly relevant for specific
applications, like astronomical and cell imaging.

1.1 PreviousWorks

Many algorithms have been proposed to solve (Pλ). The vast
majority of them rely on the introduction of a fixed spatial
discretization, and of a discrete version of the total varia-
tion (see [15] for a review). These approaches often yield
reconstruction artefacts, such as anisotropy or blur (see the
previous reference, [34], and the experiments section below).
Most importantly, existing algorithms often fail to preserve
the structure exhibited by solutions of (Pλ), which is dis-
cussed above.

To circumvent these issues, mesh adaptation techniques
were introduced in [5,35]. The refinement rules they propose
are, however, either heuristic or too restrictive to faithfully
recover edges. In any case, they still rely on a discretization
of the whole domain and hence, do not provide a compact
representation of the reconstructed image.

In [28], a method for recovering piecewise constant
images from few Fourier samples is introduced. Its original-
ity is to produce a continuous domain representation of the
image, assuming its edge set is a trigonometric curve. How-
ever, this approach heavily relies on relations satisfied by the
Fourier coefficients of the image. As such, it does not seem
possible to adapt it to handle other types of measurements.

1.2 Contributions

Our goal is to design an algorithm which does not suffer
from some grid bias, while providing a continuous domain
representation of solutions. To this aim, we construct an
approximate solution built from the above-mentioned atoms,
namely indicator functions of simple sets. As shown in the
experiments section, this approach is particularly suited for
reconstructing simple piecewise constant images. On more
complex natural images, traditional grid-based methods per-
form better. In Sects. 3 and 4, we introduce a theoretical
iterative algorithm, whose output provably converges to a
solution of (Pλ). The exploratory nature of our work lies
in the numerical methods we propose to carry out several
steps of this algorithm. Although experiments suggest they
perform well, several questions concerning their theoretical
analysis remain.

2 Preliminaries

In the following, for any function u : R
2 → R, we shall use

the notation

U (t) def.=
{{

x ∈ R
2
∣∣ u(x) ≥ t

}
if t ≥ 0 ,{

x ∈ R
2
∣∣ u(x) ≤ t

}
otherwise.

2.1 Functions of BoundedVariation and Sets of
Finite Perimeter

Let u ∈ L1
loc(R

2). The total variation of u is given by

J (u)
def.= sup

z∈C∞
c (R2,R2)

−
∫
R2

u divz s.t. ‖z‖∞ ≤ 1 .

If J (u) is finite, then u is said to have bounded varia-
tion, and the distributional gradient of u, denoted Du, is
a finite vector-valued Radon measure. We moreover have
|Du|(R2) = J (u) < +∞.

A measurable set E ⊂ R
2 is said to be of finite perimeter

if P(E)
def.= J (1E ) < +∞. The reduced boundary ∂∗E of

a set of finite perimeter E is defined as the set of points
x ∈ Supp (|D1E |) at which

νE (x)
def.= lim

r→0+ − D1E (B(x, r))

|D1E | (B(x, r))

exists and is moreover such that ‖νE (x)‖ = 1.
From [22, Proposition 3.1], we know that if E has finite

perimeter, there exists a Lebesgue representative of E with
the property that

∀x ∈ ∂E, 0 < |E ∩ B(x, r)| < |B(x, r)| .

In the following, we always consider such a representative
and consequently obtain Supp(D1E ) = ∂∗E = ∂E .

We now introduce the notion of indecomposable and
simple sets, which are the measure-theoretic analogues of
connected and simply connected sets (see [3] for more
details). A set of finite perimeter E ⊂ R

2 is said to be
decomposable if there exists a partition of E in two sets of
positive measure A and B with P(E) = P(A) + P(B). We
say that E is indecomposable if it is not decomposable. Any
indecomposable set of finite measure whose complement is
also indecomposable is called simple. If E ⊂ R

2 has finite
perimeter and finite measure it can be decomposed (up to
Lebesgue negligible sets) into an at most countable union of
pairwise disjoint indecomposable sets, i.e.

E =
⋃
i∈I

Ei , P(E) =
∑
i∈I

P(Ei ) and ∀i, |Ei | > 0 . (2)
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Fig. 1 Decomposition of a set (grey area) as in (2), (3)

Each Ei can in turn be decomposed as

Ei = int(γ +
i ) \

⋃
j∈Ji

int(γ −
i, j ) ,

with P(Ei ) = P(int(γ +
i )) +

∑
j∈Ji

P(int(γ −
i, j )) ,

(3)

where for all i ∈ I and j ∈ Ji , γ +
i and γ −

i, j are rectifiable
Jordan curves (see Fig. 1 for an illustration).

2.2 Subdifferential of the Total Variation

In the rest of this document, J is considered as a mapping
from L2(R2) to R ∪ {+∞}. This mapping is convex, proper
and lower semi-continuous. We have the following useful
characterizations of ∂ J (0):

∂ J (0) =
{
η ∈ L2(R2)

∣∣∣∣
∀u ∈ L2(R2),

∣∣∣∣
∫
R2

η u

∣∣∣∣ ≤ |Du|(R2)

}
,

∂ J (0) =
{
η ∈ L2(R2)

∣∣∣∣ ∀E ⊂ R
2, 0 < |E | < +∞

and P(E) < +∞ 
⇒
∣∣∣∣
∫
R2

η
1E
P(E)

∣∣∣∣ ≤ 1

}
.

Moreover, the subdifferential of J at u ∈ L2(R2) is given by:

∂ J (u) =
{
η ∈ ∂ J (0)

∣∣∣∣
∫
R2

η u = |Du|(R2)

}
.

We also have the following useful result:

Proposition 1 (see, e.g. [13]) Let u ∈ L2(R2) be such that
J (u) < ∞ and η ∈ L2(R2). Then, η ∈ ∂ J (u) if and only if
η ∈ ∂ J (0) and the level sets of u satisfy

⎧⎪⎪⎨
⎪⎪⎩

∀t > 0, P(U (t)) =
∫
U (t)

η ,

∀t < 0, P(U (t)) = −
∫
U (t)

η .

(4)

2.3 Dual Problem and Dual Certificates

The Fenchel–Rockafellar dual of (Pλ) is the following finite
dimensional problem

max
p∈Rm

〈p, y〉 − λ

2
‖p‖2 s.t. �∗ p ∈ ∂ J (0) , (Dλ)

which has a unique solution (it is in fact equivalent to the
projection of y

λ
on the closed convex set of vectors p such

that �∗ p ∈ ∂ J (0)). Moreover, strong duality holds as stated
by the following proposition

Proposition 2 Problems (Pλ) and (Dλ) have the same value,
and any solution uλ of (Pλ) is linked with the unique solution
pλ of (Dλ) by the extremality condition

⎧⎨
⎩

�∗ pλ ∈ ∂ J (uλ) ,

pλ = −1

λ
(�uλ − y) .

(5)

Remark 1 Proposition 2 implies in particular that all solu-
tions of (Pλ) have the same total variation and the same image
by �.

2.4 Distributional Curvature

We denote by H1 the 1-dimensional Hausdorff measure on
R
2, and for every Borel set A ⊂ R

2, byH1 A the measure
H1 restricted to A, i.e. such that for every Borel set E we
have
(
H1 A

)
(E) = H1(A ∩ E) .

If E ⊂ R
2 is a set of finite perimeter, then the distributional

curvature vector of E is HE : C∞
c (R2, R

2) → R defined by

∀T ∈ C∞
c (R2, R

2), 〈HE , T 〉 =
∫

∂∗E
divE T dH1 ,

where divE T denotes the tangential divergence of T on E
given by

divE T = div T − (DT νE ) · νE ,

where DT denotes the differential of T . E is said to have
locally integrable distributional curvature if there exists a
function HE ∈ L1

loc(∂
∗E;H1) such that

HE = HE νE H1 ∂∗E .

For instance, if E is an open set with C2 boundary, it has
a locally summable distributional curvature which is given
by the (classical) scalar mean curvature.
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3 AModified Frank–Wolfe Algorithm

Algorithm 1: Frank-Wolfe algorithm
Data: objective f , domain C , starting point x0 ∈ C
Result: point x∗

1 while true do
2 find sk ∈ Argmin

s∈C
f (xk) + d f (xk) [s − xk ];

3 if d f (xk) [sk − xk ] = 0 then
4 output x∗ ← xk , which is optimal;
5 else
6 γk ← 2

k+2 ;
// tentative update

7 x̃k+1 ← xk + γk(sk − xk);
// final update

8 choose any xk+1 such that f (xk+1) ≤ f (x̃k+1);
9 end

10 end

In the spirit of [6,9,19] which introduced variants of the
conditional gradient algorithm for sparse spikes recovery in a
continuous domain, we derive a modified Frank–Wolfe algo-
rithm allowing to iteratively solve (Pλ) in a gridless manner.

3.1 Description

The Frank–Wolfe algorithm (see Algorithm 1) allows to
minimize a convex differentiable function f over a weakly
compact convex subset C of a Banach space. Each step of
the algorithm consists in minimizing a linearization of f on
C , and building the next iterate as a convex combination of
the obtained point and the current iterate.

An important feature of the algorithm is that while the
classical update (Line 8) is to take xk+1 to be equal to x̃k+1,
all convergence guarantees are preserved if one chooses any
xk+1 ∈ C such that f (xk+1) ≤ f (x̃k+1) instead.

Even though Tλ is not differentiable, it is possible to
recast problem (Pλ) into that framework by performing an
epigraphical lift (see “Appendix A”). In this setting, the lin-
ear minimization step which is at the core of the algorithm
amounts to solving the following problem

min
u∈L2(R2)

∫
R2

η u s.t. |Du| (R2) ≤ 1 , (6)

for an iteration-dependent function η ∈ L2(R2). Denoting
u[k] the k-th iterate, this function is given by

η[k] def.= −1

λ
�∗ (�u[k] − y

)
.

As is usualwhen using the Frank–Wolfe algorithm,we notice
that since the objective of (6) is linear and the total variation

unit ball is convex and compact (in the weak L2(R2) topol-
ogy), at least one of its extreme points is optimal. A result
due to Fleming [21] (see also [3]) states that those extreme
points are exactly the functions of the form±1E/P(E)where
E ⊆ R

2 is a simple set with 0 < |E | < +∞. This means the
linear minimization step can be carried out by finding a sim-
ple set solving the following geometric variational problem:

max
E⊆R2

∣∣∫
E η
∣∣

P(E)
s.t. 0 < |E | < +∞, P(E) < +∞ . (7)

Since Problem (7) is reminiscent of the Cheeger problem
[29], which, given a domain 
 ⊆ R

2, consists in finding the
subsets E of 
 minimizing the ratio P(E)/|E |, we refer to
it as the “Cheeger problem” in the rest of the paper, and to
any of its solutions as a “Cheeger set”.

In view of the above, we derive Algorithm 2, which pro-
duces a sequence of functions that are linear combinations
of indicators of simple sets, and which is a valid application
of Algorithm 1 to (Pλ), in the sense that Proposition 3 holds.

Algorithm 2:modified Frank-Wolfe algorithm applied
to (Pλ)
Data: measurement operator �, observations y, regularization

parameter λ

Result: function u∗
1 u[0] ← 0;
2 N [0] ← 0;
3 while true do
4 η[k] ← − 1

λ
�∗ (�u[k] − y

)
;

5 E∗ ← Argmax
E simple

∣∣∫
E η[k]∣∣
P(E)

s.t. 0 < |E | < +∞;

6 if
∣∣∣∫E∗ η[k]

∣∣∣ ≤ P(E∗) then
7 output u∗ ← u[k], which is optimal;
8 else
9 E [k+1] ← (E [k]

1 , ..., E [k]
N [k] , E∗);

10 a[k+1] ← argmin
a∈RN [k]+1

Tλ

(
N [k]+1∑
i=1

ai 1E [k+1]
i

)
;

11 remove atoms with zero amplitude;
12 N [k+1] ← number of atoms in E [k+1];

13 u[k+1] ←
N [k+1]∑
i=1

a[k+1]
i 1E [k+1]

i
;

14 end
15 end

Remark 2 We use here a so-called fully corrective vari-
ant of Frank–Wolfe, meaning that instead of choosing the
next iterate u[k+1] as a convex combination of ±1E∗/P(E∗)
and the previous iterate u[k] as in Line 7 of Algorithm 1,
we optimize (Line 10 of Algorithm 2) the objective over

Vect
((
1Ei

)N [k]+1
i=1

)
, which decreases the objective more than
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the standard update and hence, does not break convergence
guarantees.

Remark 3 Line 10 of Algorithm 2 can always be reduced to
the resolution of a LASSO-type problem (possibly changing
E [k+1] and constraining the sign of the components of a).
Indeed, given N ∈ N

∗ and E1, . . . , EN a collection of simple
sets, assuming that we have

∀a ∈ R
N ,

∣∣∣∣∣D
(

N∑
i=1

ai 1Ei

)∣∣∣∣∣ (R2) =
N∑
i=1

|ai | P(Ei ) , (8)

then we get that

Tλ(u) = 1

2
||�E a − y||2 + λ

N∑
i=1

P(Ei ) |ai | ,

with

�E
def.=
⎡
⎣
(∫

Ei

ϕ j

)
1≤i≤N
1≤ j≤m

⎤
⎦
T

∈ R
m×N .

Hence, finding the vector a minimizing Tλ(u) with the
sets E1, . . . , EN fixed amounts to solving a finite dimen-
sional least squares problem with a weighted �1 norm
penalization (the weights are here the perimeters of the sets
(Ei )

N
i=1).

Identity (8) holds as soon as H1(∂∗Ei ∩ ∂∗E j ) = 0 for
every i �= j . Although this is generically satisfied, and that
we never observe experimentally configurations where this
fails, we describe in “Appendix B” how to change E [k+1]
to reduce Line 10 to a LASSO-type problem at the price of
constraining the sign of the components of a.

Remark 4 The stopping condition is here replaced by

sup
E

∣∣∫
E η[k]∣∣
P(E)

≤ 1, with η[k] = −1

λ
�∗ (�u[k] − y

)
,

which is equivalent to η[k] ∈ ∂ J (0). Since the optimality of
a[k] at Line 10 always ensures

∫
R2 η[k] u[k] = J (u[k]), this

yields η[k] ∈ ∂ J (u[k]) and hence, (5) holds, whichmeans u[k]
solves (Pλ).

3.2 Convergence Results

As already mentioned, Algorithm 2 is a valid application of
Algorithm 1 to (Pλ), in the sense that the following property
holds (see [26]):

Proposition 3 Let (u[k])k≥0 be a sequence produced byAlgo-
rithm 2. Then, there exists C > 0 such that for any solution
u∗ of Problem (Pλ),

∀k ∈ N
∗, Tλ(u

[k]) − Tλ(u
∗) ≤ C

k
. (9)

Remark 5 As discussed in [26], the linear minimization step
(solving (6) or equivalently (7)) can be solved approximately.
In fact, if there exists δ > 0 such that for every k the set
computed at Line 5 is an εk-maximizer of (7) with εk =

γ
k+2δ, then

∀k ∈ N
∗, Tλ(u

[k]) − Tλ(u
∗) ≤ 2 γ

k + 2
(1 + δ) , (10)

where γ is the curvature constant of the objective used in the
reformulation of (Pλ). One can in fact show that this curva-
ture constant is smaller than a quantity which is proportional
to ‖�‖2 (‖y‖2/λ)2.
We first provide a general property of minimizing sequences
(see, e.g. [25] for a proof), which hence applies to the
sequence of iterates produced by Algorithm 2.

Proposition 4 Let (un)n≥0 be a minimizing sequence for
(Pλ). Then, there exists a subsequence (not relabeled) which
converges weakly in L2(R2) and strongly in L1

loc(R
2) to

a solution u∗ of (Pλ). Moreover, we have Dun
∗
⇀Du∗ and

|Dun|(R2) → |Du|(R2).

We now provide additional properties of sequences pro-
duced by Algorithm 2. We first begin by noticing that if
(u[k])k≥0 is such a sequence, then the optimality condition at
Line 10 ensures that

∀k, ∀i ∈ {1, . . . , N [k]}, P(E [k]
i ) =

∣∣∣∣∣
∫
E [k]
i

η[k]
∣∣∣∣∣ .

But from Proposition 3 and Proposition 4, we have the
existence of a (not relabeled) subsequence which converges
strongly in L1

loc(R
2) andweakly in L2(R2) towards a solution

u∗ of (Pλ). The weak convergence of (u[k])k≥0 in L2(R2)

implies that lim
n→+∞�u[k] = �u∗, which in turns yields the

strong convergence in L2(R2) of (η[k])k≥0 towards the solu-
tion η∗ of (Dλ). We can then use the following lemma to
show all the sets E [k]

i are included in some common ball.

Lemma 1 Let (ηk)k≥0 be a sequence of functions converging
strongly to η∞ in L2(R2). For all k ≥ 0, we denote

Fk
def.=
{
E simple

∣∣∣∣ 0 < |E | < +∞, P(E) =
∣∣∣∣
∫
E

ηk

∣∣∣∣
}

,
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and F = ∪k≥0Fk . Then, there exist positive real numbers R
and C such that

∀E ∈ F , P(E) ≤ C and E ⊂ B(0, R) .

Proof This proof is based on [13, Section 5].
Upper bound on the perimeter: the family of functions
{η2k , k ∈ N} ∪ {η2∞} being equi-integrable, for all ε > 0
there exists R1 > 0 such that

∀k,
∫
R2\B(0,R1)

η2k ≤ ε2 .

Let E ∈ F . Then, there exists k s.t. P(E) = ∣∣∫E ηk
∣∣ and we

have:
∣∣∣∣
∫
E

ηk

∣∣∣∣ ≤
∣∣∣∣
∫
E∩B(0,R1)

ηk

∣∣∣∣+
∣∣∣∣
∫
E\B(0,R1)

ηk

∣∣∣∣
≤ √|B(0, R1)| ||ηk ||L2

+√|E \ B(0, R1)|
√∫

R2\B(0,R1)

η2k

≤ sup
k

||ηk ||L2

√|B(0, R1)| + ε
√|E \ B(0, R1)| .

Moreover,

√|E \ B(0, R1)| ≤ 1√
c2

(P(E) + P(B(0, R1))) ,

where c2
def.= 4π is the isoperimetric constant. Hence, taking

ε
def.=

√
c2
2 and defining

C
def.= 2

(√|B(0, R1)| sup
k

||ηk ||L2 + 1

2
P(B(0, R1))

)
,

we have P(E) ≤ 1
2 P(E) + C

2 and hence P(E) ≤ C .

Inclusion in a ball: we still take ε =
√
c2
2 and fix a real

R2 > 0 such that
∫
R2\B(0,R2)

η2k ≤ ε2 for all k. Now, let
E ∈ F and k such that

P(E) =
∣∣∣∣
∫
E

ηk

∣∣∣∣ .

Let us show that E ∩ B(0, R2) �= ∅. By contradiction, if
E ∩ B(0, R2) = ∅, we would have:

P(E) =
∣∣∣∣
∫
E\B(0,R2)

ηk

∣∣∣∣ ≤
√∫

R2\B(0,R2)

η2k

√|E |

≤ ε√
c2

P(E) .

Dividing by P(E) (which is positive since 0 < |E | < ∞)
yields a contradiction. Since E is simple, the perimeter bound

yields diam(E) ≤ C , which shows E ⊂ B(0, R) with R
def.=

C + R2. ��
We have now shown there exists R > 0 such that for all
k we have Supp(u[k]) ⊂ B(0, R), which means the strong
L1
loc convergence of (u[k])k≥0 towards u∗ is in fact a strong

L1 convergence. This slightly improved convergence result
is summarized in the following proposition:

Proposition 5 Let (un)n≥0 be a sequence produced by Algo-
rithm 2. Then, there exists a (not relabeled) subsequence and
R > 0 such that Supp(un) ⊂ B(0, R) for all n. Moreover,
this subsequence converges strongly in L1(R2) to a solution
u∗ of (Pλ) (and by Proposition 4 weakly in L2(R2), with

moreover Dun
∗
⇀Du∗ and |Dun|(R2) → |Du|(R2)).

Corollary 1 Let (un)n≥0 be a subsequence such as in Propo-
sition 5. Up to another extraction, for almost every t ∈ R,
we have

lim
n→+∞ |U (t)

n �U (t)∗ | = 0 and ∂U (t)∗ ⊆ lim inf
n→+∞

∂U (t)
n ,

where1

lim inf
n→+∞

∂U (t)
n

def.= {x ∈ R
2
∣∣ lim sup
n→+∞

dist(x, ∂U (t)
n ) = 0

}
.

Proof The strong convergence of (un)n≥0 towards a solu-
tion u∗ in L1(R2) and Fubini’s theorem gives

0 = lim
n→+∞

∫
R2

|un − u∗| = lim
n→+∞

∫
R

∣∣∣U (t)
n �U (t)∗

∣∣∣ dt .

Hence, up to the extraction of a further subsequence, that we
do not relabel, we get that

lim
n→+∞ |U (t)

n �U (t)∗ | = 0 for almost every t ∈ R .

We now fix such t ∈ R and let x ∈ ∂U (t)∗ . We want to show
that x ∈ lim inf

n→+∞ ∂U (t)
n , which is equivalent to

lim sup
n→+∞

dist
(
x, ∂U (t)

n

) = 0 .

By contradiction, if the last identity does not hold, we have
the existence of r > 0 and of ϕ such that

∀n ∈ N, B(x, r) ∩ ∂U (t)
ϕ(n) = ∅ .

Hence for all n, we either have

B(x, r) ⊂ U (t)
ϕ(n) or B(x, r) ⊂ R

2 \U (t)
ϕ(n) .

1 For more details on this type of set convergence, see, e.g. [32, Chapter
4].
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If B(x, r) ⊂ U (t)
ϕ(n) for a given n, then

∣∣∣U (t)
ϕ(n)�U (t)∗

∣∣∣ ≥
∣∣∣U (t)

ϕ(n) \U (t)∗
∣∣∣ ≥
∣∣∣B(x, r) \U (t)∗

∣∣∣
≥ C |B(x, r)| .

The last inequality, which is a weak regularity property of
U (t)∗ , holds for all r smaller than some r0 > 0, for some
constant C that is independent of r and x (see [13, Prop. 7]).
We can in the same way show

∣∣∣U (t)
ϕ(n)�U (t)∗

∣∣∣ ≥ C |B(x, r)|

if B(x, r) ⊂ R
2\U (t)

ϕ(n) and hence, get the inequality for all n.

Using that lim
n→+∞ |U (t)

n �U (t)∗ | = 0, we get a contradiction.

��

4 Sliding Step

Several works [6,9,19,31] have advocated for the use of a
special final update, which helps identify the sparse structure
of the sought-after signal. Loosely speaking, it would amount
in our case to running, at the very end of an iteration, the
gradient flow of the mapping

(a, E) �→ Tλ

⎛
⎝N [k+1]∑

i=1

ai1Ei

⎞
⎠ (11)

initialized with (a[k+1], E [k+1]), so as to find a set of param-
eters at which the objective is smaller. Formally, this would
correspond2 to finding a curve

t �→ (ai (t), Ei (t))
N [k+1]
i=1

such that for all t

⎧⎪⎨
⎪⎩

a′
i (t) = −λ

(
sign(ai (t)) P(Ei (t)) −

∫
Ei (t)

η(t)

)
,

Vi (t) = −λ |ai (t)|
(
HEi (t) − sign(ai (t)) η(t)

)
,

(12)

where Vi (t) denotes the normal velocity of the boundary of
Ei at time t and

η(t) = −1

λ
�∗ (�u(t) − y) , u(t) =

N [k+1]∑
i=1

ai (t) 1Ei (t) .

2 The formulas given in (12) can be formally obtained by using the
notion of shape derivative, see [23, Chapter 5].

The study of this gradient flow (existence, uniqueness) is out
of the scope of this paper.

For our purpose, it is enough to introduce a sliding step
which improves the objective by performing a local descent
on

(a, E) �→ Tλ

⎛
⎝N [k+1]∑

i=1

ai 1Ei

⎞
⎠

initialized with (a[k+1], E [k+1]), that is to find a set of param-
eters (ai , Ei )

N [k+1]
i=1 such that Ei is simple for all i with

Tλ

⎛
⎝N [k+1]∑

i=1

ai 1Ei

⎞
⎠ ≤ Tλ

⎛
⎝N [k+1]∑

i=1

a[k+1]
i 1E [k+1]

i

⎞
⎠ . (13)

The resulting algorithm, which is Algorithm 3, is a valid
application of Algorithm 1 to (Pλ). Moreover, Line 14
ensures that all convergence guarantees derived for Algo-
rithm 2 remain valid.

Algorithm 3:modified Frank-Wolfe algorithm applied
to (Pλ) (with sliding)
Data: measurement operator �, observations y, regularization

parameter λ

Result: function u∗
1 u[0] ← 0;
2 N [0] ← 0;
3 while true do
4 η[k] ← − 1

λ
�∗ (�u[k] − y

)
;

5 E∗ ← Argmax
E simple

∣∣∫
E η[k]∣∣
P(E)

s.t. 0 < |E | < +∞;

6 if
∣∣∣∫E∗ η[k]

∣∣∣ ≤ P(E∗) then
7 output u∗ ← u[k], which is optimal;
8 else
9 E [k+1] ← (E [k]

1 , ..., E [k]
N [k] , E∗);

10 a[k+1] ← argmin
a∈RN [k]+1

Tλ

(
N [k]+1∑
i=1

ai 1E [k+1]
i

)
;

11 remove atoms with zero amplitude;
12 N [k+1] ← number of atoms in E [k+1];
13 perform a local descent on

(a, E) �→ Tλ

(
N [k+1]∑
i=1

ai 1Ei

)
initialized with

(a[k+1], E [k+1]);
14 repeat the operations of Lines 10-12;

15 u[k+1] ←
N [k+1]∑
i=1

a[k+1]
i 1E [k+1]

i
;

16 end
17 end

The sliding step (Line 13 of Algorithm 3) was first intro-
duced in [9]. It allows in practice to considerably improve
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the convergence speed of the algorithm and also produces
sparser solutions: if the solution is expected to be a linear
combination of a few indicator functions, removing the slid-
ing step will typically produce iterates made of a much larger
number of indicator functions, the majority of them correct-
ing the crude approximations of the support of the solution
made during the first iterations.

In [19], the introduction of this step allowed the authors
to derive improved convergence guarantees (i.e. finite time
convergence) in the context of sparse spikes recovery. Their
proof relies on the fact that at every iteration, a “critical point”
of the objective can be reached at the end of the sliding step.
In our case, the above-mentioned existence issues make the
adaptation of these results difficult. However, if the existence
of a curve (formally) satisfying (12) could be guaranteed for
all times, then one would expect it to converge when t goes
to infinity to a critical point of the mapping defined in (11),
in the sense of the following definition.

Definition 1 Let N ∈ N
∗, a ∈ R

N and E1, . . . , EN be
subsets of R

2 such that |Ei | < +∞, P(Ei ) < +∞ for
all i ∈ {1, . . . , N } and (8) holds. We say that (ai , Ei )

N
i=1 is a

critical point of the mapping

(a, E) �→ Tλ

(
N∑
i=1

ai1Ei

)

if for all i ∈ {1, . . . , N } we either have ai �= 0 and

⎧⎪⎨
⎪⎩

P(Ei ) = sign(ai )
∫
Ei

η ,

HEi = sign(ai ) η ,

(14)

or ai = 0 and
∣∣∣∫Ei

η

∣∣∣ ≤ P(Ei ), where

η
def.= −1

λ
�∗ (�u − y) , u

def.=
N∑
i=1

ai1Ei .

In Remark 6, we discuss how assuming a critical point is
indeed reached at the end of the sliding step for every iteration
could be used to derive additional properties of sequences
produced by Algorithm 3. We stress that if, for a given itera-
tion, a critical point is reached at the end of the sliding step,
then Line 14 can be skipped, since the first equality in (14)
and the inequality given above in the case of a zero amplitude
ensure a[k+1] is already optimal for the problem to be solved.

Remark 6 As mentioned above, the introduction of the slid-
ing step is supposed to allow the derivation of improved
convergence properties. If its output is a critical point in the
sense of Definition 1, a first remark we can make is that

for all i ∈ {1, . . . , N [k]} the set E [k]
i has distributional curva-

ture sign(a[k]
i ) η[k]. This can be exploited to obtain “uniform”

density estimates for the level sets of u[k] in the spirit of [27,
Corollary 17.18]. One could then wonder whether this weak
regularity of the level sets could be used to prove

lim sup
n→+∞

∂U (t)
n ⊆ ∂U (t)∗ , (15)

where

lim sup
n→+∞

∂U (t)
n

def.= {x ∈ R
2
∣∣ lim inf
n→+∞ dist(x, ∂U (t)

n ) = 0
}
.

This, combined with the result of Corollary 1 and the fact
(∂U (t)

n )n≥0 is uniformly bounded, would mean that

lim
n→+∞ ∂Un(t) = ∂U (t)∗

in the Hausdorff sense (see [32] for more details).
A major obstacle towards this result is that, although

Lemma 1 provides a uniform upper bound on the perime-
ter of the atoms involved in the definition of the iterates, to
our knowledge, it does not seem possible to derive such a
bound for the perimeter of their level sets, which prevents
one from using the potential weak-* convergence of D1

U (t)
n

towards D1
U (t)∗

.

5 Implementation

The implementation3 of Algorithm 3 requires two oracles to
carry out the operations described on Lines 5 and 13 (recall
Line 10 can always be reduced to a LASSO-type problem
which can efficiently be solved by existing solvers): a first
one that, given a weight function η, returns a solution of (7),
and a second one that, given a collection of real numbers
and simple sets, returns another such collection with a lower
objective value. Our approach for designing these oracles
relies on polygonal approximations: we fix an integer n ≥ 3
(that might be iteration-dependent), look for a maximizer of
J defined by

J (E)
def.= 1

P(E)

∣∣∣∣
∫
E

η

∣∣∣∣
among simple polygons with at most n sides and perform the
sliding step byfinding a collection of real numbers and simple
polygons satisfying (13). This choice is mainly motivated by
our goal to solve (Pλ) “off-the-grid”, which naturally leads

3 A complete implementation of Algorithm 3 can be found online
at https://github.com/rpetit/tvsfw (see also https://github.com/rpetit/
PyCheeger).
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us to consider purely Lagrangian methods which do not rely
on the introduction of a pre-defined discrete grid.

5.1 Polygonal Approximation of Cheeger Sets

In the following, we fix an integer n ≥ 3 and denote

Xn =
{
x ∈ R

n×2
∣∣ [x1, x2], . . . , [xn, x1] is simple

}
.

We recall that a polygonal curve is said to be simple if
non-adjacent sides do not intersect. If x ∈ Xn , then4

∪n
i=1[xi , xi+1] is a Jordan curve. It hence divides the plane in

two regions, one of which is bounded. We denote this region
Ex (it is hence a simple polygon). When x spans Xn , Ex

spans Pn , the set of simple polygons with at most n sides.
The sets we wish to approximate in this section (in order to
carry out Line 5 in Algorithm 3) are the maximizers of J
over Pn . We prove their existence in “Appendix C”.

The approximation method presented thereafter consists
of several steps. First, we solve a discrete version of (6),
where the minimization is performed over the set of piece-
wise constant functions on a fixed grid. Then, we extract a
level set of the solution and obtain a simple polygon whose
edges are located on the edges of the grid. Finally, we use
a first-order method initialized with the previously obtained
polygon to locally maximize J .

5.1.1 Fixed Grid Step

Every solution of (6) has its support included in some
ball (indeed if u solves (6), then there exists α such
that α η ∈ ∂ J (u), and the result follows from Proposition
1 and Lemma 1). We can hence solve (6) in [−R, R]2 (with
Dirichlet boundary conditions) for a sufficiently large R > 0.
We now proceed as in [11]. Let N be a positive integer
and h

def.= 2R/N . We denote Eh the set of N by N matrices.
For every matrix u = (ui, j )(i, j)∈[1,N ]2 ∈ Eh , we define

∂hx ui, j
def.= ui+1, j − ui, j ∂hy ui, j

def.= ui, j+1 − ui, j (16)

for all (i, j) ∈ [0, N ]2, with the convention ui, j = 0 if either
i or j is in {0, N + 1}. We now define

∇hui, j
def.=
(
∂hx ui, j , ∂

h
y ui, j

)
,

and set

Jh(u)
def.= h

N∑
i=0

N∑
j=0

||∇hui, j ||2 = h ‖∇h u‖2,1 .

4 If i > n, we define xi
def.= xi mod n , i.e. xn+1 = x1.

We then solve the following discretized version of (6) for
increasingly small values of h

min
u∈Eh

h2 〈ηh, u〉 s.t. Jh(u) ≤ 1 , (17)

where ηh =
(

1
h2
∫
Ch
i, j

η
)

(i, j)∈[1,N ]2
and (Ch

i, j )(i, j)∈[1,N ]2 is

a partition of [−R, R]2 composed of squares of equal size,
i.e.

Ch
i, j

def.= [−R + (i − 1)h,−R + ih]
×[−R + ( j − 1)h,−R + jh] .

For convenience reasons, we will also use the above expres-
sion to define Ch

i, j if i or j belongs to {0, N + 1}.
In practice, we solve (17) using the primal-dual algorithm

introduced in [14]: we take (τ, σ ) such that τ σ ‖D‖2 < 1
holds with D

def.= h∇h and define
⎧⎪⎪⎨
⎪⎪⎩

φn+1 = proxσ‖·‖2,∞(φn + σ Dūn) ,

un+1 = (un − τ D∗φn+1) − τ h2 η̄h ,

ūn+1 = 2 un+1 − un ,

(18)

where proxσ‖·‖2,∞ is given by:

proxσ‖·‖2,∞(φ) = φ − σ proj{‖·‖2,1≤1}
(

φ

σ

)
.

See [16] for the computation of the projection onto the (2, 1)-
unit ball.

The following proposition shows that, when the grid
becomes finer, solutions of (17) converge to a solution of
(6). Its proof is almost the same as the one of [11, Theorem
4.1]. Since the latter, however, gives a slightly different result
about the minimization of a quadratic objective (linear in our
case) on the total variation unit ball, we decided to include it
in “Appendix D” for the sake of completeness.

Proposition 6 Let uh be the piecewise constant function
on (Ch

i, j )(i, j)∈[1,N ]2 , extended to 0 outside [−R, R]2 asso-
ciated with a solution of (17). Then, there exists a (not
relabeled) subsequence converging strongly in L1(R2) and
weakly in L2(R2) to a solution u∗ of (6) when h → 0, with

moreover Duh
∗
⇀Du.

Since we are interested in finding a simple set E that
approximately solves (7), and now have a good way of
approximating solutions of (6), wemake use of the following
result:

Proposition 7 Let u be a solution of (6). Then, the level sets
of u are such that for all t ∈ R

∗ with |U (t)| > 0, the set U (t)

solves (7).
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Proof This is a direct consequence of Proposition 1. ��
If we have vh converging strongly in L1(R2) to a solution v∗
of (6), then up to the extraction of a (not relabeled) subse-
quence, for almost every t ∈ R we have that

lim
h→0

∣∣∣V (t)
h �V (t)∗

∣∣∣ = 0 .

The above results hence show we can construct a sequence
of sets (Ek)k≥0 such that |Ek�E∗| converges to 0, with E∗ a
solution of (7). However, this convergence only implies that

lim sup
k→∞

J (Ek) ≤ J (E∗) ,

and given that Ek is a union of squares this inequality is
likely to be strict, with the perimeter of Ek not converging
to the perimeter of E∗. From Remark 5, we know we have
to design a numerical method that allows to find a set at
which the value ofJ is arbitrarily close toJ (E∗). This hence
motivates the introduction of the refinement step described
in the next subsection.

As a final remark, we note that, even for k large enough,
Ek could be non-simple. However, using the notations of
Sect. 2.1, since for every set of finite perimeter E , J (E) is a
convex combination of the

(
J (int(γ +

i ))
)
i∈I ,

(
J (int(γ −

i, j ))
)
i∈I , j∈Ji

,

there is a simple set F in the decomposition of E which is
such thatJ (F) ≥ J (E). In practice, such a set can be found
by extracting all the contours of the binary image 1E , and
finding the one with highest objective value. This procedure
guarantees that the output of the fixed grid step is a simple
polygon. We stress that in all our experiments, vh is close
to being (proportional to) the indicator of a simple set for h
large enough, so that its non-trivial level sets are all simple.

5.1.2 Refinement Step

We use a shape gradient algorithm (see [1]) to refine the out-
put of the fixed grid step. It consists in iteratively constructing
a sequence of simple polygons by finding at each step a dis-
placement of steepest ascent for J , along which the vertices
of the previous polygon are moved. Given xt ∈ Xn and a
step size αt , we define the next iterate by:

xt+1
j

def.= xtj + αt θ tj ,

θ tj
def.= 1

P(Ext )

(
θ tarea, j −

∫
Ext

η

P(Ext )
θ tper, j

)
,

θ tarea, j
def.= wt−

j νtj−1 + wt+
j νtj ,

θ tper, j
def.= −(τ tj − τ tj−1) ,

(19)

where, for all j , τ tj and νtj are, respectively, the unit tangent
and outer normal vectors on [xtj , xtj+1] and

wt+
j

def.=
∫

[xtj ,xtj+1]
η(x)

||x − xtj+1||
||xtj − xtj+1||

dH1(x) ,

wt−
j

def.=
∫

[xtj ,xtj−1]
η(x)

||x − xtj−1||
||xtj − xtj−1||

dH1(x) .

One can actually show that the displacement θ t we apply to
the vertices of Ext is such that

θ t = Argmax
||θ ||≤1

lim
α→0+

J (Ext+αθ ) − J (Ext )

α
, (20)

i.e. that it is the displacement of steepest ascent for J at Ext .
We provide a proof of this result in “Appendix E”.

To compute the integral of η over Ext , we integrate η on
each triangle of a sufficiently fine triangulation of Ext (this
triangulationmust beupdated at each iteration and sometimes
re-computed from scratch to avoid the presence of ill-shaped
triangles). The integral of η on a triangle and wt+

j , wt−
j is

computed using standard numerical integration schemes for
triangles and line segments. If |T | denotes the number of
triangles in the triangulation of Ext , |ST | (resp. |SL |) the
number of points used in the numerical integration scheme
for triangles (resp. line segments), the complexity of each
iteration is of order O (m (|T | |ST | + n |SL |)).
Comments. Two potential concerns about the above proce-
dure are whether the iterates remain simple polygons (i.e.
xt ∈ Xn for all t) and whether they converge to a global
maximizer of J over Pn . We could not prove that the iter-
ates remain simple polygons along the process, but since the
initial polygon can be taken arbitrarily close to a simple set
solving (7) (in terms of the Lebesgue measure of the sym-
metric difference), we do not expect nor observe in practice
any change of topology during the optimization. Moreover,
even if J could have non-optimal critical points5, the above
initialization allows us to start our local descent with a poly-
gon that hopefully lies in the basin of attraction of a global
maximizer. Additionally, we stress again that to carry out
Line 5 of Algorithm 3, thanks to Remark 5, we only need to
find a set with near optimal value in (7).

An interesting problem is to quantify the distance (e.g.
in the Hausdorff sense) of a maximizer of J over Pn to a
maximizer of J . We discuss in Sect. 7 the simpler case of
radial measurements. In the general case, if the sequence of
polygons defined above converges to a simple polygon Ex ,
then Ex is such that

5 Here, critical point is to be understood in the sense that the limit
appearing in (20) is equal to zero for every θ .
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w+
j = w−

j =
∫
Ex

η

P(Ex )
tan

(
θ j

2

)
(21)

for all j , where θ j is the j-th exterior angle of the polygon
(the angle between x j−x j−1 and x j+1−x j ). This can be seen
as a discrete version of the following first-order optimality
condition for solutions of (7):

η =
∫
E η

P(E)
HE on ∂∗E . (22)

Note that (22) is similar to the optimality condition for the
classical Cheeger problem (i.e. with η = 1 and the additional
constraint E ⊆ 
), namely HE = P(E)/ |E | in the free
boundary of E (see [2] or [29, Prop. 2.4]).

5.2 Sliding Step

The implementation of the sliding step (Line 13 in Algo-
rithm 3) is similar to what is described above for refining
crude approximations of Cheeger sets. We use a first order
optimization method on the mapping

(a, x) �→ Tλ

(
N∑
i=1

ai 1Exi

)
. (23)

Given a step size αt , a vector at ∈ R
N and xt1, . . . , x

t
N inXn ,

we set ut
def.=∑N

i=1 a
t
i 1Exti

and perform the following update:

at+1
i

def.= ati − αt hti ,

hti
def.=
〈
�1Exti

,�ut − y
〉
+ λ P

(
Exti

)
sign

(
ati
)
,

xt+1
i, j

def.= xti, j − αt θ ti, j ,

θ ti, j
def.= ati

[
θ tdata,i, j − λ sign(ati )

(
τ ti, j − τ ti, j−1

)]
,

θ tdata,i, j
def.= 〈�ut − y, wt−

i, j 〉 νti, j−1 + 〈�ut − y, wt+
i, j 〉 νti, j ,

where τ ti, j , νti, j are, respectively, the unit tangent and outer
normal vectors on the edge [xti, j , xti, j+1] and

wt+
i, j

def.=
∫

[xti, j ,xti, j+1]
ϕ(x)

||x − xti, j+1||
||xti, j − xti, j+1||

dH1(x) ,

wt−
i, j

def.=
∫

[xti, j ,xti, j−1]
ϕ(x)

||x − xti, j−1||
||xti, j − xti, j−1||

dH1(x) .

Using the notations of Sect. 5.1.2, the complexity of each
iteration is of order O (N m (|T | |ST | + n |SL |)).
Comments. We first stress that the above update is similar
to the evolution formally described in (12). Now, unlike the
local optimization we perform to approximate Cheeger sets,

the sliding step may tend to induce topology changes (see
Sect. 6.2 for an example). This is of course linked to the
possible appearance of singularities mentioned in Sect. 4.
Typically, a simple set may tend to split in two simple sets
over the course of the descent. This is a major difference
(and challenge) compared to the sliding steps used in sparse
spikes recovery (where the optimization is carried out over
the space of Radon measures) [6,9,19]. This phenomenon is
closely linked to topological properties of the faces of the
total (gradient) variation unit ball: its extreme points do not
form a closed set for any reasonable topology (e.g. the weak
L2(R2) topology), nor do its faces of dimension d ≤ k for
any k ∈ N. As a result, when moving continuously on the set
of faces of dimension d = k, it is possible to “stumble upon”
a point which only belongs to a face of dimension d > k.

Our current implementation does not allow to handle these
topology changes in a consistent way, and finding a way to
deal with them “off-the-grid” is an interesting avenue for
future research. It is important to note that not allowing topo-
logical changes during the sliding step is not an issue, since all
convergence guarantees hold as soon as the output of the slid-
ing step decreases the energy more than the standard update.
One can hence stop the local descent at any point before
any change of topology occurs, which avoids having to treat
them. Still, in order to yield iterates that are as sparse as pos-
sible (and probably to decrease the objective as quickly as
possible), it seems preferable to allow topological changes.

6 Numerical Experiments

6.1 Recovery Examples

Here, we investigate the practical performance of Algorithm
3. We focus on the case where � is a sampled Gaussian
convolution operator, i.e.

∀x ∈ R
2, ϕ(x) =

(
exp

(
−||x − xi ||2

2σ 2

))m
i=1

for a given σ > 0 and a sampling grid (xi )mi=1. The noise
is drawn from a multivariate Gaussian with zero mean and
isotropic covariance matrix τ 2 Im . We take λ of the order of√
2 log(m) τ 2.
Numerically certifying that a given function is an approx-

imate solution of (Pλ) is difficult. However, as the sampling
grid becomes finer,� tends to the convolutionwith the Gaus-
sian kernel, which is injective. Relying on a �-convergence
argument, one may expect that if u0 is a piecewise constant
image and w is some small additive noise, the solutions of
(Pλ) with y = �u0 + w are all close to u0, modulo the reg-
ularization effects of the total variation.
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Fig. 2 From left to right:
observations, unknown function,
output of Algorithm 3, outputs
of the fixed grid method using
the isotropic and Condat’s total
variation

Fig. 3 Unfolding of
Algorithm 3 for the first
experiment (u[k] denotes the
k-th iterate)

u[1] (before sliding)

−2

0

2

u[1] u0 − u[1] Supp(Du[1]), Supp(Du0)

u[2] (before sliding)

−2

0

2

u[2] u0 − u[2] Supp(Du[2]), Supp(Du0)

u[3] (before sliding)

−2

0

2

u[3] u0 − u[3] Supp(Du[3]), Supp(Du0)

We also assess the performance of our algorithm by com-
paring its output to that of a primal dual algorithmminimizing
a discretized version of (Pλ) on a pixel grid, where the
total variation term is replaced by the discrete isotropic total
variation or Condat’s discrete total variation.6 To minimize
discretization artefacts, we artificially introduce a downsam-
pling in the forward operator, so that the reconstruction is
performed on a grid four times larger than the sampling one.

Our first experiment consists in recovering a function u0
that is a linear combination of three indicator functions (see
Figs. 2 and 3). During each of the three iterations required to
obtain a good approximation of u0, a new atom is added to its
support. One can see the sliding step is crucial: the large atom
on the left, added during the second iteration, is significantly
refined during the sliding step of the third iteration, when
enough atoms have been introduced.

The second experiment (see Fig. 4) consists in recovering
the indicator function of a set with a hole (which can also be
seen as the sumof two indicator functions of simple sets). The
support of u0 and its gradient are accurately estimated. Still,
the typical effects of total (gradient) variation regularization

6 Condat’s total variation is introduced in [17]. See also [15] for a review
of discretizations of the total variation.

are noticeable: corners are slightly rounded, and there is a
“loss of contrast” in the eye of the pacman.

The third experiment (Fig. 5) also showcases the rounding
of corners and highlights the influence of the regulariza-
tion parameter: as λ decreases, the curvature of the edge set
increases.

Finally, we provide in Fig. 6 the results of an experiment
on a more challenging task, which consists in reconstructing
a natural greyscale image.
Choice of parameters.The number of observations in the first
experiment is 60× 60, 75× 75 in the second and third ones,
and 64 × 64 in the last one. In all experiments, we solved
(17) on a grid of size 80×80. In both local descent steps (for
approximatingCheeger sets and for the sliding step), the sim-
ple polygons have a number of vertices of order 30 times the
length of their boundary (100 for the last experiment), and the
maximum area of triangles in their inner mesh is 10−2 (the
domain being a square of side 1). The inner triangulation of
a simple polygon is obtained by using Richard Shewchuk’s
Triangle library. The boundary of the polygons are resam-
pled every 30 iterations. Line integrals are computed using
the Gauss–Patterson scheme of order 3 (15 points) and tri-
angle integrals using the Hammer–Marlowe–Stroud scheme
of order 5 (7 points).
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Fig. 4 From left to right: unknown function, observations, outputs of the fixed grid method using the isotropic and Condat’s total variation, output
of Algorithm 3, gradients support (red: output of Algorithm 3, black: unknown)

Fig. 5 Left: unknown function, middle: observations, right: output of Algorithm 3 for different values of λ

Fig. 6 From left to right: original image, observations, iterates u[k] (k = 1, 4) produced by Algorithm 3, outputs of the fixed grid method using the
isotropic and Condat’s total variation

6.2 Topology Changes During the Sliding Step

Here, we illustrate the changes of topology that may occur
during the sliding step (Line 13 of Algorithm 3). All relevant
plots are given in Fig. 7. The unknown function (see (a)) is
the sum of two indicator functions:

u0 = 1B((−1,0),0.6) + 1B((1,0),0.6) ,

and observations are shown in (b). TheCheeger set computed
at Line 5 of the first iteration covers the two disks (see (c)).

In this setting, our implementation of the sliding step con-
verges to a function similar to (f),7 and we obtain a valid
update that decreases the objective more than the standard
Frank–Wolfe update. The next iteration of the algorithm will
then consist in adding a new atom to the approximation, with
negative amplitude, so as to compensate for the presence of
the small bottleneck.

However, it seems natural that the support of (f) should
split into two disjoint simple sets, which is not possible with
our current implementation. To investigate what would hap-
pen in this case, we manually split the two sets (see (g)) and

7 This only occurs when λ is small enough. For higher values of λ, the
output is similar to (d) or (e).

let themevolve independently. The support of the approxima-
tion converges to the union of the two disks, which produces
an update that decreases the objective even more than (f).

7 The Case of a Single Radial Measurement

In this section, we study a particular setting, where the num-
ber of observations m is equal to 1, and the unique sensing
function is radial, i.e. the measurement operator is given by
(1) with ϕ : R

2 → R a radial function.8 We first state a
proposition about the solutions of (Pλ) in this setting, before
carryingonwith results thatwill requiremore assumptions on
ϕ. Unless otherwise specified, sets that differ by a Lebesgue
negligible set and functions that are equal almost everywhere
are identified.

For every u ∈ L2(R2), we define the radialisation ũ of u
by

ũ(x) =
∫
S1
u(‖x‖ e) dH1(e) .

8 We say that f : R
2 → R is radial if there exists g : [0,+∞[→ R

such that f (x) = g(‖x‖) for almost every x ∈ R
2.
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Fig. 7 Topology change experiment. a unknown signal, b observations, c weighted Cheeger set, d–g sliding step iterations (with splitting), h final
function

We note that in our setting �u only depends on u through ũ,
that is:

�u =
∫
R2

ϕ u =
∫
R2

ϕ̃ ũ .

Using the fact |Dũ|(R2) ≤ |Du|(R2) for any u ∈ L2(R2)

such that |Du|(R2) < +∞ with equality if and only if u is
radial (see “Appendix F.1” for a proof of this statement), we
may state the following result:

Proposition 8 Every solution of (Pλ) is radial, and there
exists a solution that is proportional to the indicator of a
disk centred at the origin.

Proof The first part of the result is a direct consequence of the
above statements. Then, using [7, Corollary 2 and Theorem
2], we have that there exists a solution of (Pλ) which is pro-
portional to the indicator function of a simple set. The result
follows from the fact that every simple set whose indicator
function is radial is a disk centred at the origin. ��

Wewill now assumeϕ is positive, continuous and decreas-
ing9 along rays. For any r ∈ R+, we will denote by an abuse
of notation ϕ̃(r) the value of ϕ̃ at any point x ∈ R

2 such that
‖x‖ = r . We may also invoke the following assumption:

Assumption 1 The function f : r �→ r ϕ̃(r) is continuously
differentiable on R

∗+, r f (r) → 0 when r → +∞, and there
exists ρ0 > 0 such that f ′(r) > 0 on ]0, ρ0[ and f ′(r) < 0
on ]ρ0,+∞[.10

In the rest of this section, we first explain what each step
of Algorithm 2 should theoretically return in this particu-
lar setting, without worrying about approximations made for
implementation matters. Then, we compare those with the
output of each step of the practical algorithm.

9 In all the following, by decreasing we mean strictly decreasing.
10 Assumption 1 is for example satisfied
by ϕ : x �→ exp

(−||x ||2/(2σ 2)
)
for any σ > 0.

7.1 Theoretical Behaviour of the Algorithm

The first step of Algorithm 3 consists in solving the Cheeger

problem (7) associated with η
def= 1

λ
�∗y = y

λ
ϕ (or equiva-

lently to ϕ). To describe the solutions of this problem,we rely
on Steiner symmetrization. If E is a set of finite perimeter
with finite measure, ν ∈ S

1 and z ∈ R, we denote

Eν,z
def.= {t ∈ R | z ν + t ν⊥ ∈ E} .

The Steiner symmetrization of E with respect to the line
through the origin and directed by ν, denoted Es

ν , is then
defined by

Es
ν

def.= {x ∈ R
2 | |〈x, ν⊥〉| ≤ L1(Eν,〈x,ν〉)/2} ,

where L1 denotes the Lebesgue measure on R. The funda-
mental property of Steiner symmetrization is that it preserves
volume and does not increase perimeter (see [27, section
14.1] for more details). Using this, and denoting by B(0, R)

the disk of radius R centred at the origin, we may state:11

Proposition 9 All the solutions of the Cheeger problem (7)

associated with η
def= ϕ are disks centred at the origin. Under

Assumption 1, the unique solution is the disk B(0, R∗) with
R∗ the unique maximizer of

R �→
[∫ R

0
r ϕ̃(r) dr

]
/R .

Proof We first stress that existence of solutions was already
briefly discussed in Sect. 3.1 (it can either be obtained by
purely geometric arguments, or by showing the existence of
solutions of (6) by the direct method of calculus of variations
and then using Krein–Milman theorem).

11 This result can be proved using the radialisation operation previously
introduced. We here, however, rely on classical arguments used in the
analysis of geometric variational problems, which we will moreover
also use later in this section.
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Now, if E ⊂ R
2 is such that 0 < P(E) < +∞ and ν ∈ S

1

we have (see Lemma 9):

∫
E η

P(E)
≤
∫
Es

ν
η

P(Es
ν)

,

with equality if and only if |E�Es
ν | = 0. Hence, if E∗ solves

(7), arguing as in [27, section 14.2], we get that E∗ is a convex
set which is invariant by reflection with respect to any line
through the origin, and hence, that E∗ is a ball centred at the
origin.

Now, for any R > 0, we have

G(R)
def.=

∫
B(0,R)

ϕ

P(B(0, R))
= 1

R

∫ R

0
r ϕ̃(r)dr ,

and the last part of the result follows from a simple analysis
of the variations of G under Assumption 1, which is given in
“Appendix F”. ��

The second step (Line 10) of the algorithm then consists
in solving

inf
a∈R

1

2

(
a
∫
E∗

ϕ − y

)2
+ λ P(E∗) |a| , (24)

where E∗ = B(0, R∗). The solution a∗ has a closed form
which writes:

a∗ = sign(y)∫
E∗ ϕ

(
|y| − λ

P(E∗)∫
E∗ ϕ

)+
, (25)

where x+ = max(x, 0).
The next step should be the sliding one (Line 13). How-

ever, in this specific setting, one can show that the constructed
function is already optimal, as stated by the following propo-
sition:

Proposition 10 Under Assumption 1, Problem (Pλ) has a
unique solution a∗ 1E∗ with E∗ = B(0, R∗) the solution of
the Cheeger problem given by Prop. 9, and a∗ given by (25).

Proof If u∗ ∈ L2(R2) solves (Pλ), then

�∗ p∗ = p∗ϕ ∈ ∂ J (u∗) ,

with p∗ = − 1
λ
(�u∗ − y). Now, from Proposition 1 we know

p∗ϕ ∈ ∂ J (u∗) implies that p∗ϕ ∈ ∂ J (0) and that the level
sets of u∗ satisfy

P(U (t)∗ ) =
∣∣∣∣
∫
U (t)∗

p∗ϕ
∣∣∣∣ .

Thismeans that the nontrivial level sets of u∗ are all solutions
of the Cheeger problem associated with p∗ϕ (or equivalently

toϕ) and are hence equal to B(0, R∗). This shows there exists
a ∈ R such thatu∗ = a 1B(0,R∗), and the result easily follows.

��
To summarize, with a single observation and a radial sens-

ing function, a solution is found in a single iteration, and its
support is directly identified by solving theCheeger problem.

7.2 Study of Implementation Approximations

In practice, instead of solving (7), we look for an element
of Pn (a simple polygon with at most n sides) maximizing
J , for some given integer n ≥ 3. It is hence natural to inves-
tigate the proximity of this optimal polygon with B(0, R∗).
Solving classical geometric variational problems restricted to
the set of n-gons is involved, as the Steiner symmetrization
procedure might increase the number of sides [30, Sec. 7.4].
However, using a trick fromPólya and Szegö, onemay prove:

Proposition 11 Let n ∈ {3, 4}. Then, all the maximizers of
J over Pn are regular and inscribed in a circle centred at
the origin.

Proof Triangles: let E∗ be a maximizer of J among trian-
gles. Then, the Steiner symmetrization of E∗ with respect
to any of its heights through the origin (see Fig. 8) is still a
triangle, and Lemma 9 ensures it has a higher energy except
if this operation leaves E∗ unchanged. As a consequence, E∗
must be symmetric with respect to all its heights through the
origin. This shows E∗ is equilateral and inscribed in a circle
centred at the origin.

Quadrilaterals:we notice that if E is a simple quadrilateral,
then its Steiner symmetrization with respect to any line per-
pendicular to one of its diagonals (see Fig. 9) is still a simple
quadrilateral. We can then proceed exactly as for triangles
to prove any maximizer E∗ of J over P4 is symmetric with
respect to every line through the origin and perpendicular to
one of its diagonals. This shows E∗ is a rhombus centred at
the origin. We can now symmetrize with respect to any line
through the origin perpendicular to one of its sides to finally
obtain that E∗ must be a square centred at the origin. ��

Our proof does not extend to n ≥ 5, but the following
conjecture is natural:

Conjecture 1 The result stated in Proposition 11 holds for
all n ≥ 3.

For n ∈ {3, 4} or if Conjecture 1 holds, it remains
to compare the optimal polygons with B(0, R∗). If we
define G(R)

def.= J (B(0, R)) and Gn(R) the value of J at any
regular n-gon inscribed in a circle of radius R centred at the
origin, then we can state the following result (its proof is
given in “Appendix F.3”):
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Fig. 8 Steiner symmetrization
of triangles
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Fig. 9 Steiner symmetrization
of quadrilaterals

O D

x1

x2 x3

x4

a b c
O D

x1

x2

x3

x4

a b c

Proposition 12 Under Assumption 1, we have that

||Gn − G||∞ = O

(
1

n2

)
.

Moreover, if f is of class C2 and f ′′(ρ0) < 0 , then for n
large enough Gn has a unique maximizer R∗

n and

|R∗
n − R∗| = O

(
1

n

)
.

If ϕ is the function defined by

ϕ : x �→ exp
(
−||x ||2/(2σ 2)

)
,

then this last result holds for all n ≥ 3.

Now, the output of ourmethod for approximating Cheeger
sets, described in Sect. 5, is a polygon that is obtained by
locally maximizing J using a first-order method. Even if
we carefully initialize this first-order method, the possible
existence of non-optimal critical points makes its analysis
challenging. However, in our setting (a radial weight func-
tion), the simple polygons that are critical points12 of J
coincide with its global maximizers over Pn (at least for
small n). The proof of this result is given in “Appendix F.4”.

Proposition 13 Let n ∈ {3, 4}. Under Assumption 1, if f is
of class C2 and f ′′(ρ0) < 0, the elements of Pn that are

12 We recall that critical point is here to be understood in the sense that
the limit appearing in (20) is equal to zero for every θ .

critical points of J are the regular n-gons inscribed in the
circle of radius R∗

n centred at the origin.

We make the following conjecture:

Conjecture 2 The result stated in Proposition 13 holds for all
n ≥ 3.

If n ∈ {3, 4}, or if Conjecture 2 holds, we may therefore
expect our polygonal approximation to be at Hausdorff dis-
tance of order O

( 1
n

)
to B(0, R∗).

8 Conclusion

As shown in the present exploratory work, solving total vari-
ation regularized inverse problems in a gridless manner is
highly beneficial, as it allows to preserve structural proper-
ties of their solutions,which cannot be achievedby traditional
numerical solvers. The price to pay for going “off-the-grid” is
an increased complexity of the analysis and the implemen-
tation of the algorithms. Furthering their theoretical study
and improving their practical efficiency and reliability is an
interesting avenue for future research. Investigating exten-
sions to higher dimensions (e.g. 3D) could also be promising.
Although the computational cost of each step might be large,
it seems that the proposed algorithm could be transposed to
this new setting.

Acknowledgements The authors thank Robert Tovey for carefully
reviewing the code used in the numerical experiments section, and for
suggesting several modifications that significantly improved the results
presented therein.
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ADerivation of Algorithm 2

See [19, Sec. 4.1] for the case of the sparse spikes problem.

Lemma 2 Problem (Pλ) is equivalent to

min
(u,t)∈C T̃λ(u, t)

de f= 1

2
||�u − y||2 + λt (P̃λ)

with

C
def.=
{
(u, t) ∈ L2(R2) × R

∣∣ |Du|(R2) ≤ t ≤ M
}

.

and M
def.= ||y||2/(2λ), i.e. if u is a solution of (Pλ), then we

have that (u, |Du|(R2)) is a solution of (P̃λ), and conversely
any solution of (P̃λ) is of the form (u, |Du|(R2)) with u a
solution of (Pλ).

Proof If u∗ is a solution of (Pλ), then

Tλ(u
∗) ≤ Tλ(0) = ||y||2/2 .

Hence, we have that |Du∗|(R2) ≤ M , which shows the fea-
sible set of (Pλ) can be restricted to functions u which are
such that |Du|(R2) ≤ M . It is then straightforward to show
that the resulting program is equivalent to (P̃λ), in the sense
defined above. ��

The objective T̃λ of (P̃λ) is now convex, differentiable and
we have for all (u, t) ∈ L2(R2) × R

dT̃λ(u, t) : L2(R2) × R → R

(v, s) �→
[∫

R2
�∗(�u − y) v

]
+ λs .

Moreover, the feasible set C is weakly compact. We can
therefore apply Frank–Wolfe algorithm to (P̃λ). The fol-
lowing result shows how the linear minimization step (Line
2 of Algorithm 1) one has to perform at step k amounts
to solving the Cheeger problem (7) associated with η

def.=
− 1

λ
�∗(�u[k] − y).

Proposition 14 Let (u, t) ∈ C and η
def.= − 1

λ
�∗(�u − y). We

also denote

α
def.= sup

E⊂R2

∣∣∫
E η
∣∣

P(E)
s.t. 0 < |E | < +∞, P(E)<+∞ . (26)

Then, ifα ≤ 1, (0, 0) is aminimizer of dT̃λ(u, t) over C. Oth-
erwise, there exists a simple set E achieving the supremum

in (26) such that, denoting ε = sign
(∫

E η
)
,
(

εM
P(E)

1E , M
)
is

a minimizer of dT̃λ(u, t) on C.

Proof The extreme points of C are (0, 0) and the elements
of
{(

± M

P(E)
1E , M

) ∣∣∣∣ E is simple, 0 < |E | < +∞
}

.

Since dT̃λ(u, t) is linear, it reaches its minimum onC at least
at one of these extreme points. We hence have that

(0, 0) ∈ Argmin
(v,s)∈C

dT̃λ(u, t)(v, s)

or that a minimizer can be found by finding an element of

Argmin
E simple
ε∈{−1,1}

〈
�u − y,

εM

P(E)
�1E

〉
+ λM

=Argmin
E simple
ε∈{−1,1}

〈
�u − y,

ε

λP(E)
�1E

〉

=Argmin
E simple
ε∈{−1,1}

ε

P(E)

∫
E

1

λ
�∗ (�u − y) .

This last problem is equivalent to finding an element of

Argmax
Esimple

1

P(E)

∣∣∣∣
∫
E

η

∣∣∣∣ ,

in the sense that E∗ is optimal for the latter if and only if
the couple

(
E∗, sign

(∫
E∗ η
))

is optimal for the former. We
can moreover show that (0, 0) is optimal if and only if for
all E ⊂ R

2 such that 0 < |E | < +∞ and P(E) < +∞ we
have:

1

P(E)

∣∣∣∣
∫
E

η

∣∣∣∣ ≤ 1 .

��
BDiscussion on Line 10 of Algorithms 2 and 3

Considering “Appendix A” and Algorithm 1, the standard
Frank–Wolfe update at iteration k would be to take u[k+1]
equal to ũ[k+1] with:

ũ[k+1] def.= (1 − γk) u
[k] + γk

M ε∗
P(E∗)

1E∗ ,

where γk = 2
k+2 , E∗ is the set obtained at Line 5 and ε∗ is the

sign of
∫
E∗ η[k]. Now, one can write ũ[k+1] as a linear combi-

nation of indicator functions of its level sets and then, apply
the decomposition mentioned in Sect. 2.1 to each level set.
This allows to find a family (Ei )

N
i=1 of simple sets of positive

measure and (ai )Ni=1 ∈ R
N such that ũ[k+1] =∑N

i=1 ai 1Ei

and
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∣∣∣∣∣D
(

N∑
i=1

ai 1Ei

)∣∣∣∣∣ (R2) =
N∑
i=1

|ai | P(Ei ) .

Moreover, it is possible to prove (see [20]) that for every i �=
j

1. Either Ei ⊂ E j , E j ⊂ Ei or Ei ∩ E j = ∅.
2. If sign(ai ) = sign(a j ) and Ei ∩ E j = ∅, then it holds

that H1(∂∗Ei ∩ ∂∗E j ) = 0.
3. If sign(ai ) = −sign(a j ) and Ei ⊂ E j , then it holds again

that H1(∂∗Ei ∩ ∂∗E j ) = 0.

We hence deduce that for every b ∈ R
N such that

∀i ∈ {1, . . . , N }, sign(ai ) = sign(bi ) ,

we have:

∣∣∣∣∣D
(

N∑
i=1

bi 1Ei

)∣∣∣∣∣ (R2) =
N∑
i=1

|bi | P(Ei ) . (27)

This shows that if E [k+1] = (E1, . . . , EN ) and

a[k+1] ∈ Argmin
b∈RN

1

2
||�E b − y||2 + λ

N∑
i=1

P(Ei ) |bi |

s.t. ∀i ∈ {1, . . . , N }, sign(bi ) = sign(ai ) ,

(28)

then, defining u[k+1] = ∑N
i=1 a

[k+1]
i 1E [k+1]

i
, we finally

obtain Tλ(u[k+1]) ≤ Tλ(ũ[k+1]), which ensures the validity
of this update.

As a final note, let us mention that applying the decom-
position mentioned in Sect. 2.1 to the level sets of ũ[k+1] is a
computationally challenging task. However, we stress again
that, generically, H1(∂∗Ei ∩ ∂∗E j ) = 0 for every i �= j , so
that the above procedure is never required in practice.

C Existence of Maximizers of the Cheeger
Ratio Among Simple Polygons with At Most
n Sides

Let η ∈ L2(R2) ∩ C0(R2) and n ≥ 3. We want to prove the
existence of maximizers of the Cheeger ratio J associated
with η among simple polygons with at most n sides. We will
in fact prove a slightly stronger result, namely the existence
of maximizers of a relaxed energy which coincides with J
on simple polygons, and the existence of a simple polygon
maximizing this relaxed energy.

Wefirst begin bydefining relaxedversions of the perimeter
and the (weighted) area. To be able to dealwith polygonswith

a number of vertices smaller than n, which will be useful in
the following, we define for all m ≥ 2 and x ∈ R

m×2 the
following quantities:

P(x)
def.=

m∑
i=1

‖xi+1 − xi‖ and A(x)
def.=
∫
R2

η χx ,

where χx (y) denotes the index (or winding number) of any
parametrization of the polygonal curve [x1, x2], . . . , [xm, x1]
around y ∈ R

2. In particular, for every x ∈ Xm (i.e. for
every x ∈ R

m×2 defining a simple polygon), we have

P(x) = P(Ex ) and |A(x)| =
∣∣∣∣
∫
Ex

η

∣∣∣∣ ,

and hence, as soon as P(x) > 0:

J (Ex ) = |A(x)|
P(x)

.

This naturally leads us to define

Ym
def.=
{
x ∈ R

m×2
∣∣P(x) > 0

}

and to denote, abusing notation, J (x) = |A(x)| /P(x) for
every x ∈ Ym .

The function χx is constant on each connected compo-
nent of R

2 \ �x with �x
def.= ∪m

i=1[xi , xi+1]. It takes values
in {−m, . . . ,m} and is equal to zero on the only unbounded
connected component.Wealsohave ∂ supp(χx ) ⊂ �x .More-
over, χx has bounded variation and for H1-almost every
y ∈ �x there exists u

+
� (y), u−

� (y) in {−m, . . . ,m} such that

Dχx = (u+
�x

− u−
�x

) ν�xH1 �x .

Now, we define

α
def.= sup

x∈Yn

J (x) .

If η = 0, then the existence of maximizers is trivial. Oth-
erwise, there exists a Lebesgue point x0 of η at which η is
nonzero. Now, the family of regular n-gons inscribed in any
circle centred at x0 has bounded eccentricity. Hence, if xn,r

defines a regular n-gon inscribed in a circle of radius r cen-
tred at x0, Lebesgue differentiation theorem ensures that

lim
r→0+

∣∣∣∫Exn,r
η

∣∣∣
|Exn,r |

> 0 ,

and the fact that α > 0 easily follows.
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Lemma 3 Let C > 0. There exists R > 0 and c > 0 such
that

∀x ∈ Yn, J (x) ≥ C 
⇒ P(x) ≥ c and ‖xi‖ ≤ R for all i .

Proof The proof is similar to that of Lemma 1.

Upper bound on the perimeter: the integrability of η2

yields that for every ε > 0 there exists R1 > 0 such that

∫
R2\B(0,R1)

η2 ≤ ε2 . (29)

Let ε > 0 and R1 > 0 such that (29) holds. We have

P(x) ≤ 1

C
|A(x)|

≤ 1

C

[∣∣∣∣
∫
R2∩B(0,R)

η χx

∣∣∣∣+
∣∣∣∣
∫
R2\B(0,R)

η χx

∣∣∣∣
]

≤ 1

C

[
‖η‖L2 ‖χx‖L∞

√|B(0, R)| + ε ‖χx‖L2

]

≤ 1

C

[
‖η‖L2 n

√|B(0, R)| + ε
1√
c2

|Dχx |(R2)

]

≤ 1

C

[
‖η‖L2 n

√|B(0, R)| + ε
2n√
c2
P(x)

]
.

Now, taking

ε
def.= C

√
c2

4n
and c′ = 2n

C
‖η‖L2

√|B(0, R)| ,

we finally get that P(x) ≤ c′.
Inclusion in a ball: we take ε =

√
c2
4n and fix R2 > 0 such

that
∫
R2\B(0,R2)

η2 ≤ ε2. Let us show that

supp(χx ) ∩ B(0, R2) �= ∅ .

By contradiction, if supp(χx ) ∩ B(0, R2) = ∅, we would
have:

P(x) ≤ 1

C
|A(x)|

= 1

C

∣∣∣∣
∫
R2\B(0,R2)

η χx

∣∣∣∣

≤
√∫

R2\B(0,R2)

η2 ‖χx‖L2

≤ ε√
c2

|Dχx |(R2) ≤ 2n ε√
c2

P(x) .

Dividing by P(x) > 0 yields a contradiction. Now, since

∂ supp(χx ) ⊂ �x ,

we have diam(supp(χx )) ≤ P(x) ≤ c′ which shows

supp(χx ) ⊂ B(0, R) with R
def.= c′ + R2 .

This in turn implies that ‖xi‖ ≤ R for all i .
Lower bound on the perimeter: the integrability of η2

shows that, for every ε > 0, there exists δ > 0 such that

∀E ⊂ R
2, |E | ≤ δ 
⇒

∣∣∣∣
∫
E

η2
∣∣∣∣ ≤ ε2 .

Taking ε
def.= C

√
c2/2, we obtain that if |supp(χx )| ≤ δ

P(x) ≤ 1

C
|A(x)| = 1

C

∣∣∣∣
∫
supp(χx )

η

∣∣∣∣

≤ 1

C

√∫
supp(χx )

η2
√|supp(χx )|

≤ ε

C
√
c2

P(supp(χx ))

≤ ε

C
√
c2

P(x) ,

the last inequality holding because ∂ supp(χx ) ⊂ �x . We get
a contradiction since P(x) is positive. ��
Applying Lemma 3 with, e.g. C = α/2, and defining

Y ′
n

def.=
{
x ∈ R

n×2
∣∣P(x) ≥ c and ‖xi‖ ≤ R for all i

}
,

we see that any maximizer of J over Y ′
n (if it exists) is also

a maximizer of J over Yn , and conversely.

Lemma 4 Let x ∈ R
n×2. Then, for every a ∈ R

2 we have

A(x) =
n∑

i=1

sign(det(xi − a xi+1 − a))

∫
axi xi+1

η

=
n∑

i=1

det(xi − a xi+1 − a)

∫
T1

η((xi − a xi+1 − a) y) dy ,

where axi xi+1 denotes the triangle with vertices a, xi , xi+1

and T1
def.= {(α, β) ∈ (R+)2

∣∣α + β ≤ 1
}
is the unit triangle.

Proof Let us show that for all a ∈ R
2 we have

χx =
n∑

i=1

sign(det(xi − a xi+1 − a)) 1axi xi+1 (30)

almost everywhere. First, we have that y ∈ R
2 is in the (open)

triangle axi xi+1 if and only if the ray issued from y directed
by y−a intersects ]xi , xi+1[.Moreover, if y is in this triangle,
then

sign(det(xi − a xi+1 − a)) = sign
(
(y − a) · (xi+1 − xi )

⊥) .
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The above hence shows that, if y ∈ R
2 \ ∪n

i=1[xi , xi+1]
does not belong to any of the segments [a, xi ], evaluating
the right hand side of (30) at y amounts to computing the
winding number χx (y) by applying the ray-crossing algo-
rithm described in [24]. This in particular means that (30)
holds almost everywhere, and the result follows. ��

From Lemma 4, we deduce thatA is continuous on R
n×2.

This is also the case ofP . Now,Y ′
n is compact and included in

Yn , hence the existence of maximizers of J over Y ′
n , which

in turn implies the existence of maximizers of J over Yn .
Let us now show there exists a maximizer which belongs

to Xn . To do so, we rely on the following lemma

Lemma 5 Let m ≥ 3 and x ∈ Ym \Xm. Then, there exists m′
with 2 ≤ m′ < m and y ∈ Ym′ such that

J (x) ≤ J (y) .

Proof If x ∈ Ym \ Xm , then [x1, x2], . . . , [xm, x1] is not
simple. If there exists i with xi = xi+1, then

y = (x1, . . . , xi , xi+2, . . . , xm)

is suitable, and likewise if x1 = xm , then

y = (x1, . . . , xm−1)

is suitable. Otherwise, we distinguish the following cases:
If there exists i < j with xi = x j : we define

y = (x1, . . . , xi , x j+1, . . . , xm) ∈ R
m−( j−i) ,

z = (xi , xi+1, . . . , x j−1) ∈ R
j−i .

We notice that 2 ≤ j − i < m and 2 ≤ m − ( j − i) < m.
If there exists i < j with xi ∈]x j , x j+1[: we necessarily
have (i, j) �= (1,m). We define

y = (x1, . . . , xi , x j+1, . . . , xm) ∈ R
m−( j−i) ,

z = (xi , xi+1, . . . , x j ) ∈ R
j−i+1 .

We again have 2 ≤ m − ( j − i) < m, and since (i, j) �=
(1,m),we have j−i < m−1which shows2 ≤ j−i+1 < m.
If there exists i < j with x j ∈]xi , xi+1[: we necessarily
have j > i + 1. We define

y = (x1, . . . , xi , x j , . . . , xm) ∈ R
m−( j−i)+1 ,

z = (xi+1, . . . , x j ) ∈ R
j−i .

We again have 2 ≤ j − i < m, and since j > i +1 we obtain
that 2 ≤ m − ( j − i) + 1 < m.
If there exists i < j with x ′ ∈]xi , xi+1[ ∩ ]x j , x j+1[: if
we have j = i + 1, then either xi+2 ∈]xi , xi+1[ or xi ∈

]xi+1, xi+2[ and in both cases we fall back on the previously
treated cases. The same holds if (i, j) = (1,m). Otherwise,
we define

y = (x1, . . . , xi , x
′, x j+1, . . . , xm) ∈ R

m−( j−i)+1 ,

z = (x ′, xi+1, . . . , x j ) ∈ R
j−i+1 .

Since j > i + 1 and (i, j) �= (1,m), we get 2 ≤ m − ( j −
i) + 1 < m and 2 ≤ j − i + 1 < m.
Now, one can see that in each case we have
P(x) = P(y) + P(z) and χx = χy +χz almost everywhere,
which in turn gives thatA(x) = A(y) + A(z). We hence get
that P(y) = 0 or P(z) = 0, and in this case J (x) = J (y)
or J (x) = J (z), or that P(y) > 0 and P(z) > 0, which
yields

|A(x)|
P(x)

≤ |A(y)| + |A(z)|
P(y) + P(z)

= P(y)

P(y) + P(z)

|A(y)|
P(y)

+ P(z)

P(y) + P(z)

|A(z)|
P(z)

.

Hence, J (x) is smaller than a convex combination of J (y)
and J (z), which gives that it is smaller than J (y) or J (z).
This shows that y or z is suitable. ��
We can now prove our final result, i.e. that there exists
x∗ ∈ Xn such that

∀x ∈ Yn, J (x∗) ≥ J (x) .

Indeed, repeatedly applying the above lemma starting with a
maximizer x∗ ofJ overYn , we either have that there existsm
with 3 ≤ m ≤ n and x ′∗ ∈ Xm such that J (x∗) = J (x ′∗), or
that there exists y ∈ Y2 such that J (x∗) ≤ J (y), which is
impossible since in that case J (y) = 0 and J (x∗) = α > 0.
We hence have x ′∗ ∈ Xm such that

∀x ∈ Yn, J (x ′∗) = J (x∗) ≥ J (x) .

We can finally build x ′′∗ ∈ Xn such that J (x ′′∗ ) = J (x ′∗)
by adding dummy vertices to x ′∗, which finally allows to
conclude.

D Proof of Proposition 6

First, let us stress that for any function v that is piecewise
constant on (Ci, j )(i, j)∈[1,N ]2 and that is equal to 0 out-
side [−R, R]2, we have J (v) = h ‖∇hv‖1,1 where by abuse
of notation ∇hv is given by (16) with vi, j the value of v

in Ci, j . Hence, Jh(uh) ≤ 1 for all h implies that J (uh)
(and hence ‖uh‖L2) is uniformly bounded in h. There hence
exists a (not relabeled) subsequence that converges strongly
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in L1
loc(R

2) andweakly in L2(R2) to a function u, with more-

over Duh
∗
⇀Du.

Let us now take φ = (φ(1), φ(2)) ∈ C∞
c (R2, R

2) such
that ||φ||∞ ≤ 1. The weak-* convergence of the gradients
gives us that

∫
R2

φ · dDu = lim
h→0

∫
R2

φ · dDuh

= lim
h→0

N∑
i=0

N∑
j=0

(∫
Ch
i, j∩Ch

i+1, j
φ(1) dH1

∫
Ch
i, j∩Ch

i, j+1
φ(2) dH1

)
· ∇huhi, j .

One can moreover show there exists C > 0 such that for h
small enough and all (i, j), we have:

∣∣∣∣∣
[∫

Ch
i, j∩Ch

i+1, j

φ(1) dH1

]
− h φ(1)(xhi+1, j+1)

∣∣∣∣∣ ≤ Ch2 ,

∣∣∣∣∣
[∫

Ch
i, j∩Ch

i, j+1

φ(2) dH1

]
− h φ(2)(xhi+1, j+1)

∣∣∣∣∣ ≤ Ch2 ,

with xi, j
def.= (−R+i h,−R+ j h).We use the above inequal-

ities and the fact ‖φ(x)‖ ≤ 1 for all x to obtain the existence
of C ′ > 0 such that for h small enough and for all (i, j) we
have:

∥∥∥∥∥
(∫

Ch
i, j∩Ch

i+1, j
φ(1) dH1

∫
Ch
i, j∩Ch

i, j+1
φ(2) dH1

)∥∥∥∥∥
2

≤ h
√
1 + C ′h .

This finally yields

N∑
i=0

N∑
j=0

(∫
Ch
i, j∩Ch

i+1, j
φ(1) dH1

∫
Ch
i, j∩Ch

i, j+1
φ(2) dH1

)
· ∇huhi, j

≤
N∑
i=0

N∑
j=0

h
√
1 + C ′h ‖∇huhi, j‖ = √

1 + C ′h Jh(uh) ,

which gives

∫
R2

φ · dDu ≤ lim sup
h→0

√
1 + C ′h Jh(uh) ≤ 1 .

We now have to show that

∀v ∈ L2(R2), J (v) ≤ 1 
⇒
∫
R2

η u ≤
∫
R2

η v .

Let v ∈ C∞([−R, R]2) be such that J (v) ≤ 1. We define

vh
def.=
(

v

((
i + 1

2

)
h,

(
j + 1

2

)
h

))
(i, j)∈[1,N ]2

.

One can then show that

lim
h→0

Jh(vh) = J (v) = 1 ,

so that for every δ > 0 we have Jh
(

vh

1+δ

)
≤ 1 for h small

enough. Now, this yields

∫
[−R,R]2

η u = lim
h→0

∫
[−R,R]2

η uh

≤ lim
h→0

∫
[−R,R]2

η
vh

1 + δ

=
∫

[−R,R]2
η

v

1 + δ
.

Since this holds for all δ > 0, we get that

∫
[−R,R]2

η u ≤
∫

[−R,R]2
η v . (31)

Finally, if v ∈ L2(R2) is such that v = 0 outside [−R, R]2
and J (v) ≤ 1, by standard approximation results (see [4,
remark 3.22]), we also have that (31) holds, and hence, u
solves (6). Finally, since u solves (6), its support is included
in [−R, R]2, which shows the strong L1

loc(R
2) convergence

of (uh) towards u∗ in fact implies its strong L1(R2) conver-
gence.

E First Variation of the Perimeter and
Weighted Area Functionals for Simple Poly-
gons

We stress that since Xn is open, for every x ∈ Xn the func-
tions h �→ P(Ex+h) and h �→ ∫

Ex+h
η are well-defined in a

neighbourhood of zero (for any locally integrable functionη).
We now compute the first variation of these two quantities.

Proposition 15 Let x ∈ Xn. Then, we have

P(Ex+h) = P(Ex ) −
n∑

i=1

〈hi , τi − τi−1〉 + o (‖h‖) , (32)

where τi
def.= xi+1−xi

‖xi+1−xi‖ is the unit tangent vector to [xi , xi+1].
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Proof If ‖h‖ is small enough, we have:

P(Ex+h) =
n∑

i=1

‖xi+1 − xi + hi+1 − hi‖

=
n∑

i=1

√
‖xi+1 − xi + hi+1 − hi‖2

=
n∑

i=1

‖xi+1 − xi‖

×
(
1 + 〈xi+1 − xi , hi+1 − hi 〉

‖xi+1 − xi‖2 + o (‖h‖)
)

= P(Ex ) +
n∑

i=1

〈τi , hi+1 − hi 〉 + o (‖h‖) ,

and the result follows by re-arranging the terms in the sum.
��

Proposition 16 Let x ∈ Xn and η ∈ C0(R2). Then, we have

∫
Ex+h

η =
∫
Ex

η +
n∑

i=1

〈
hi , w

−
i νi−1 + w+

i νi
〉+ o (‖h‖) ,

(33)

where νi is the outward unit normal to Ex on ]xi , xi+1[ and

w+
i

def.=
∫

[xi ,xi+1]
η(x)

‖x − xi+1‖
‖xi − xi+1‖ dH1(x) ,

w−
i

def.=
∫

[xi−1,xi ]
η(x)

‖x − xi−1‖
‖xi − xi−1‖ dH1(x) .

Proof Our proof relies on the following identity (see Lemma
4 for a proof of a closely related formula):

∫
Ex

η = sign

(
n∑

i=1

det(xi xi+1)

)
n∑

i=1

ω(xi , xi+1) ,

with

ω(a1, a2)
def.= det(a1 a2)

∫
T1

η((a1 a2) y) dy ,

where T1
def.= {(α, β) ∈ (R+)2

∣∣α + β ≤ 1
}
is the unit trian-

gle. Assuming η ∈ C1(R2) and denoting adj(A) the adjugate
of a matrix A, we have:

ω(a1 + h1, a2 + h2) = ω(a1, a2) + det(a1 a2)

×
∫
T1

∇η((a1 a2) y) · ((h1 h2)y) dy

+ tr
(
adj(a1 a2)

T (h1 h2)
)

×
∫
T1

η((a1 a2) y) dy + o(‖h‖)
= ω(a1, a2) + sign(det(a1 a2))

×
∫
Oa1a2

∇η(y) · ((h1 h2) (a1 a2)
−1) y) dy

+ tr
(
adj(a1 a2)T (h1 h2)

)
|det(a1 a2)|

×
∫
Oa1a2

η(y) dy + o(‖h‖) .

Denoting g(y)
def.= (h1 h2)(a1, a2)−1 y, we obtain:

ω(a1 + h1, a2 + h2)

= ω(a1, a2) + sign(det(a1 a2))∫
Oa1a2

[∇η · g + η divg] + o(‖h‖)
= ω(a1, a2) + sign(det(a1 a2))∫

∂(Oa1a2)
η (g · νOa1a2) dH1 + o(‖h‖) ,

wherewe usedGauss–Green theorem to obtain the last equal-
ity. Now, if ‖h‖ is small enough, then

n∑
i=1

det(xi + hi xi+1 + hi+1) and
n∑

i=1

det(xi xi+1)

have the same sign, so that, defining

gi : y �→ ((hi hi+1)(xi xi+1)
−1 y) ,

we get

d

(∫
E•

η

)
(x) . h = ε

n∑
i=1

sign(det(xi xi+1)) ωi ,

with

ε
def.= sign

(
n∑

i=1

det(xi xi+1)

)
,

ωi
def.=
∫

∂∗(Oxi xi+1)

η (gi · νOxi xi+1) dH1 .

Then, one can decompose each integral in the sum and show
the integrals over [0, xi ] cancel out each other, which allows
to obtain
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d

(∫
E•

η

)
(x) . h =

n∑
i=1

∫
[xi ,xi+1]

η (gi · νi ) dH1 .

But now if y ∈ [xi , xi+1], then

(xi xi+1)
−1y = 1

‖xi+1 − xi‖
(‖y − xi+1‖

‖y − xi‖
)

,

and the result follows by re-arranging the terms in the sum.
One can then use an approximation argument as in [27,
Proposition 17.8] to show it also holds when η is only con-
tinuous. ��

F Results Used in Section 7

F.1 Properties of the Radialisation Operator

The goal of this subsection, based on [18, II.1.4], is to prove
the following result:

Proposition 17 Let u ∈ L2(R2) be s.t. |Du|(R2) < +∞.
Then, |Dũ|(R2) ≤ |Du|(R2) with equality if and only if u
is radial.

First, one can show that for every u ∈ L2(R2), the radial-
isation ũ of u defined in Sect. 7 by

ũ(x) =
∫
S1
u(‖x‖ e) dH1(e) (34)

is well defined and belongs to L2(R2). Then, a change of
variables in polar coordinates shows that, as stated in the
following lemma, the radialisation operator is self-adjoint.

Lemma 6 We have

∀u, v ∈ L2(R2),

∫
R2

ũ(x) v(x) dx =
∫
R2

u(x) ṽ(x) dx .

We now state a useful identity:

Lemma 7 For every ϕ ∈ C∞
c (R2 \ {0}, R

2), we have:

〈Dũ, ϕ〉 =
〈
Du,

˜
ϕ · x

‖x‖

〉
,

where ϕ · x
‖x‖ denotes the mapping x �→

(
ϕ(x) · x

‖x‖
)
.

Proof From Lemma 6, we get

〈Dũ, ϕ〉 =
∫
R2

ũ divϕ =
∫
R2

u d̃ivϕ .

Using polar coordinates, defining

h(r , θ)
def.= (r cos(θ), r sin(θ)) ,

we get

(divϕ) (h(r , θ)) = 1

r

∂

∂r
(r(ϕr ◦ h))(r , θ)

+ 1

r

∂

∂θ
(ϕθ ◦ h)(r , θ) ,

(35)

where ϕr and ϕθ , respectively, denote the radial and orthora-
dial components of ϕ, i.e.

ϕr (x) = ϕ(x) · x

‖x‖ and ϕθ (x) = ϕ(x) · x⊥

‖x‖ .

The second term in (35) has zero circular mean. Interchang-
ing derivation and integration, we get that the radialisation
of the first term equals 1

r
∂
∂r (r (ϕ̃r ◦ h)), which yields

(
d̃ivϕ

)
(x) = div

(
˜

ϕ · x

‖x‖

)
(x) .

��
We now introduce the radial and orthoradial components

of the gradient, which are Radon measures on U
def.= R

2 \ {0}
defined by

∀ψ ∈ C∞
c (U ), 〈Dradu, ψ〉 =

〈
Du, ψ

x

|x |
〉
,

〈Dorthu, ψ〉 =
〈
Du, ψ

x⊥

|x |
〉
.

Proposition 18 There exist two |Du|-measurable mappings
from U to R, denoted grad and gorth, such that

g2rad + g2orth ≤ 1 |Du|-almost everywhere

and

∀ψ ∈ C∞
c (U ), 〈Dradu, ψ〉 =

∫
U

ψ(x) grad(x) d|Du|(x) ,

〈Dorthu, ψ〉 =
∫
U

ψ(x) gorth(x) d|Du|(x) .

(36)

Proof The existence of the |Du|-measurable mappings grad
and gorth, aswell as (36), come fromLebesgue differentiation
theorem, and the fact Dradu and Dorthu are absolutely con-
tinuous with respect to Du. Now, for every open set A ⊂ U
we have:
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|Du|(A) = sup
{
〈Du, ϕ〉 ∣∣ϕ ∈ C∞

c (A, R
2), ‖ϕ‖∞ ≤ 1

}

= sup

{ 〈
Du, ϕ1

x

‖x‖
〉
+
〈
Du, ϕ2

x⊥

‖x‖
〉
s.t.

ϕi ∈ C∞
c (A),

∥∥∥ϕ2
1 + ϕ2

2

∥∥∥∞ ≤ 1

}

= sup

{
〈Dradu, ϕ1〉 + 〈Dorthu, ϕ2〉 s.t.

ϕi ∈ C∞
c (A),

∥∥∥ϕ2
1 + ϕ2

2

∥∥∥∞ ≤ 1

}
.

Hence, forϕi ∈ C∞
c (A) such that

∥∥ϕ2
1 + ϕ2

2

∥∥∞ ≤ 1we have:

∫
A
1 d|Du| ≥

∫
A
(grad ϕ1 + gorth ϕ2) d|Du| .

If we had g2rad + g2orth > 1 on a set of nonzero measure |Du|,
we would have a contradiction. ��

We can now prove Proposition 17. Indeed, since {0} is
H1-negligible, we have that

|Du|({0}) = |Dũ|({0}) = 0 ,

and moreover

|Dũ|(R2 \ {0}) ≤ |Dradu|(R2 \ {0}) ≤ |Du|(R2 \ {0}) . (37)

The first equality comes from Lemma 7, while the second
is easily obtained from the definition of Drad. Now, if we
have |Dradu|(U ) = |Du|(U ), then we get

∫
U
grad d|Du| =

∫
U

√
g2rad + g2orth d|Du| =

∫
U
d|Du| .

This yields gorth = 0 (and |grad| = 1) |Du|-almost every-
where. Hence, Dorthu = 0.

Let us now show this implies that u is radial. If we
define A

def.= ]0,+∞[×] − π, π [, then we have that the
mapping given by h : (r , θ) �→ (r cos θ, r sin θ) is a C∞-
diffeomorphism from A to R

2 \ (R− × {0}). Now, if ξ ∈
C∞
c (A), we have that ξ ◦ h−1 ∈ C∞

c (h(A)) and

0 =
〈
Dorthu, ξ ◦ h−1

〉

=
∫
R2

u div

((
ξ ◦ h−1

) x⊥

‖x‖
)

=
∫ +∞

0

∫ π

−π

(u ◦ h) (r , θ)

(
1

r

∂

∂θ
(ξ)(r , θ)

)
r dθ dr .

This means that ∂θ
∂

(u ◦ h) = 0 in the sense of distributions,
and hence, that there exists13 a mapping g : ]0,+∞[→ R

such that for almost every (r , θ) ∈ A, (u ◦ h)(r , θ) = g(r).
We finally get u(x) = g(‖x‖) for almost every x ∈ h(A),
which shows u is radial.

F.2 Lemmas Used in the Proof of Proposition 9

We take η
def.= ϕ and keep the assumptions of Sect. 7.

Lemma 8 Let f : R → R+ be square integrable, even and
decreasing on R+. Then, for every measurable set A such
that |A| < +∞ we have

∫
A
f ≤

∫
As

f ,

where As def.= [−|A|
2 ,

|A|
2 ]. Moreover, equality holds if and only

if |A�As | = 0.

Proof We have

∫
A
f =

∫ +∞

0
|{ f 1A ≥ t}| dt =

∫ +∞

0
|{ f ≥ t} ∩ A| dt .

For all t > 0, there exists α such that { f ≥ t} = [−α, α], so
that we have

|{ f ≥ t} ∩ A| = |[−α, α] ∩ A| ≤ min(2α, |A|)
= |[−α, α] ∩ [−|A|/2, |A|/2]|
= ∣∣{ f ≥ t} ∩ As

∣∣ .
Hence,

∫
A
f ≤

∫ +∞

0

∣∣∣{ f ≥ t} ∩ AS
∣∣∣ dt =

∫
As

f .

Now, if |A�As | > 0, then |A \ As | = |As \ A| > 0 and we
have

∫
As

f =
∫
A∩As

f +
∫
As\A

f >

∫
A∩As

f + f

( |A|
2

)
|As \A|

≥
∫
A∩As

f +
∫
A\As

f =
∫
A
f ,

which proves the second part of the result. ��
13 To see this, notice that if we convolve u ◦ h with an approximation
of unity ρε , then we have

∂

∂θ
((u ◦ h)�ρε) = (u ◦ h)�

∂

∂θ
ρε = 0 ,

hence the smooth function (u ◦ h)�ρε is equal to some function gε that
depends only on r . Letting ε → 0+, we see that for almost every (r , θ),
u ◦ h only depends on r .
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Lemma 9 Let E ⊂ R
2 be s.t. 0 < |E | < ∞ and P(E) < ∞.

Then, for any ν ∈ S
1, denoting Es

ν the Steiner symmetrization
of E with respect to the line through the origin directed by
ν, we have

∫
Es

ν
η

P(Es
ν)

≥
∫
E η

P(E)
,

with equality if and only if |E�Es
ν | = 0.

Proof From [27, theorem 14.4], we know that we have
P(Es

ν) ≤ P(E). We now perform a change of coordinates

in order to have Es
ν =

{
(x1, x2) ∈ R

2 | |x2| ≤ L1(Ex1 )

2

}
with

Ex1
def.= {x2 ∈ R | (x1, x2) ∈ E} .

Now, we have

∫
E

η =
∫ +∞

−∞

(∫ +∞

−∞
η(x1, x2) 1E (x1, x2) dx2

)
dx1

=
∫ +∞

−∞

(∫
Ex1

η(x1, ·)
)
dx1 ,

with Ex1 = {x2 ∈ R | (x1, x2) ∈ E}. For almost every
x1 ∈ R, we have that Ex1 is measurable, has finite measure,
and that η(x1, ·) is nonnegative, square integrable, even and
decreasing onR+. We can hence apply Lemma 8 and get that

∫
E

η ≥
∫ +∞

−∞

(∫
(
Ex1

)s η(x1, ·)
)
dx1 =

∫
Es

ν

η . (38)

Moreover, if |E�Es
ν | > 0, then since

|E�Es
ν |

=
∫ +∞

0

(∫ +∞

0
|1E (x1, x2) − 1Es

ν
(x1, x2)| dx2

)
dx1

=
∫ +∞

0

(∫ +∞

0

∣∣∣1Ex1
(x2) − 1(Ex1

)s (x2)
∣∣∣ dx2

)
dx1

=
∫ +∞

0

∣∣Ex1�
(
Es
x1

)∣∣ dx1 ,

we get that L1
({
x1 ∈ R | ∣∣Ex1�

(
Ex1

)s∣∣ > 0
})

> 0 and
hence that (38) is strict. ��
Lemma 10 Under Assumption 1, the mapping

G : R �→ 1

R

∫ R

0
r ϕ̃(r) dr

has a unique maximizer.

Proof Since ϕ (and hence ϕ̃) is continuous, we have that G
is C1 on R∗+ and

G′(R) = R (R ϕ̃(R)) − ∫ R
0 r ϕ̃(r) dr

R2 .

Now, an integration by part yields that for any continuously
differentiable function h :]0,+∞[→ R and for any x > 0
we have

H(x)
def.= x h(x) −

∫ x

0
h =

∫ x

0
t h′(t) dt ,

which shows H ′(x) = x h′(x). This means the mappings

R �→ R (R ϕ̃(R))

−
∫ R

0
r ϕ̃(r) dr and R �→ f (R) = R ϕ̃(R)

have the same variations. Under Assumption 1, it is then
easy to show there exists R0 > 0 such that G′(R0) = 0, G′
is positive on ]0, R0[ and negative on ]R0,+∞[, hence the
result. ��

F.3 Proof of Proposition 12

We define

Rn(θ)
def.= R

cos (π/n)

cos ((θ mod 2π/n) − π/n)
,

so that in polar coordinates an equation of the boundary of
a regular n-gon of radius R with a vertex at (0, 0) is given
by r(θ) = Rn(θ). Under Assumption 1, we have, for all R >

0:

2πR
tan (π/n)

π/n
|G(R) − Gn(R)|

=
∣∣∣∣ tan (π/n)

π/n

∫ 2π

0

∫ R

0
r ϕ̃(r) dr dθ

−
∫ 2π

0

∫ Rn(θ)

0
r ϕ̃(r) dr dθ

∣∣∣∣
=
∣∣∣∣
∫ 2π

0

∫ R

Rn(θ)

r ϕ̃(r) dr dθ

−
(
1 − tan (π/n)

π/n

)∫ 2π

0

∫ R

0
r ϕ̃(r) dr dθ

∣∣∣∣
≤
[
2π sup

θ∈[0,2π ]
|R − Rn(θ)| ‖ f ‖∞

+
(
1 − tan (π/n)

π/n

)
2πR ‖ f ‖∞

]

≤ ‖ f ‖∞
[
(1 − cos (π/n)) +

(
1 − tan (π/n)

π/n

)]
.
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We hence obtain that |G(R) − Gn(R)|∞ = O
(

1
n2

)
.

Now, assuming f is of class C2 and f ′′(ρ0) < 0 we
want to prove that for n large enough, Gn has a unique
maximizer R∗

n and |R∗
n − R∗| = O

( 1
n

)
. Denoting αn(s)

def.=
cos(π/n)
cos(πs/n)

, we have:

Gn(R) = 1

2πR tan(π/n)
π/n

∫ 2π

0

∫ Rn(θ)

0
r ϕ̃(r) dr dθ

= 1

2πR tan(π/n)
π/n

n
∫ 2π/n

0

∫ R cos(π/n)
cos(θ−π/n)

0
r ϕ̃(r) dr dθ

= π/n

R tan (π/n)

∫ 1

0

∫ R αn(s)

0
r ϕ̃(r) dr ds

= π/n

tan (π/n)

1

R

∫ R

0
r

[∫ 1

0
αn(s)

2 ϕ̃(r αn(s)) ds

]
dr .

Considering Lemma 10 and defining

fn : r �→ r

[∫ 1

0
αn(s)

2 ϕ̃(r αn(s)) ds

]
,

we see that showing f ′
n is positive on ]0, ρ1[ and negative

on ]ρ1,+∞[ for some ρ1 is sufficient to prove Gn has a
unique maximizer. Now, we have

f ′
n(r) =

∫ 1

0
αn(s)

2 (ϕ̃(r αn(s)) + r αn(s) ϕ̃′(r αn(s))
)
ds .

The image of [0, 1] by s �→ r αn(s) is [r cos (π/n) , r ]. Since
the mapping r �→ ϕ̃(r) + r ϕ̃′(r) = (r ϕ̃)′(r) is positive
on ]0, ρ0[ and negative on ]ρ0,+∞[, we get that f ′

n is pos-
itive on ]0, ρ0[ and negative on ]ρ0/ cos (π/n) ,+∞[ and it
hence remains to investigate its sign on [ρ0, ρ0/ cos (π/n)].
But since f is of classC2 and f ′′(ρ0) < 0 there exists ε > 0
s.t. f ′′(r) < 0 on ]ρ0 − ε, ρ0 + ε[. For n large enough, we
hence have

[ρ0 cos (π/n) , ρ0/ cos (π/n)] ⊂ ]ρ0 − ε, ρ0 + ε[ ,

which implies that

∀r ∈ [ρ0, ρ0/ cos (π/n)], r αn(s) ∈ ]ρ0 − ε, ρ0 + ε[ ,

and hence f ′′
n (r) < 0. This finally shows there exists ρ1 such

that f ′
n is positive on ]0, ρ1[ and negative on ]ρ1,+∞[, and

the result follows as in the proof of Lemma 10.

Now, R∗ and R∗
n and are, respectively, the unique solutions

of F(0, R) = 0 and F(π/n, R) = 0 with

F(t, R)
def.=
[∫ R

0
ft

]
− R ft (R) ,

ft (r)
def.= r

∫ 1

0
α(t, s)2 ϕ̃(r α(t, s)) ds ,

α(t, s)
def.= cos t

cos(ts)
.

One can then show ∂
∂R F(0, R) = 0 if and only if f ′

0(R) = 0,
i.e. if and only if R = ρ0. But from the proof of Lemma 10
and the above, it is easy to see neither R∗ nor R∗

n equals ρ0.
We can hence apply the implicit function theorem to finally

get that |R∗ − R∗
n | = O

(
1
n2

)
.

F.4 Proof of Proposition 13

F.4.1 Triangles

Let T be a triangle.Up to a rotation of the axis,we can assume
that there exist a < b and two affine functions u, v such that
v ≥ u and u(a) = v(a) with

T = {(x, y) ∈ R
2
∣∣ x ∈ [a, b], u(x) ≤ y ≤ v(x)} .

The Steiner symmetrization Ts of T with respect to the line
through the origin perpendicular to the side {b}×[u(b), v(b)]
is hence obtained by replacing u and v in the definition of T
by (u − v)/2 and (v − u)/2. For all θ ∈ [0, 1], we define

uθ
def.= (1 − θ) u + θ (−v) ,

vθ
def.= θ (−u) + (1 − θ) v ,

and

Tθ
def.=
{
(x, y) ∈ R

2
∣∣ x ∈ [a, b], uθ (x) ≤ y ≤ vθ (x)

}
,

so that T1/2 = Ts . Let us now show that

d

dθ
J (Tθ )

∣∣
θ=0 ≤ 0 ,

with equality if and only if T is symmetric with respect to
the symmetrization line.
Weighted area term: first, we have:

∫
Tθ

η =
∫ b

a

(∫ vθ (x)

uθ (x)
η

(√
x2 + y2

)
dy

)
dx .
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Hence,

d

dθ

∫
Tθ

η

∣∣∣∣
θ=0

=

−
∫ b

a
(u + v)(x) (gx (|v|(x)) − gx (|u|(x))) dx ,

with gx (p)
def.= η

(√
x2 + p2

)
. Our assumptions on η ensure

that p �→ gx (p) is decreasing, so that gx (|v|(x))−gx (|u|(x))
and |u|(x) − |v|(x) have the same sign. But since

−(u(x) + v(x)) and − (|u|(x) − |v|(x))

also have the same sign, we have that

−(u + v)(x) (gx (|v|(x)) − gx (|u|(x))) < 0 ,

unless u(x) = v(x) or u(x) = −v(x). Since u and v are
affine and u(a) = v(a), the first equality cannot hold for
any x ∈]a, b[ (otherwise, we would have u = v on [a, b]
and T would be flat).Moreover, u(x) = −v(x) almost every-
where on [a, b] if and only if T = Ts . Hence, d

dθ

∫
Tθ

η
∣∣
θ=0 ≤

0 with equality if and only if T = Ts .
Perimeter term: now, the perimeter of Tθ is given by

P(Tθ ) =
∫ b

a

√
1 + |∇uθ |2 +

∫ b

a

√
1 + |∇vθ |2 + vθ (b) − uθ (b)

= (b − a) ( f (∇uθ ) + f (∇vθ )) + (v(b) − u(b)) ,

with f (p)
def.= √

1 + ‖p‖2, this last function being strictly
convex. Now, since

{
∇uθ = ∇u − θ(∇u + ∇v) ,

∇vθ = ∇v − θ(∇u + ∇v) ,

we get

d

dθ
P(Tθ )

∣∣∣∣
θ=0

= (b − a) [∇ f (∇u) + ∇ f (∇v)] · [−(∇u + ∇v)]

= −(b − a) [∇ f (∇u) − ∇ f (−∇v)] · [∇u − (−∇v)] ,

and the strict convexity of f hence shows

d

dθ
P(Tθ )

∣∣∣∣
θ=0

≤ 0 ,

with equality if and only if ∇u = −∇v, which means, up to
a translation, that T is equal to Ts .
Applying the above arguments to all three sides finally yields
the result.

F.4.2 Quadrilaterals

Let Q be a simple quadrilateral. Up to a rotation of the axis,
we can assume that there exist a < b < c and four affine
functions u1, v1, u2, v2 such that

⎧⎪⎨
⎪⎩

v1 ≥ u1, v2 ≥ u2 ,

u1(a) = v1(a), u2(c) = v2(c) ,

u1(b) = u2(b), v1(b) = v2(b) ,

with Q = T1 ∪ T2 and

Ti
def.= {(x, y) ∈ R

2
∣∣ x ∈ [a, b], ui (x) ≤ y ≤ vi (x)} .

For all θ ∈ [0, 1] and i ∈ {1, 2}, we define
{
ui,θ

def.= (1 − θ) ui + θ (−vi ) ,

vi,θ
def.= θ (−ui ) + (1 − θ) vi ,

and Qθ = T1,θ ∪ T2,θ with

Ti,θ =
{
(x, y) ∈ R

2
∣∣ x ∈ [a, b], ui,θ (x) ≤ y ≤ vi,θ (x)

}
,

so that the Steiner symmetrization Qs of Q with respect
to the ligne through the origin perpendicular to the diago-
nal {b} × [u1(b), v1(b)] satisfies Q1/2 = Qs .
Weighted area term: the fact d

dθ

∫
Qθ

η
∣∣
θ=0 ≤ 0 with equal-

ity if and only if Q = Qs can easily be deduced from the
case of triangles using the fact that

∫
Qθ

η = ∫T1,θ η + ∫T2,θ η.
Perimeter term: now, the perimeter of Qθ is given by:

P(Qθ ) =
∫ b

a

√
1 + |∇u1,θ |2 +

∫ b

a

√
1 + |∇v1,θ |2

+
∫ c

b

√
1 + |∇u2,θ |2 +

∫ c

b

√
1 + |∇v2,θ |2

= (b − a)
(
f (∇u1,θ ) + f (∇v1,θ )

)
+ (c − b)

(
f (∇u2,θ ) + f (∇v2,θ )

)

with f (p)
def.= √1 + ‖p‖2 as before. We then get

d

dθ
P(Qθ )

∣∣∣∣
θ=0

= − (b − a) [∇ f (∇u1) − ∇ f (−∇v1)] · [∇u1 − (−∇v1)]

− (c − b) [∇ f (∇u2) − ∇ f (−∇v2)] · [∇u2 − (−∇v2)] ,

and the strict convexity of f hence shows

d

dθ
P(Qθ )

∣∣∣∣
θ=0

≤ 0 ,

with equality if and only if∇u1 = −∇v1 and∇u2 = −∇v2,
which means, up to a translation, that Q is equal to Qs .
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