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Abstract

This article investigates uncertainty quantification of the generalized linear lasso (GLL), a popular
variable selection method in high-dimensional regression settings. In many fields of study, researchers use
data-driven methods to select a subset of variables that are most likely to be associated with a response
variable. However, such variable selection methods can introduce bias and increase the likelihood of false
positives, leading to incorrect conclusions.

In this paper, we propose a post-selection inference framework that addresses these issues and allows
for valid statistical inference after variable selection using GLL. We show that our method provides
accurate p-values and confidence intervals, while maintaining high statistical power.

In a second stage, we focus on the sparse logistic regression, a popular classifier in high-dimensional
statistics. We show with extensive numerical simulations that SIGLE is more powerful than state-of-the-art
PSI methods. SIGLE relies on a new method to sample states from the distribution of observations
conditional on the selection event. This method is based on a simulated annealing strategy whose energy
is given by the first order conditions of the logistic lasso.

1 Introduction
In modern statistics, the number of predictors can far exceed the number of observations available. In this
high-dimensional context, ℓ1 regularisation leads to a small number of predictors to be selected (referred
to as the selected support) while allowing for a minimax optimal prediction error, see for instance [Van de
Geer, 2016, Chapter 2]. The estimated parameters and support are not explicitly known and are obtained by
solving a convex optimisation program in practice. This makes inference of the model parameters difficult if
not impossible.

In this context, the application of standard inference methods without taking into account the use of
data to select the model usually leads to undesirable statistical properties. Post-selection inference (PSI) is
designed to address this issue. It consists of constructing inference procedures considering that the vector
of observations Y is distributed according to the distribution conditional on the so-called selection event.
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In the literature, the problem of post-selection inference has been studied mainly for linear regression with
Gaussian noise and assuming that the model has been selected using LASSO. Leaving this specific framework
is an essential step for applications and more challenges can be expected in the study of PSI procedures for a
generalized linear model (GLM). Moreover, the ubiquity of the logistic model to solve practical regression
problems and the surge of high dimensional data-sets make the sparse logistic regression (SLR) more and
more attractive. In this frame, it becomes crucial to provide certifiable guarantees on the output of the SLR,
e.g. confidence intervals.

Inference procedures with statistical guarantees in the Generalized Linear Model (GLM) are few, if
any. The practitioner is often left with no valid option to quantifies the uncertainty of predictions in high-
dimensional GLMs. To the best of our knowledge, she might use the recent work of Taylor and Tibshirani
[2018] for inference with the Generalized Linear LASSO (GLL). Based on a heuristic argument, Taylor and
Tibshirani [2018] quantifies the uncertainty of the solutions of GLL.

The main contribution of this article is three fold. First, we introduce SIGLE (Selective Inference
for Generalized Linear Estimation), a new conditional MLE approach to provide testing procedures and
confidence regions for the solutions of GLL. SIGLE relies one a new sampling scheme from the distribution of
observations conditional on the selection event.

Second, we focus on the SLR and we introduce a new method to sample states according to the conditional
distribution, allowing the use of SIGLE in this context. We empirically witness that SIGLE is more powerful
than current state-of-the-art methods. On Figure 1, we observe that our testing procedure (SIGLE) is
correctly calibrated and we compare its power with the method from Taylor and Tibshirani [2018] and with a
weak learner. This weak learner is a two-sided test based on the statistic

∑n
i=1 |π

θ0
i − yi| where πθ0 is the

expectation of the vector of observations under the null conditional on the selection event (cf. Eq.(16)). More
experiments can be found in Section 4.2.

Last but not least, we prove a new conditional Central Limit Theorem (CLT) that exhibits conditions
under which the SIGLE statistic is asymptotically normal. These assumptions hold under considerations
similar to those commonly used in the study of asymptotic properties of subset selection via the Lasso in
linear models (cf. Taylor and Tibshirani [2018], Bunea [2008]) and are not of particular interest for practical
applications. This conditional CLT is a significant contribution and can be read at three levels of granularity.
First it motivates the choice of the SIGLE statistic in this work. Second, it opens new perspective regarding
the theoretical analysis of PSI methods in GLL. Indeed, while Taylor and Tibshirani [2018] focus first on
getting unconditional asymptotic result before considering the distribution of the limit distribution conditional
on the selection event, we directly consider the conditional distribution of the SIGLE statistic before analyzing
its asymptotic limit. Let us stress out that the asymptotic result stated in Taylor and Tibshirani [2018]
relies on non rigorous computations. Third, we believe that the proof of our conditional CLT might be of
independent interest. In particular, we are–as far as we know–the first to correct the proof from Liang and
Du [2012] which has been reported as false (cf. Zhang [2018]).

1.1 Post-Selection Inference for high-dimensional GLM
We are interested in a target parameter ϑ⋆ ∈ Θ ⊆ Rd attached to the distribution Pϑ⋆ of N independent
response variables Y := (y1, . . . , yN ) ∈ YN ⊆ RN given by the data Z := (z1, . . . , zN ) where zi = (xi, yi) ∈
X × Y with xi ∈ X ⊆ Rd a covariate, namely a vector of d predictors. The family of generalized linear
models, or GLMs for short, is based on modeling the conditional distribution of the responses yi ∈ Y given
the covariate xi ∈ X in an exponential family form, namely

Pϑ⋆(y|x) = hv(y) exp
{y⟨x, ϑ⋆⟩ − ξ(⟨x, ϑ⋆⟩)

v

}
,

where v > 0 is a scale parameter, and ξ : R → R is the partition function which is assumed to be of
class Cm+1 (with m a non-negative integer). For sake of readability, the dependence on X will be omitted
when it is clear from the context, and we will simply denote Pϑ∗(· |x) by Pϑ∗(·). Standard examples are
ξ(t) = t2/2 for the Gaussian linear model with noise variance v and observation space Y = R, or v = 1,
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(a) ϑ∗ = [0, . . . , 0]. (b) ϑ∗ = [0.2, 0.2, 0, . . . , 0].

Figure 1: In the logistic model, we consider a design matrix X ∈ R200×10 where we sample independently
each entry with respect to a standard normal distribution. On Figures (a) and (b), we show the cumulative
distribution function (CDF) of the p-values under obtained from i) a weak learner, ii) the procedure TT-1
(cf. Section 4.2) adapted from Taylor and Tibshirani [2018] and iii) SIGLE. On Figure (a) we work under
the global null showing that SIGLE and the weak leaner are correctly calibrated. The method from Taylor
and Tibshirani [2018] does not show p-values systematically larger than uniform. On Figure (b) we work
under the alternative ϑ∗ = [0.2, 0.2, 0, . . . ] ∈ R10.

ξ(t) = exp(t) and Y = {0, 1, 2, . . .} for the Poisson regression. Last but not least, we will consider in this
paper the logistic regression where v = 1, ξ(t) = log(1 + exp(t)) and Y = {0, 1}.

The negative log-likelihood takes the form

∀ϑ ∈ Θ , LN (ϑ,Z) :=

N∑
i=1

ξ(⟨xi, ϑ⟩)− ⟨yixi, ϑ⟩ . (1)

Assume that the partition function ξ is differentiable, then the score function is

∀ϑ ∈ Θ , ∇ϑLN (ϑ,Z) = X⊤(σ(Xϑ)− Y
)
,

where σ = ξ′ is the derivative of the partition function and X ∈ RN×d is referred to as the design matrix
whose rows are the covariates and the columns are the predictors. Note that σ(Xϑ) should be understood as
applying entrywise the function σ to the vector Xϑ. In a high-dimensional context one has more predictors
than observations (i.e., N ≪ d), and one would like to select a small number of predictors to explain the
response. We use an ℓ1-regularization to enforce a structure of sparsity in ϑ. Our overall estimator is based
on solving the Generalized Linear Lasso (GLL)

ϑ̂λ ∈ argmin
ϑ∈Θ

{
LN (ϑ,Z) + λ∥ϑ∥1

}
, (2)

where λ > 0 is a user-defined regularization hyperparameter. We assume that the negative log-likelihood is
strictly convex. This assumption is satisfied for instance in the Gaussian linear model or logistic regression. In
this case, it is necessary and sufficient that the solutions ϑ̂λ to (2) satisfy the following Karush–Kuhn–Tucker
(KKT) conditions 

X⊤
(
Y − σ(Xϑ̂λ)

)
= λŜ,

Ŝk = sign(ϑ̂λ
k) if ϑ̂λ

k ̸= 0,

Ŝk ∈ [−1, 1] if ϑ̂λ
k = 0.

(3a)

(3b)

(3c)
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Given any Y ∈ YN and λ > 0, Proposition 1 shows that there exists one and only one vector of signs Ŝ ∈ Rd

such that (ϑ̂λ, Ŝ) satisfies the KKT conditions for some ϑ̂λ ∈ Θ. The proof of Proposition 1 can be found in
Section E.1.

Proposition 1. Let Y ∈ YN and let the partition function ξ be strictly convex. Then, there exists a
unique Ŝ(Y ) such that for any couple (ϑ̂λ, Ŝ) satisfying the KKT conditions (cf. Eq.(3) with Y in Eq.(3a)),
it holds that Ŝ = Ŝ(Y ). Furthermore, one has

Ŝ(Y ) :=
1

λ
X⊤(Y − σ(Xϑ̂λ)),

where ϑ̂λ is any solution of the generalized linear Lasso as defined in (2).

We define the equicorrelation set as

M̂(Y ) := {k ∈ [d] | |Ŝk(Y )| = 1}.

In the following, we will identify the equicorrelation set and the set of predictors with nonzero coefficients
{k ∈ [d] | ϑ̂λ

k ̸= 0}, also called ‘selected’ model. Since |Ŝk(Y )| = 1 for any ϑ̂λ
k ̸= 0, the equicorrelation set does

in fact contain all predictors with nonzero coefficients, although it may also include some predictors with
zero coefficients. However, we work in this paper with Assumption 1, ensuring that the equicorrelation set is
precisely the set of predictors with nonzero coefficients.

Assumption 1. Problem (2) is non degenerate: Ŝ(Y ) ∈ relint ∂∥·∥1, where relint denotes the relative interior.

Let us highlight that this assumption has already been used in the context of GLMs [cf. Massias et al., 2020,
Assumption 8], and is common in works on support identification (cf. Candes and Recht [2013], Vaiter et al.
[2015]).

For any set of indexes M ⊆ [d] with cardinality s, we denote by ΘM the set of target parameters induced
on the support M namely,

ΘM := {ϑM |ϑ ∈ Θ} ⊆ Rs.

We aim at making inference conditionally on the selection event EM defined as

EM :=
{
Y ∈ YN | M̂(Y ) = M

}
, (4)

namely, the set of all observations Y that induced the same equicorrelation set M with the generalized linear
lasso.

1.2 A useful characterization of the selection event
Following the approach of Lee et al. [2016], given some M ⊆ [d] with |M | = s and SM ∈ {−1,+1}s, we first
characterize the event

ESM

M := {Y ∈ EM | ŜM (Y ) = SM}, (5)

and we obtain EM as a corollary by taking a union over all possible vectors of signs SM . Proposition 2 gives
a first description of ESM

M and its proof is postponed to Section E.2.

Proposition 2. Let us consider M ⊆ [d] with |M | = s and SM ∈ {−1,+1}s. It holds

ESM

M =
{
Y ∈ YN | ∃θ ∈ ΘM s.t. (i) X⊤

M (Y − σ(XMθ)) = λSM (6)

(ii) sign(θ) = SM

(iii)
∥∥X⊤

−M (Y − σ(XMθ))
∥∥
∞ < λ

}
,

were XM ∈ RN×s (resp. X−M ∈ RN×(d−s)) is the submatrix obtained from X by keeping the columns indexed
by M (resp. its complement).
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With Proposition 1, we proved the uniqueness of the vector of signs satisfying the KKT conditions as soon
as ξ is strictly convex. By considering additionally that XM has full column rank, we claim that there exists
a unique θ ∈ ΘM that satisfies the condition (i) in the definition of the selection event ESM

M (see Eq.(6)).
This statement will be a direct consequence of Proposition 3 (proved in Section E.3) which ensures that the
map Ξ arising in Eq.(6) and defined by

Ξ : ΘM → Rs (7)

θ 7→ X⊤
Mσ(XMθ)

is a Cm-diffeomorphism whose inverse is denoted by Ψ.

Proposition 3. We consider that the partition function ξ is strictly convex and we further assume that
the set M ⊆ [d] is such that XM has full column rank. Then Ξ is a Cm-diffeomorphism from ΘM to
Im(Ξ) = {X⊤

Mσ(XMθ) | θ ∈ ΘM}.

Using Propositions 2 and 3, we are able to provide a new description of the selection event ESM

M which can
be understood as the counterpart of [Lee et al., 2016, Proposition 4.2].

Theorem 1. Suppose that ξ is strictly convex. Given some M ⊆ [d] with cardinal s such that XM has full
column rank and SM ∈ {−1, 1}s, it holds

ESM

M =
{
Y ∈ YN | s.t. ρ = −λSM +X⊤

MY satisfies (8)

(a) ρ ∈ Im(Ξ)

(b) Diag(SM )Ψ(ρ) ≥ 0

(c)
∥∥X⊤

−M (Y − σ(XMΨ(ρ)))
∥∥
∞ < λ

}
.

Remark. In the linear model, Ξ : θ 7→ X⊤
MXMθ has full rank and thus condition (a) from Eq.(8) always

holds.

1.3 Which parameters can be inferred?
Once a model M has been selected, two different modeling assumptions are generally considered when we
derive post-selection inference procedures, see for instance [Fithian et al., 2014, Section 4]. This choice
appears to be essential since it determines the parameters on which inference is conducted. In the following,
we consider the mean value

π∗ := Eϑ∗ [Y ] = σ(Xϑ∗) , (9)

as the parameter of interest. To support this choice, note that the Bayes predictor in the logistic or the linear
model is defined from Eϑ∗ [Y ].

As presented in Fithian et al. [2014], the analyst should decide whether the model M belongs to the
so-called class of saturated models or selected models. In the following, we discuss these concepts for arbitrary
GLMs and Table 1 summarizes the key concepts.

The (weak) selected model: Parameter inference. In the weak selected model, we consider that the
data have been sampled from the GLM (cf. Eq.(1)) and we assume that the selected model M is such that

X⊤
Mσ(Xϑ∗) ∈ Im(Ξ) , (10)

and recall that X⊤
Mπ∗ = X⊤

MEϑ∗ [Y ] = X⊤
Mσ(Xϑ∗). This is equivalent to state that there exists some

vector θ∗ ∈ ΘM satisfying
X⊤

Mπ∗ = Ξ(θ∗) ,
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Model Selected Weak selected Saturated

Assumption σ−1(π∗) ∈ Im(XM ) X⊤
Mπ∗ ∈ Im(Ξ) None

Statistic of
interest Ψ(X⊤

MY ) Ψ(X⊤
MY ) X⊤

MY

Inferred
parameter

θ∗ ∈ ΘM s.t.
π∗ = σ(XMθ∗)

θ∗ ∈ ΘM s.t. π∗ and
σ(XMθ∗) have the same

projections on the
column span of XM

X⊤
Mπ∗

Table 1: Once a model has been selected, we may infer some parameters assuming one of the three modeling:
selected model, weak selected model, and saturated model respectively based on the assumptions described
in the first row. In this case, inference on the quantities described on the third row can be done from the
statistic described in the second row.

and recall that Ξ(θ∗) = X⊤
Mσ(XMθ∗). In this framework, we have the possibility to make inference on the

parameter vector θ∗ := Ψ(X⊤
Mπ∗) itself.

In the selected model, we replace the condition from Eq.(10) by the stronger assumption that there exists
θ∗ ∈ ΘM such that

XMθ∗ = Xϑ∗. (11)

This assumption is always satisfied for the global null hypothesis ϑ∗ = 0 for which the aforementioned
condition holds with θ∗ = 0.

The saturated model: Mean value inference. The assumption from Eq.(10) or (11) can be understood
as too restrictive since the analyst can never check in practice that this condition holds, except for the global
null. This is the reason why one may prefer to consider the so-called saturated model where we only assume
that the data have been sampled from the GLM.

In this case it remains meaningful to provide post-selection inference procedure for transformation of π∗.
A typical choice is to consider linear transformation of π∗ and among them, one may focus specifically on
transformation of X⊤

Mπ∗. This choice is motivated by remarking that this quantity characterizes the first
order optimality condition for the unpenalized MLE θ̂ for the design matrix XM through X⊤

MY = Ξ(θ̂), or
by considering the example of linear model (as presented below).

The example of the linear model. Note that in linear regression, σ = Id and Ψ : ρ 7→
(
X⊤

MXM

)−1
ρ.

Hence, Eq.(10) is equivalent to Eq.(11) meaning that the selected and the weak selected models coincide.
Moreover, in both the saturated and the selected models, we aim at making inference on transformations
of Ψ(X⊤

Mπ∗) = X+
Mπ∗ (where X+

M is the pseudo-inverse of XM ). While in the (weak) selected model, this
quantity corresponds to the parameter vector θ∗ satisfying π∗ = XMθ∗, in the saturated model, it corresponds
to the best linear predictor in the population for design matrix XM in the sense of the squared L2-norm.

1.4 Inference procedures with SIGLE
In this section, we show how the SIGLE test statistics naturally emerge by establishing a parallel between
post selection inference and M-estimation with a misspecified model.

SIGLE statistic in the selected model. In the post-selection paradigm, we work conditional to the
selection event {Y ∈ EM}. The conditional distribution of the observations is a conditional exponential
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family with the same parameters and sufficient statistics but different support and normalizing constant:

Pθ(Y ) ∝ 1EM
(Y )

N∏
i=1

hv(yi) exp
{yiXi,Mθ − ξ(Xi,Mθ)

v

}
,

where the symbol ∝ means ‘proportional to’. When EM = YN (i.e., when there is no conditioning), we
will simply denote Pθ by Pθ. In the following we will denote by Eθ (resp. Eθ) the expectation with respect
to Pθ (resp. Pθ). In the selected model, we want to conduct inference on θ∗ (from Eq.(11)) based on the
conditional and unpenalized MLE computed on the selected model M , namely

θ̂ ∈ arg min
θ∈ΘM

LN (θ, ZM ), LN (θ, ZM ) =

n∑
i=1

{ξ(Xi,Mθ)− yiXi,Mθ} , (12)

where ZM = (Y,XM ) and where Y is distributed according to Pθ∗ . Eq.(12) can be understood as a mean-field
approximation of the true likelihood where we make the assumption that the Yi’s are independent conditional
to the selection event {Y ∈ EM}. This simplification might make our model misspecified in that Pθ∗ might
fall out of the framework of independent Bernoulli trials. The asymptotic properties of the MLE under a
misspecified model are well known. First we expect θ̂ to be asymptotically consistent for a parameter vector
θ(θ∗) which minimizes the conditional expected negative log-likelihood defined by

θ(θ∗) ∈ arg min
θ∈ΘM

Eθ∗
[
LN (θ, ZM )

]
. (13)

In the following, when there is no ambiguity we will simply denote θ(θ∗) by θ. The density Pθ can be
understood as the projection of the true underlying distribution Pθ∗ on the model using the Kullback-Leibler
divergence. Second, we expect

√
N(θ̂− θ) to be asymptotically normal with zero mean and covariance matrix

V := limN→∞ NV N (θ∗) (provided that the limit exists) where

V N (θ∗) := HN (θ)−1
[
LN (θ, ZM )LN (θ, ZM )⊤

]
HN (θ)−1, (14)

where
LN (θ, ZM ) :=

∂LN

∂θ
(θ, ZM ) = X⊤

M

(
σ(XMθ)− Y

)
,

is the score function and where HN (θ) := ∂2LN

∂θ2 (θ, ZM ) is the Hessian of the log-likelihood. This result
(provided in [White, 1982, Theorem 3.2]) holds under some regularity conditions such as the continuous
differentiability of the score function and a domination assumption on the Hessian of the log-likelihood.
Denoting

LN (θ,XM ) = Eθ∗

[
∂LN

∂θ
(θ, ZM )

]
,

it holds that the conditional unpenalized MLE θ̂ and the minimizer θ of the conditional risk satisfy the first
order condition

LN (θ̂, ZM ) = 0 i.e. X⊤
M (Y − πθ̂) = 0 ⇔ Ξ(θ̂) = X⊤

MY ⇔ θ̂ = Ψ(X⊤
MY ), (15)

and LN (θ,XM ) = 0 i.e. X⊤
M (πθ∗

− πθ) = 0 ⇔ Ξ(θ) = X⊤
Mπθ∗

⇔ θ = Ψ(X⊤
Mπθ∗

), (16)
where πθ = Eθ[Y ] = σ(XMθ) and πθ = Eθ[Y ]. This leads to

V N (θ∗) = HN (θ)−1G
c

N (θ∗)HN (θ)−1,

where
HN (θ) = X⊤

MDiag(σ′(XMθ))XM and G
c

N (θ∗) = X⊤
MEθ∗

[
(Y − πθ)(Y − πθ)⊤

]
XM .

Let us state explicitly that the previous asymptotic considerations hold under specific assumptions that
are not satisfied in our setting. Nevertheless, building a bridge between the standard theory of the MLE
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under model misspecification and our framework of PSI can help us choose a relevant covariance structure
to design the SIGLE test statistic. In the rest of this paper, we will consider the following proxy for the
covariance matrix of the score G

c

N (θ∗):

GN (θ∗) = X⊤
MDiag

(
πθ∗
⊙ (1− πθ∗

)
)
XM .

GN (θ∗) is obtained from G
c

N (θ∗) by using X⊤
Mπθ∗

= X⊤
Mπθ (cf. Eq.(16)) and by keeping only the diagonal

elements of the covariance matrix Eθ∗
[
(Y − πθ∗

)(Y − πθ∗
)⊤
]

while setting to zero the off-diagonal entries.
Therefore, in the selected model SIGLE relies on the following test statistic

∥[GN (θ∗)]−1/2HN (θ)(θ̂ − θ)∥22. (17)

The choice to work with GN (θ∗) rather than G
c

N (θ∗) is motivated by several reasons:

1. Working with GN (θ∗) makes the theoretical analysis simpler although the post-selection inference
methods proposed in this paper remain valid in the case one uses G

c

N (θ∗).

2. Extensive numerical experiments have shown that the power of hypothesis tests using SIGLE with
either GN (θ∗) or G

c

N (θ∗) is very similar (and some of them are presented in Section 2).

3. Only N coefficients need to be estimated to approximate GN (θ∗) as opposed to the N2 coefficients
required to estimate G

c

N (θ∗). As a consequence, working with GN (θ∗) might allow to reduce the
variance of our estimate of the SIGLE statistic and thus to get closer to the power that would give
SIGLE using the unknown quantities πθ∗

, θ(θ∗).

SIGLE statistic in the saturated model. Let us start by introducing some notations. By assuming that
ξ is strictly convex, one can compute Xϑ∗ from π∗, allowing us to denote equivalently Pπ∗ ≡ Pϑ∗ with an
abuse of notation. Given some set of selected variables M ⊆ [d] with s := |M | and some ϑ∗ ∈ Rd, we denote
by Pπ∗ the distribution of Y given EM , namely

Pπ∗(Y ) ∝ 1Y ∈EM
Pπ∗(Y ),

π∗ = σ(Xϑ∗) and where ∝ means equal up to a normalization constant. In the selected model with θ∗ ∈ ΘM

satisfying Eq.(11), we will also denote Pπ∗ ≡ Pθ∗ .

In the saturated, we have already explained that we focus on the statistic X⊤
MY . Recalling the definition

of Ξ (cf. Eq.(7)) and using Eq.(15), we get that X⊤
MY = Ξ(θ̂). Therefore, one can apply the delta method to

convert the heuristic CLT obtained for θ̂ (cf. Eq.(14)) into a similar asymptotic result for X⊤
MY . The delta

method suggests that Ξ(θ̂) = X⊤
MY should be asymptotically normal with mean limN→∞ Ξ(θ) = X⊤

Mπθ∗

(using Eq. (16)) and covariance matrix

lim
N→∞

∇Ξ(θ)⊤V N (θ∗)∇Ξ(θ) = lim
N→∞

GN (θ∗),

where we used that ∇Ξ(θ) = HN (θ). A careful reader would note that it makes no sense to refer to θ∗ in the
saturated model. To overcome this issue, one can realize that θ∗ only appears in the asymptotic description
of X⊤

MY through πθ∗
= Eθ∗ [Y ] = Eπ∗ [Y ]. Therefore, denoting πθ∗

by

ππ∗
:= Eπ∗ [Y ],

the previous discussion suggests that X⊤
M (Y − ππ∗

) should be asymptotically normal with mean 0 and
covariance matrix limN→∞ GN (π∗) where

GN (π∗) := X⊤
MDiag

(
ππ∗
⊙ (1− ππ∗

)
)
XM .

Therefore, SIGLE in the saturated model relies on the following test statistic

∥[GN (π∗)]−1/2X⊤
M (Y − ππ∗

)∥22. (18)
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Discussion. The presentation of the SIGLE statistics in this section naturally gives rise to the following
questions

(
Qk

)
k∈[4]

:

• Q1: How to use the SIGLE statistics (17) and (18) in practice?
In most cases, the distribution of the observations conditional to the selection event is unknown and
computing (17) or (18) requires to use sampling methods.
We consider hypothesis tests with pointwise nulls as presented in Table 2. Assuming that we are
able to sample state according the Pπ∗

0
(resp. Pθ∗

0
), we can compute estimates G̃N (π∗

0), π̃
π∗
0 (resp.

ṼN (θ∗0), θ̃(θ
∗
0)) of the unknown quantities GN (π∗

0), π
π∗
0 (resp. V N (θ∗0), θ(θ∗0)) by sampling from the

conditional null distribution Pπ∗
0

(resp. Pθ∗
0

in the selected model).

Null and
alternative Test statistic

Saturated
model

H0 : {π∗ = π∗
0},

H1 : {π∗ ̸= π∗
0}

∥G̃N (π∗
0)

−1/2(X⊤
MY −X⊤

M π̃π∗
0 )∥22

Selected
model

H0 : {θ∗ = θ∗0},
H1 : {θ∗ ̸= θ∗0}

∥ṼN (θ∗0)
1/2(Ψ(X⊤

MY )− θ̃(θ∗0))∥22

Table 2: Test statistics of SIGLE.

In the case of logistic regression, we rely on a gradient alignment viewpoint of the selection event to
provide in Section 3 an algorithm which allows us to sample from Pπ∗ given any π∗. In Section 2, we
present our hypothesis tests in both the saturated and the selected models.

• Q2: What are the asymptotic properties of the SIGLE statistics (17) and (18)?
The way the SIGLE statistics have been motivated in this section naturally opens the question of their
asymptotic properties. More precisely, can we find conditions ensuring that [GN (π∗)]−1/2X⊤

M (Y −
ππ∗

) (resp.[GN (θ∗)]−1/2HN (θ)(θ̂ − θ) in the selected model) is asymptotically normal? Asymptotic
considerations have already been used in the literature to design post-selection inference methods in
GLMs such as in Taylor and Tibshirani [2018]. Such approaches often rely on non-rigorous computations
conducted under (very) restrictive assumptions.
In the case of logistic regression, we prove conditional central limit theorems (CLTs) for the SIGLE
statistics in both the selected and the saturated model. As far as we know, we are the first to provide
such results in the field of PSI. Our conditional CLTs hold under conditions that are similar to the
ones usually considered in the literature when studying the asymptotic properties of the MLE in high
dimensions (cf.Bunea [2008]).
Furthermore, we provide an extensive comparison between our methods and the one from Taylor and
Tibshirani [2018] on both the numerical side (cf. Section 4) and the theoretical side (cf. Section A).

• Q3: Other statistics might have been considered. How the SIGLE statistics from (17)
and (18) perform compared to other approaches?
At the end of Section 2, we show with numerical experiments that SIGLE statistics lead to more powerful
testing procedures compared to methods based on other reasonable choices for the test statistics. In
Section 4, we compare our method with state of the art approaches for PSI in logistic regression.

• Q4: How the methods of this paper can be interpreted when the model is misspecified
from the start?
So far, we have considered the case where the observed data yi ∈ Y has indeed by generated from the
GLM presented in Section 1.1. Can we extend the methods presented in this paper when we remove

9



this assumption? In Section D.1, we consider that the yi’s are i.i.d. and distributed according to an
arbitrary probability distribution P.

1.5 Related works
In the Gaussian linear model with a known variance, the distribution of the linear transformation η⊤Y (with
η⊤ = e⊤k X

+
M ) is a truncated Gaussian conditionally on ESM

M and Proj⊥η (Y ). This explicit formulation of the
conditional distribution allows to conduct exact post-selection inference procedures [cf. Fithian et al., 2014,
Section 4]. However, when the noise is assumed to be Gaussian with an unknown variance, one needs to
also condition on ∥Y ∥2 which leaves insufficient information about θ∗k to carry out a meaningful test in the
saturated model [cf. Fithian et al., 2014, Section 4.2].

Outside of the Gaussian linear model, there is little hope to obtain a useful exact characterization of the
conditional distribution of some transformation of X⊤

MY . In the following, we sketch a brief review of this
literature, see references therein for further works on this subject.

• Linear model but non-Gaussian errors.
Let us mention for example Tian and Taylor [2017], Tibshirani et al. [2018] where the authors consider
the linear model but relaxed the Gaussian distribution assumption for the error terms. They prove that
the response variable is asymptotically Gaussian so that applying the well-oiled machinery from Lee
et al. [2016] gives asymptotically valid post-selection inference methods.

• GLM with Gaussian errors.
Shi et al. [2020] consider generalized linear models with Gaussian noise and can then immediately apply
the polyhedral lemma to the appropriate transformation of the response.

We classify existing works with Table 3.

Noise Linear Model GLM

Gaussian Lee et al. [2016] Shi et al. [2020]

Non-Gaussian
Tian and Taylor [2017] and SIGLE (this paper) and

Tibshirani et al. [2018] Taylor and Tibshirani [2018]

Table 3: Positioning of SIGLE (this paper) among some pioneering works on PSI in GLMs.

One important challenge that remains so far only partially answered is the case of GLMs without Gaussian
noise, such as in logistic regression. In Fithian et al. [2014], the authors derive powerful unbiased selective
tests and confidence intervals among all selective level-α tests for inference in exponential family models
after arbitrary selection procedures. Nevertheless, their approach is not well-suited to account for discrete
response variable as it is the case in logistic regression. In Section 6.3 of the former paper, the authors rather
encourage the reader to make use of the procedure proposed by Taylor and Tibshirani [2018] in such context.
Both this paper and Taylor and Tibshirani [2018] are tackling the problem of post selection inference in the
logistic model.

1.6 Contributions and organization of the paper
SIGLE for an arbitrary GLM (Sec.1).

1. We provide a new formulation of the selection event in GLMs shedding light on the Cm-diffeomorphism Ψ
that carries the geometric information of the problem (cf. Theorem 1). Ψ allows us to define rigorously
the notions of selected/saturated models for arbitrary GLM (cf. Sec.1.3).
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2. We provide a new perspective on post-selection inference in the selected model for GLMs through the
conditional MLE approach of which Ψ is a key ingredient (cf. Sec.1.4).

3. We introduce the SIGLE statistics in both the saturated and the selected model. Computing these
statistics and calibrating the SIGLE hypothesis testing require to be able to sample from the distribution
of the observations conditional to the selection event (cf. Sec.1.4).

SIGLE for the Sparse Logistic Regression (SLR) (from Sec.2).

4. We describe in details the way to use SIGLE in practice in both the selected in the saturated model (cf.
Sec.2).

5. In the context of the SLR, we introduce a new sampling method allowing to compute the SIGLE
statistics and to calibrate our methods (cf. Sec.3).

6. We provide an extensive comparison between this paper and the heuristic from Taylor and Tibshirani
[2018] which is currently considered the best to use in the context of SLR [cf. Fithian et al., 2014,
Section 6.3], as far as we know. The methods are compared both on the numerical side (cf. Sec.4) and
the theoretical side (cf. Sec.A).

7. Going back to the motivation behind the choice of the SIGLE statistics, we study the asymptotic
properties of the conditional MLE. We provide conditions under which conditional CLTs hold (cf. Sec.5).

Outline. In this paper, we focus specifically on the SLR. We start by describing the SIGLE hypothesis
testing methods in this context in Section 2. In Section 3, we rely on a gradient-alignment viewpoint on
the selection event to design a simulated annealing algorithm which is proved–for an appropriate cooling
scheme–to provide iterates whose distribution is asymptotically uniform on the selection event. In Section 4,
we present the results of our simulations. We conclude in Section 5 by providing two conditional central limit
theorems.

Notations. For any set of indexes M ⊆ [d] := {1, . . . , d} and any vector v, we denote by vM the subvector
of v keeping only the coefficients indexed by M , namely vM = (vk)k∈M . Analogously, v−M will refer to the
subvector (vk)k/∈M . |M | denotes the cardinality of the finite set M . For any x ∈ Rd, ∥x∥∞ := supi∈[d] |xi|
and for any p ∈ [1,∞), ∥x∥pp :=

∑
i∈[d] x

p
i . For any A ∈ Rd×p, we define the Frobenius norm of A

as ∥A∥F := (
∑

i∈[d],j∈[p] A
2
i,j)

1/2 and the operator norm of A as ∥A∥ := supx∈Rp,∥x∥2=1 ∥Ax∥2. We further
denote by A+ the pseudo-inverse of A. Considering that A is a symmetric matrix, λmin(A) and λmax(A)
will refer respectively to the minimal and the maximal eigenvalue of A. ⊙ denotes the Hadamard product
namely for any A,B ∈ Rd×p, A ⊙ B := (Ai,jBi,j)i∈[d],j∈[p]. By convention, when a function with real
valued arguments is applied to a vector, one need to apply the function entrywise. Idd ∈ Rd×d will refer to
the identity matrix and N (µ,Σ) will denote the multivariate normal distribution with mean µ ∈ Rd and
covariance matrix Σ. For any x ∈ Rd, R > 0 and for p ∈ [1,∞], we define Bp(x,R) = {z ∈ Rd | ∥z∥p ≤ R}.
Let us finally recall that given some set of selected variables M ⊆ [d] with s := |M | and some ϑ∗ ∈ Rd, we
denote by Pπ∗ the distribution of Y conditional on EM , namely

Pπ∗(Y ) ∝ 1Y ∈EM
Pπ∗(Y ),

π∗ = σ(Xϑ∗) and where ∝ means equal up to a normalization constant. By assuming that ξ is strictly convex,
one can compute Xϑ∗ from π∗, allowing us to denote equivalently Pπ∗ ≡ Pϑ∗ with an abuse of notation. In
the selected model with θ∗ ∈ ΘM satisfying Eq.(11), we will also denote Pπ∗ ≡ Pθ∗ .
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2 Comprehensive description of SIGLE for SLR
From this section, we consider the case of the logistic regression where we recall that Y = (yi)i∈[N ] and for all
i ∈ [N ], yi ∼ Ber(π∗

i ) with π∗ = σ(Xϑ∗). As already explained in the introduction, the SIGLE statistics are
motivated by the conditional CLTs provided in details in Section 5. In this section, we describe our methods.

SIGLE in the saturated model. Given some π∗
0 ∈ RN , we consider the hypothesis test with null and

alternative hypotheses defined by

H0 : {π∗ = π∗
0} and H1 : {π∗ ̸= π∗

0}. (19)

The statistics given by the CLT from Theorem 2 (cf. Section 5) naturally leads us to introduce the ellipsoid
WN given by

WN =

{
Y ∈ {0, 1}N |

∥∥∥[GN (π∗
0)]

−1/2X⊤
M

(
Y − ππ∗

0

)∥∥∥2
2
≥ wN,1−α

}
,

where

• wN,1−α is the quantile of order 1− α of the SIGLE statistic∥∥∥[GN (π∗
0)]

−1/2X⊤
M

(
Y − ππ∗

0

)∥∥∥2
2
,

• GN (π∗) := X⊤
MDiag((σπ∗

)2)XM with (σπ∗
)2 := ππ∗

⊙ (1− ππ∗
).

If Pπ∗
0

was nice enough, we could hope to easily compute i) ππ∗
0 and then GN (π∗

0) and ii) wN,1−α. Contrary
to the linear model where the conditional distribution is known to be a truncated Gaussian, we do not have
such a characterization of Pπ∗

0
in SLR. As a consequence, we propose in the paper two different ways to

sample state in the selection event and to estimate the parameters ππ∗
0 and wN,1−α in order to approximate

the rejection region WN . Both methods are presented in Section 3. The first sampling approach is a simple
rejection sampling method. This method is particularly appropriate when the number of features d is small.
When d is getting large, another sampling method is needed and we introduce in this paper the SEI-SLR
algorithm. From Proposition 4 (cf. Section 3), we know that under an appropriate cooling scheme, the
asymptotic distribution of the states visited by the SEI-SLR algorithm (cf. Algorithm 3) is the uniform
distribution on the selection event. We deduce that under the null, we are able to estimate ππ∗

0 and thus
GN (π∗

0). Algorithm 1 describes the testing procedure when we sample states in the selection event using the
SEI-SLR algorithm.

When the states (Y (t))t≥1 in step 2. of Algorithm 1 are sampled using the rejection method instead of
the SEI-SLR algorithm, one only needs to change the way π̃π∗

0 and ζN,T are computed by using

π̃π∗
0 =

1

T

T∑
t=1

Y (t) and ζN,T =
1

T

T∑
t=1

1
Y (t)∈W̃N

.

SIGLE in the selected model. Given some θ∗0 ∈ Rs, we consider the hypothesis test with null and
alternative hypotheses defined by

H0 : {θ∗ = θ∗0} and H1 : {θ∗ ̸= θ∗0} . (20)

The statistic given by the CLT from Theorem 3 (cf. Section 5) naturally leads us to introduce the ellipsoid
WN given by

WN :=

{
Y ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MY ∈ Im(Ξ)

}
,

⋄
∥∥[GN (θ∗0)]

−1/2HN (θ(θ∗0))
(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥2

2
> wN,1−α

where
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Algorithm 1 SIGLE in the saturated model.
1: Input: X ∈ RN×d, Y ∈ RN , λ > 0, α ∈ (0, 1).

(X, Y, λ) characterizes the selection event EM (cf. Eq.(4)).
2: Sample states (Y (t))t≥1 uniformly distribution on EM using the SEI-SLR algorithm (cf. Algorithm 3).
3: Compute:

- π̃π∗
0 =

∑T
t=1Pπ∗

0
(Y (t))Y (t)∑T

t=1Pπ∗
0
(Y (t))

,

- G̃N = X⊤
MDiag

(
π̃π∗

0 ⊙ (1− π̃π∗
0 )
)
XM ,

- w̃N,1−α which is the quantile of order 1− α of the sequence
(∥∥∥G̃−1/2

N X⊤
M

(
Y (t) − π̃π∗

0

)∥∥∥2
2

)
t≥1

.

4: Define W̃N :=

{
Y ∈ {0, 1}N |

∥∥∥G̃−1/2
N X⊤

M

(
Y − π̃π∗

0

)∥∥∥2
2
> w̃N,1−α

}
.

5: Reject the null hypothesis H0 when

ζN,T :=

∑T
t=1Pπ∗

0
(Y (t))1

Y (t)∈W̃N∑T
t=1Pπ∗

0
(Y (t))

> α.

• wN,1−α is the quantile of order 1− α of the SIGLE statistic∥∥∥[GN (θ∗0)]
−1/2HN (θ(θ∗0))

(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥∥2

2
,

• HN (θ) := X⊤
MDiag(σ′(XMθ))XM = X⊤

MDiag((σθ)2)XM is the Fisher information matrix with (σθ)2 :=
πθ ⊙ (1− πθ) and πθ = Eθ[Y ],

• GN (θ∗) := X⊤
MDiag((σθ∗

)2)XM is the natural counterpart of the Fisher information matrix HN (θ∗)
when we work under the conditional distribution Pθ∗ with (σθ∗

)2 := πθ∗
⊙ (1− πθ∗

), πθ∗
= Eθ∗ [Y ].

We rely - as in the saturated model - on the SEI-SLR algorithm or the rejection sampling method (cf.
Section 3) to estimate the parameters πθ∗

0 and wN,1−α in order to approximate the rejection region WN . The
SIGLE procedure in the selected model in presented in Algorithm 1 when the SEI-SLR algorithm is used.

When the states (Y (t))t≥1 in step 2. of Algorithm 2 are sampled using the rejection method instead of
the SEI-SLR algorithm, one only needs to change the way π̃θ∗

0 and ζN,T are computed by using

π̃θ∗
0 =

1

T

T∑
t=1

Y (t) and ζN,T =
1

T

T∑
t=1

1
Y (t)∈W̃N

.

The careful reader can notice that Algorithm 2 requires to compute efficiently Ψ(X⊤
Mπ) for any π ∈ [0, 1]N .

In the specific case where π = Y ∈ {0, 1}N , we know that Ψ(X⊤
MY is the conditional MLE (cf. Eq. (15)) and

thus can be computed using the usual Iterative Reweighted Least Squares algorithm. For an arbitrary π ∈
[0, 1]N (such as in step 3. of Algorithm 2 to compute θ̃), we need to use another approach. In Section D.2 of
the Appendix, we describe in details our gradient descent-based method to compute Ψ(X⊤

Mπ) which proved
to be extremely accurate in our numerical experiments.

Discussion regarding the choice of the SIGLE statistic. As explained in Section 1.4, the SIGLE
statistics can be motivated by making a connection between PSI and asymptotic properties of the MLE with
model misspecification. Let us present a numerical experiment providing an additional support for the choice
of the SIGLE statistics. We consider the hypothesis test in the saturated model presented in Table 2 with
π∗
0 = 1

21N .
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Algorithm 2 SIGLE in the selected model.
1: Input: X ∈ RN×d, Y ∈ RN , λ > 0, α ∈ (0, 1).

(X, Y, λ) characterizes the selection event EM (cf. Eq.(4)).
2: Sample states (Y (t))t≥1 uniformly distribution on EM using the SEI-SLR algorithm (cf. Algorithm 3).
3: Compute:

- π̃θ∗
0 =

∑T
t=1Pθ∗

0
(Y (t))Y (t)∑T

t=1Pθ∗
0
(Y (t))

,

- θ̃ = Ψ(X⊤
M π̃θ∗

0 ),

- G̃N = X⊤
MDiag

(
π̃θ∗

0 ⊙ (1− π̃θ∗
0 )
)
XM ,

- w̃N,1−α which is the quantile of order 1−α of the sequence
(∥∥∥G̃−1/2

N HN (θ̃)
(
Ψ(X⊤

MY (t))− θ̃
)∥∥∥2

2

)
t≥1

.

4: Define W̃N :=

{
Y ∈ {0, 1}N |

∥∥∥G̃−1/2
N HN (θ̃)

(
Ψ(X⊤

MY )− θ̃
)∥∥∥2

2
> w̃N,1−α

}
.

5: Reject the null hypothesis H0 when

ζN,T :=

∑T
t=1Pθ∗

0
(Y (t))1

Y (t)∈W̃N∑T
t=1Pθ∗

0
(Y (t))

> α.

We consider a design matrix X ∈ R100×10 where the entries are i.i.d. and sampled from a standard normal
distribution. We use a regularization parameter λ = 5. We work with the following three test statistics:

• the SIGLE statistic:
∥∥∥[GN (π∗

0)]
−1/2X⊤

M

(
Y − ππ∗

0

)∥∥∥2
2
,

• the SIGLE correlated statistic:
∥∥∥[Gc

N (π∗
0)]

−1/2X⊤
M

(
Y − ππ∗

0

)∥∥∥2
2

where

G
c

N (π∗
0) = X⊤

MEπ∗
0

[
(Y − ππ∗

0 )(Y − ππ∗
0 )⊤
]
XM ,

• the logistic unconditional Fisher statistic:
∥∥[HN (π∗

0)]
−1/2X⊤

M (Y − π∗
0)
∥∥2
2
.

We calibrate each testing procedure by sampling under the null distribution. Figure 2.(a) presents the
cumulative distribution function of the p-values obtained considering the alternative π∗ = σ(Xϑ∗) with
ϑ∗ = 0.2×1d for the different tests. We see that the SIGLE statistic leads to more powerful tests compared to
the logistic unconditional Fisher statistic. Moreover, the SIGLE statistic and the SIGLE correlated statistic
give similar result as already explained in Section 1.4.

Figure 2.(b) shows the pdf of the SIGLE statistic under the null and the pdf of the closer χ2 distribution,
in the sense that we chose the degree of freedom for the χ2 distribution that gives the smallest L2 error
between the χ2 quantiles and the SIGLE’s quantiles. It appears that this optimal degree of freedom is 14.
Figure 2.(b) makes clear that the SIGLE statistic is not distributed as a χ2 random variable contrary to what
our conditional CLT from Section 5 is suggesting. The obvious reason is that our conditional CLT from
Section 5 holds only under restrictive conditions that are nonetheless standard in the literature (cf. Bunea
[2008]). This is one reason motivating the calibration of the SIGLE procedures by sampling under the null.
Let us highlight that this is not restrictive in the sense that the computation of the SIGLE statistics require
anyway to sample under the null in order to estimate both ππ∗

0 and GN (π∗
0).

We conducted the same analysis in the selected model working with the following three test statistics:

• the SIGLE statistic:
∥∥[GN (θ∗0)]

−1/2HN (θ∗0)
(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥2

2
,
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• the SIGLE correlated statistic:
∥∥∥[Gc

N (θ∗0)]
−1/2HN (θ∗0)

(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥∥2

2
, where

G
c

N (θ∗0) = X⊤
MEθ∗

0

[
(Y − πθ∗

0 )(Y − πθ∗
0 )⊤
]
XM ,

• the logistic unconditional Fisher statistic:
∥∥[HN (θ∗0)]

−1/2
(
Ψ(X⊤

MY )− θ∗0
)∥∥2

2
.

The results are presented in Figures 2.(c) and (d) with similar conclusions.

(a) CDF of p-values for the alternative π∗ = σ(Xϑ∗) with
ϑ∗ = 0.2× 1d.

(b) Pdfs of the SIGLE statistic under the null and of the
χ2(14) distribution.

(c) CDF of p-values for the alternative π∗ = σ(Xϑ∗) with
ϑ∗ = 0.2× 1d.

(d) Pdfs of the SIGLE statistic under the null and of the
χ2(21) distribution.

Figure 2: Figure (a) (resp. (c)) shows the CDF of p-values for the alternative π∗ = σ(Xϑ∗) with ϑ∗ = 0.2×1d
for the test using the SIGLE statistic, the SIGLE correlated statistic and the logistic unconditional Fisher
statistic in the saturated (resp. selected) model. Figure (b) (resp. (d)) presents the probability density
function (pdf) of the SIGLE statistic under the null and the one of a χ2 distribution with 14 (resp. 21)
degrees of freedom in the saturated (resp. selected) model.

3 Sampling from the conditional distribution
Let us recall that we focus on the case of the logistic regression. We propose two different approaches to
compute quantities of the form Eϑ∗ [h(Y )] for some map h : {0, 1}N → R.

15



The first one is a simple rejection sampling method that can be used when carrying simple hypothesis
testing as presented in Table 2. In this situation, one can sample states from Pπ∗

0
in the saturated model

(resp. Pσ(XMθ∗
0 )

in the selected model) while keeping only the ones leading to the selected support M .
By construction, the distribution of the saved states is precisely Pπ∗

0
(resp. Pσ(XMθ∗

0 )
). This method is

particularly appropriate when the number of features d is small since the number of possible selected support
for the lasso solution is exponential in d. When d is getting large or when we want to derive a confidence
region, another sampling method is needed.
In this section, we present an algorithm based on a simulated annealing approach that is proved to sample
states Y (t) uniformly distributed on the selection event EM for any M ⊆ [d] with cardinality s in the
asymptotic regime as t→∞. Contrary to the rejection sampling method, this simulated-annealing based
algorithm can be used to compute expectations of the form Eϑ∗ [h(Y )] regardless of the inference procedure
conducted or when d is large. Nevertheless, let us point out that this approach requires an appropriate tuning
of some parameters, and the convergence guarantees are only asymptotic. An extensive discussion of our
sampling strategies is provided in Section 4.1.

3.1 SEI-SLR: sampling the selection event
From Proposition 1 and the KKT conditions from (3), we know that the selection event EM can be written as

EM =
{
Y ∈ {0, 1}N | 1∥Ŝ−M (Y )∥∞−1<0, 11=mink∈M{|Ŝk(Y )|}

}
. (21)

Based on the expression of EM given in Eq.(21), we introduce the
function

bδ(x) = 1−
√(x

δ

)
∧ 1 ,

for some δ > 0 and we define the energy

E(Y ) := max {p1(Y ) , p2(Y )} , x

0 1

bδ(x)
1

δ
where

p1(Y ) := bδ

(
1− ∥Ŝ−M (Y )∥∞

)
and p2(Y ) :=

1

|M |
∑
k∈M

(1− |Ŝk(Y )|).

The energy E measures how close some vector Y ∈ {0, 1}N is to EM . With Lemma 1, we make this claim
rigorous by proving that for δ > 0 small enough, the selection event EM corresponds to the set of vectors
Y ∈ {0, 1}N satisfying E(Y ) = 0.

Lemma 1. For any M ⊆ [d], there exists δc := δc(M,X, λ) > 0 such that for all δ ∈ (0, δc), the selection
event EM = {Y ∈ {0, 1}N | M̂(Y ) = M} is equal to the set{

Y ∈ {0, 1}N | p1(Y ) = 0 and p2(Y ) = 0
}
.

Proof. Let us consider some δ ∈ (0, δc) where

δc := min
Y ∈EM

{1− ∥Ŝ−M (Y )∥∞}.

Note that Eq.(21) ensures that for any Y ∈ EM , ∥Ŝ−M (Y )∥∞ < 1. This implies that δc > 0 since the set
EM is finite.

It is obvious that for any Y ∈ {0, 1}N , the fact that p2(Y ) = 0 is equivalent to mink∈M |Ŝk(Y )| = 1.
Moreover, thanks to our choice for the constant δ, it also holds that p1(Y ) = 0 is equivalent to ∥Ŝ−M (Y )∥∞ < 1.
The characterization of the selection event EM given by Eq.(21) allows to conclude the proof.
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Lemma 1 states that-provided δ is small enough–the selection event EM corresponds to the set of global
minimizers of the energy E : {0, 1}N → R+. This characterization allows us to formulate a simulating
annealing (SA) procedure in order to estimate EM . Let us briefly recall that simulated annealing algorithms
are used to estimate the set of global minimizers of a given function. At each time step, the algorithm
considers some neighbour of the current state and probabilistically decides between moving to the proposed
neighbour or staying at its current location. While a transition to a state inducing a lower energy compared to
the current one is always performed, the probability of transition towards a neighbour that leads to increase
the energy is decreasing over time. The precise expression of the probability of transition is driven by a
chosen cooling schedule (Tt)t where Tt are called temperatures and vanish as t → ∞. Intuitively, in the
first iterations of the algorithm the temperature is high and we are likely to accept most of the transitions
proposed by the SA. In that way, we give our algorithm the chance to escape from local minimum. As time
goes along, the temperature decreases and we expect to end up at a global minima of the function of interest.

We refer to [Brémaud, 2013, Chapter 12] for further details on SA. Our method is described in Algorithm 3
and in the next section, we provide theoretical guarantees. In Algorithm 3, P : {0, 1}N × {0, 1}N → [0, 1] is
the Markov transition kernel such that for any Y ∈ {0, 1}N , P (Y, ·) is the probability measure on {0, 1}N
corresponding to the uniform distribution on the vectors in {0, 1}N that differs from Y in exactly one
coordinate.

Algorithm 3 SEI-SLR: Selection Event Identification for SLR
Data: X, Y , λ, K0, T
1: Compute ϑ̂λ ∈ argmin

ϑ∈Rd

{LN (ϑ, (Y,X)) + λ∥ϑ∥1}

2: Set M = {k ∈ [d] | ϑ̂λ
k ̸= 0}

3: Y (0) ← Y
4: for t = 1 to T do
5: Y c ∼ P (Y (t−1), ·)
6: ϑ̂λ,c ∈ argmin

ϑ∈Rd

{LN (ϑ, (Y c,X)) + λ∥ϑ∥1}

7: Ŝ(Y c) = 1
λX

⊤(Y c − σ(Xϑ̂λ,c))

8: ∆E = E(Y c)− E(Y (t−1))
9: U ∼ U([0, 1])

10: Tt ← K0

log(t+1)

11: if exp
(
−∆E

Tt

)
≥ U then

12: Y (t) ← Y c

13: end if
14: end for

3.2 Proof of convergence of the algorithm
To provide theoretical guarantees on our methods in the upcoming sections, we need to understand what
is the distribution of Y (t) as t → ∞. This is the purpose of Proposition 4 which shows that the SEI-SLR
algorithm generates states uniformly distributed on EM in the asymptotic t→∞.

Proposition 4. [Brémaud, 2013, Example 12.2.12]
For a cooling schedule satisfying Tt ≥ 2N+1/ log(t+ 1), the limiting distribution of the random vectors Y (t) is
the uniform distribution on the selection event EM .

Proposition 4 has the important consequence that we are able to compute the distribution of the binary
vector Y = (yi)i∈[N ] where each yi is a Bernoulli random variable with parameter π∗

i ∈ (0, 1) conditional
on the selection event. The formal presentation of this result is given by Proposition 5 which will be the
cornerstone of our inference procedures presented in Section 5.
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Proposition 5. Let us consider M ⊆ [d] and some ϑ∗ ∈ Rd. Consider a random vector Y with distri-
bution Pπ∗ where π∗ = σ(Xϑ∗). For a cooling schedule satisfying Tt ≥ 2N+1/ log(t + 1), it holds for any
function h : {0, 1}N → R,∑T

t=1 h(Y
(t))Pπ∗(Y (t))∑T

t=1Pπ∗(Y (t))
→

T→∞
Eπ∗ [h(Y )] almost surely.

Proof. Let us consider some map h : {0, 1}N → R. Then,

Eπ∗ [h(Y )] =

∑
y∈EM

h(y)Pπ∗(y)∑
y∈EM

Pπ∗(y)
=
E(h(UM )Pπ∗(Y = UM ))

E(Pπ∗(Y = UM ))
,

where UM is a random variable taking values in {0, 1}N which is uniformly distributed over EM . Then the
conclusion directly follows from Proposition 4.

4 Numerical results
The code to reproduce our results is available at the following url: https://github.com/quentin-duchemin/
SIGLE.

4.1 Sampling the conditional distribution with SEI-SLR
As already discussed in the beginning of Section 3, we propose two different ways to sample points on the
hypercube {0, 1}N allowing us to compute conditional expectations of the form Eθ∗ [h(Y )] or Eπ∗ [h(Y )] where
h : {0, 1}N → R.

The first method is a simple rejection sampling approach and is described in Algorithm 4. The rejection

Algorithm 4 Rejection sampling.
1: Input: T , π∗, X, M , λ
2: t← 0
3: while t < T do
4: Y ∼ Pπ∗

5: if Y ∈ EM then
6: t← t+ 1
7: Y (t) ← Y
8: end if
9: end while

10: return (Y (t))t∈[T ]

sampling algorithm does not require any parameter tuning and allow to estimate any expectation Eπ∗ [h(Y )]
by taking a simple average over the list of returned states namely

∑
t∈[T ] h(Y

(t)). Nevertheless, a major
drawback of the rejection sampling method is its large computing time when the number of features d is
getting "large" (typically when d exceeds ten). Indeed, the number of possible supports for a lasso solution is
equal to 2d and increases exponentially fast with d.

In order to bypass this curse of dimensionality, we proposed in Section 3.1 the SEI-SLR algorithm:
a simulated annealing-based method that is proved to generate states that are asymptotically uniformly
distributed on the selection event. The SEI-SLR algorithm solves the computational issue faced by the
rejection sampling for large p values. Nevertheless, the convergence of SEI-SLR algorithm requires the use of
well-chosen parameters namely:

• the parameter δ involved in the energy (cf. Section 3.1),
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Rejection Sampling SEI-SLR

Conditions for application Simple hypothesis (cf.
Table 2) No condition

Need for hyperparameters
tuning No Yes

Computational time
Efficient only for a small d
but N can be chosen (very)

large

Easier to use for relatively
small N but d can be large

Distribution of the sequence
of states generated

(Y (t))t∈[T ]

Pθ∗0
or Pπ∗

0
(cf. Table 2) Uniform distribution on EM

⇓ ⇓

In simple hypothesis testing
with H0 : ”θ∗ = θ∗0”,
Eθ∗0

[h(Y )] ≈ . . .

1
T

∑
t∈[T ] h(Y

(t))
∑

t∈[T ] Pθ∗0
(Y (t))h(Y (t))∑

r∈[T ] Pθ∗0
(Y (r))

i.e. the estimate is obtained
with a simple average on the
sequence of generated states.

i.e. we need to weight
properly each visited state.

Table 4: Comparison between the rejection sampling method and the SEI-SLR algorithm.

• the temperatures (Tt)t,

• the time horizon of the algorithm.

Let us finally mention that estimating expectations of the form Eθ∗ [h(Y )] from the samples (Y (t))t obtained
with the SEI-SLR algorithm requires the computation of weighting factors that allow to go from the uniform
distribution on the selection event EM to the target conditional distribution Eθ∗ . In Table 4, we sum-up the
previous discussion in order to give a comprehensive comparison between the two methods. In the rest of this
section, we illustrate the performance of the SEI-SLR algorithm

We consider a design matrix X ∈ R10×20 where all entries are i.i.d. and sampled from a standard normal
distribution. We consider δ = 0.01, λ = 1.5 and we sample some vector Y0 ∈ {0, 1}N with i.i.d. entries
with a Bernoulli distribution of parameter 1/2. Note that the tuple (X, Y0, λ) determined the set of active
variables M (cf. Eq.(2)). We run the SEI-SLR algorithm for 3 000 000 time steps. By choosing this toy
example with a small value for N , we are able to compute exactly the selection event EM by running over
the 210 possible vectors Y ∈ {0, 1}N . In the following, we identify each vector Y ∈ {0, 1}N with the number
between 0 and 2N − 1 = 1024 that it represents in the base-2 numeral system. Using this identification, it
holds on our example that EM = {3, 35, 222, 801, 988, 1020}.

Figure 3.(a) shows the last 500, 000 visited states for our simulated annealing path. On the vertical axis,
we have the integers encoded by all possible vectors Y ∈ {0, 1}N . The red dashed lines represent the states
that belong to the selection event EM . While crosses are showing the visited states on the last 500, 000
time steps of the path, green crosses are emphasizing the ones that belong to the selection event. On this
example, we see that the SEI-SLR algorithm covers properly the selection event without being stuck in one
specific state of EM . The simulated annealing path is jumping from one state of EM to another, ending up
with an asymptotic distribution of the visited states that approximates the uniform distribution on EM (see
Figure 3.(b)). Let us point that two neighboring states in space {0, 1}N will not necessarily be encoded by
close integers.

Figure 3.(a) suggests that the vectors encoded by the integers 3 and 35 are close in the space {0, 1}N .
Indeed, we see on Figure 3.(a) that between indexes 180 000 and 350 000, our algorithm goes from one of
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(a) Last 500 000 visited states of the SEI-SLR algorithm.
The dotted red lines represent the states in EM . (b) Time spent in each state of EM and outside of EM .

Figure 3: Visualization of the time spent in the selection event from the sequence of states provided by the
SEI-SLR algorithm.

these states to another passing through almost no state that does not belong to the selection event (this can
be seen because there are only few gray crosses on this time window of the simulated annealing path). The
same remark holds for the two states encoded by the integers 988 and 1020. However, we observe a large
number of visited states that do not belong to EM when we perform a transition between any other pair of
states belonging to the selection event. We can therefore legitimately think that the selection event separates
into four groups of fairly distant states. This is confirmed by Figure 4 which presents the Hamming distances
between the different vectors of EM and reveals the existence of two clusters.

Figure 4: Normalized (by N) Hamming distances between the different states of the selection event.

With Figure 5, we show the results obtained from the SEI-SLR algorithm considering a similar experiment
but taking d = 15 (instead of 20) and λ = 2 (instead of 1.5), which leads to a larger selection event.
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(a) Last 100 000 visited states of the SEI-SLR algorithm.
The dotted red lines represent the states in EM . (b) Time spent in each state of EM and outside of EM .

Figure 5: Visualization of the time spent in the selection event from the sequence of states provided by the
SEI-SLR algorithm.

Comparison with the linear model. The previous theoretical and numerical results show that our
approach allows to correctly identify the selection event EM . Nevertheless, this method suffers from the curse
of dimensionality since the random walks in the simulated annealings need to cover a state space of 2N points.
Let us mention that even in the linear model where the selection event EM has the nice property to be a union
of polyhedra, the method from Lee et al. [2016] to provide inference on a linear transformation of Y can also
cope with some computational issues. Indeed, the construction of confidence intervals conditionally on the
event EM requires the computation of 2s intervals (while the computation of each of them requires at least N3

operations) where s = |M | (see [Lee et al., 2016, Section 6]). Roughly speaking, both our approach in the
logistic model and the one from [Lee et al., 2016, Section 6] in the linear model are limited in large dimensions.
While in the linear case, computational efficiency of the known methods mainly depends on s = |M |, the
extra cost arising from the non-linearity of the logistic model is their dependence on N .

Let us finally mention that in the Gaussian linear model, one can bypass the limitation of computing
the 2s intervals for each possible vector of dual signs on the equicorrelation set M by conditioning further
on the observed vector of signs ŜM (Y ) = sign(θ̂λ)M . Stated otherwise, instead of conditioning on EM , we
condition on ESM

M where SM = ŜM (Y ). This method reduces the computational burden but it will lead in
general to less powerful inference procedures due to some information loss which can be quantified through
the so-called leftover Fisher information. In Section F, we discuss with further details PSI when we condition
additionally on the observed vector of signs.

4.2 Hypothesis Testing
In this section, we propose to analyze the level and the power of the SIGLE procedure considering the
following simple hypothesis testing problem

H0 : {θ∗ = θ∗0}, H1 : {θ∗ ̸= θ∗0}.

We compare the SIGLE method with the results obtained from a weak learner and from the heuristic method
proposed by Taylor and Tibshirani [2018].

Description of the settings of our experiments. We consider a design matrix X ∈ RN×d where the
entries are i.i.d. and sampled from a standard normal distribution. We consider two different experiments (cf.
Table 5). For the Setting 1 under the null, the set of active variables M is of size 4. We sample states from

21



EM using the rejection sampling method and approximately 8% of the states sampled from Pθ∗
0

fall in the
selection event with this algorithm. For the Setting 2, we use the SEI-SLR algorithm to sample states in EM .

N d X λ θ∗0 Sampling method

Setting 1 100 10 Xi,j ∼ N (0, 1) 5 [0, . . . , 0] Rejection sampling

Setting 2 20 15 Xi,j ∼ N (0, 1) 3 [0, . . . , 0] SEI-SLR

Table 5: Description of the experiments.

4.2.1 Description of the benchmark methods

A weak learner. Our weak learner is a two-sided test based on the statistic
∑n

i=1 |π
θ0
i − yi| where πθ0 is

the expectation of the vector of observations under the null conditional on the selection event (cf. Eq.(16)).
Let us highlight that πθ∗

0 is estimated by π̃θ∗
0 where

• π̃θ∗
0 =

∑T
t=1 Y

(t) if the sequence (Y (t))t∈[T ] is generated from the rejection sampling method,

• π̃θ∗
0 =

∑T
t=1 Y (t)Pθ∗0

(Y (t))∑T
t=1 Pθ∗0

(Y (t))
if we use the SEI-SLR algorithm to generate the states (Y (t))t∈[T ].

The method is calibrated empirically using the sequence (Y (t))t∈[T ].

The PSI method from Taylor and Tibshirani [2018]. The PSI method in the logistic model proposed
by Taylor and Tibshirani [2018] is described in details in Section A.1. Based on heuristic justifications,
this approach has the advantage to provide an hypothesis testing method for any linear transformation
of the debiased lasso solution θ (i.e. of the form η⊤θ) that does not require a cumbersome sampling step.
We propose to compare the SIGLE methods with the PSI procedure from Taylor and Tibshirani [2018] by
considering different approaches:

TT-1 We use the p-value obtained from a two-sided test based on the statistic θ1.

TT-Bonferroni We use a Bonferroni method from the p-values computed from the set of two-sided composite tests
with null hypotheses H0 : ”θ∗j =

[
θ∗0
]
j
” for j ∈ [s] where s = |M |.

4.2.2 Calibration

SIGLE procedures. To compute the SIGLE statistics, we need to estimate GN (π∗
0) (and θ(θ∗0) in the

selected model). Since the conditional distribution Pπ∗
0

(resp. Pθ∗
0
) is not known, we sample states from these

distributions to estimate these quantities. We use these states sampled in the selection event EM in order to
calibrate empirically the SIGLE procedures. In the literature, one often says that we calibrate by sampling
under the null.

PSI methods from Taylor and Tibshirani [2018]. In Taylor and Tibshirani [2018], the authors justify
their approach with asymptotic considerations. Figure 6.(a) shows that for a large value for N , the methods
TT-1 and TT-Bonferroni are correctly calibrated since the CDF of the p-values are uniform under the null. On
the contrary, for small value of N , the calibration of these procedures may be lost as shown with Figure 6.(b).

The weak learner. By construction, the p-values of the weak learner are stochastically larger than uniform
under the null. The CDF of p-values are uniformly distributed in the Setting 1 with Figure 6.(a). Note that
in the Setting 2, the weak learner is irrelevant since the selection event EM is such that πθ∗

0 = 1
21N . This

means that the test-statistic of the weak learner is constant.
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(a) Setting 1. (b) Setting 2.

Figure 6: CDF of the p-values of the different testing procedures under the global null for the Settings given
in Table 5. We calibrate empirically the SIGLE methods.

4.2.3 Power

We consider two different types of alternatives:

• Localized alternatives.
A localized signal is of the form ϑ∗ = [ν , 0 , , . . . , 0] for some ν > 0.

• Disseminated alternatives.
A disseminated signal is of the form ϑ∗ = ν1d for some ν > 0.

As explained in the previous sections, we calibrate the SIGLE methods empirically. Figure 6.(a) shows that
the p-values for the SIGLE methods are distributed uniformly under the null. Figure 6.(a) also shows that
the benchmark methods are correctly calibrated.
Figures 7 and 8 show that SIGLE is more powerful compared to the benchmark methods for the localized
or disseminated alternative. In Figure 8.(b), the power of the SIGLE methods is so high that we barely
identify the curve of the CDF in the top-left corner. Figure 9 gives a complete visualization of the power of
the different testing methods when tests have level 5%. We see that the methods of this paper are always
improving upon the benchmark methods. The superiority of the SIGLE methods regarding power becomes
even more significant when we consider disseminated alternatives. This is not surprising since the methods of
this paper are intrinsically designed to tackle simple hypothesis testing problem.

Another interesting remark is that the procedure TT-1 is more powerful than the procedure TT-Bonferroni
when considering localized alternatives as showed by Figure 7. Again this result is not surprising: the
TT-Bonferroni loses power by testing each coordinate of the parameter vector while TT-1 is focused on a
single coordinate which is better suited to identify a localized signal. On the contrary, the TT-Bonferroni is
more powerful when considering disseminated alternatives as observed with Figure 8 and Figure 9.(b).

We conduct similar experiments in the Setting 2 given in Table 5. Figure 10 shows that the TT-1 and
TT-Bonferroni are still less powerful than the SIGLE methods. Moreover, Figure 10.(b) illustrates that in
the high dimensional setting (i.e. when d is larger than N), the size of the selection event can be small which
leads to a non-smooth staircase function for the CDF of p-values. In the example of the Figure 10.(b), the
selection event contains only 22 states.

4.2.4 Computational time and implementation details

Implementation of the SIGLE procedures.
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(a) CDF of p-values for the alternative
ϑ∗ = [0.4 , 0 , . . . , 0].

(b) CDF of p-values for the alternative
ϑ∗ = [0.9 , 0 , . . . , 0].

Figure 7: CDF of the p-values for the SIGLE procedures and the benchmark methods using the Setting 1
(cf. Table 5) for localized alternatives.

(a) CDF of p-values for the alternative
ϑ∗ = 0.04× 1d.

(b) CDF of p-values for the alternative
ϑ∗ = 0.3× 1d.

Figure 8: CDF of the p-values for the SIGLE procedures and the benchmark methods using the Setting 1
(cf. Table 5) for disseminated alternatives.

• SIGLE in the selected model.
In the selected model, the SIGLE testing method requires to compute θ(θ∗0) = Ψ(X⊤

Mπθ∗
0 ). Since we

do not have a closed-form expression for Ψ = Ξ−1, we first tried to learn this function by using a
feed-forward neural network. We were not able to reach sufficient accuracy with this method and we
proposed a gradient descent based approach to approximate θ(θ∗0) from the estimate π̃θ∗

0 of πθ∗
0 (cf.

Section 4.2.1). This algorithm is fully described in Section D.2.2. Making use of a proper warm start,
we found this method highly robust and accurate to compute θ(θ∗0).

• SEI-SLR algorithm and speed of convergence.
In the previous sections, we proved the correctness of the SEI-SLR algorithm: the states visited by
the algorithm are asymptotically distributed according to the uniform measure on EM . This is an
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(a) Localized alternatives. (b) Disseminated alternatives.

Figure 9: Comparison of the power of the SIGLE procedures and the benchmark methods using the Setting
1 (cf. Table 5) for tests with level 0.05.

(a) CDF of p-values for the localized alternative ϑ∗ =
[3 , 0 , . . . , 0].

(b) CDF of p-values for the disseminated alternative
ϑ∗ = 1.5× 1d.

Figure 10: CDF of the p-values for the SIGLE procedures and the benchmark methods using the Setting 2
(cf. Table 5).

asymptotic result and MCMC methods are known to converge slowly. In order to increase the speed
of convergence of the SEI-SLR algorithm, we found very useful in practice to introduce a repulsing
force in the markovian transition kernel. Denoting Y (t) the visited state at time t, we sample a
candidate Y c ∼ P (Y (t), ·) where we recall that P (Y (t), ·) is the uniform distribution over the neighbours
of Y (t), i.e. the states of the hypercube {0, 1}N that differ from Y (t) in exactly one coordinate. Instead
of accepting the transition towards the candidate state Y c if

1− exp(−∆E
Tt

) ≤ Ut,

where Ut ∼ U([0, 1]) and ∆E := E(Y c)− E(Y (t)), we decide to set Y (t+1) ← Y c if and only if

min

(
1− exp(−∆E

Tt
) , 1− E(Y (t))

)
≤ Ut.
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The extra term 1− E(Y (t)) in the acceptance rate acts like a repulsion force. If the current state Y (t)

does not belong to the selection event, the energy E(Y (t)) is strictly positive. Nevertheless, if the
neighbours of Y (t) have an energy which is larger than E(Y (t)), the algorithm may get stuck at Y (t) for
some time before exploring other regions of the hypercube. Thanks to the extra term 1− E(Y (t)), the
acceptance rate is boosted whenever the current state is known to be outside of the selection event.

4.2.5 Visualization of the SIGLE procedure in the selected model

Figure 11 provides a visualization of the SIGLE procedure in the selected model. We consider a design matrix
X ∈ R100×5 with i.i.d. entries sampled according to a standard normal distribution. We consider the null
hypothesis H0 : ”θ∗ = 0”. In Figure 11.(a), we work under H0 and we choose a regularization parameter λ = 7
in order to have a selected support of size 2 to be able to visualize in the plane the SIGLE method in the
selected model. We calibrate our testing procedure empirically and we see on Figure 11.(a) that 95% of the
states sampled using the rejection sampling method fall into the orange ellipse, meaning that our test has
level 5%. On Figure 11.(b), we consider a localized alternative by considering ϑ∗ = [0.5 , 0 , . . . , 0] and we
choose λ = 8 in order to have |M | = 2. In this case, the number of states falling into the orange ellipse is less
than 95% which means that we reject the null hypothesis.

(a) ϑ∗ = 0, λ = 7 (b) ϑ∗ = [0.5, 0, . . . , 0], λ = 8

Figure 11: The orange ellipse represents the set of parameter θ ∈ Rs such that ∥G̃−1/2
N HN (θ̃)(θ− θ̃)∥22 = q1−α

where q1−α is the empirical quantile of order 1−α of the test statistic of the SIGLE procedure in the selected
model under the null ”θ∗ = 0”. For each t, we plot the MLE Ψ(X⊤

MY (t)) with a green plus if the point falls
into the orange ellipse and with a red cross otherwise.

4.3 Discussion and final remarks
Calibration. Despite the method proposed by Taylor and Tibshirani [2018] lacks theoretical guarantees,
our experiments have shown that it is most of the time correctly calibrated. The calibration of SIGLE requires
to sample under the null, which makes the method computationally more heavy.

Power. Our experiments have shown that the empirically calibrated SIGLE procedures seem to be system-
atically more powerful compared to the approach from Taylor and Tibshirani [2018]. We would like to point
out two main possible reasons explaining the lack of power of the PSI method from Taylor and Tibshirani
[2018].
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(i) We are tackling a simple hypothesis testing problem while the method proposed in Taylor and Tibshirani
[2018] is more naturally suited to address composite testing problems (typically testing the nullity of a
specific coordinate of θ∗). Note that the SIGLE methods cannot easily tackle single testing problems
since the whole parameter π∗

0 (resp. θ∗0 in the selected model) is need to estimate GN (π∗
0) (resp. GN (π∗

0)
and θ(θ∗0)). When deriving their PSI method, Taylor and Tibshirani [2018] face a similar issue and
propose to use a plug-in approach by remplacing the unknown parameter θ∗ by the lasso solution. A
similar plug-in approximation for SIGLE could be investigated and this research direction is left for
future work.

(ii) The method proposed by Taylor and Tibshirani [2018] is motivated by non-rigorous computations
that aim at characterizing the distribution of the debiased lasso solution θ conditional on the selection
event ESM

M (we refer to Section A.1 for details). It is well-known that conditioning on both the active
variables and the vector of dual signs can lead to less powerful testing procedures. This statement can
be made rigorous through the concept of leftover Fisher information (see Section F or Fithian et al.
[2014] for details). As summarized in Fithian et al. [2014], "on average, the price of conditioning on
the [signs] SM – the price of selection – is the information SM carries about θ∗". Roughly speaking,
even if the observed vector of dual signs is very surprising under the null, the method from Taylor and
Tibshirani [2018] will not reject the null hypothesis unless we are surprised anew by looking at θ. On
the contrary, the SIGLE methods rely on the characterization of some test statistic conditional on EM

(without conditioning on the signs).
In the Linear LASSO, the same situation arises and in Lee et al. [2016], the authors proved that one can
rely on the work done conditional on ESM

M in order to derive a more powerful testing method (at least
on average) at the price of an additional computational cost. In this case, the linear transformation
of the response vector is not distributed as a Gaussian truncated to an interval (as conditional on
ESM

M ) but is now a truncated Gaussian with a truncation set being a union of intervals. One important
remark is that contrary to the Linear LASSO, the method from Taylor and Tibshirani [2018] cannot be
easily adapted to get more power by working directly on EM . The reason is that the test statistic itself
depends on the vector of dual signs SM (and not only the bounds of the truncation interval).

What is the
paradigm considered?SIGLE

What type of testing
problem are you tackling? TT

At least one of the
two parameters
d or N is small?

SIGLE

Are you ready to sacrifice
computational time
to increase power?

SIGLE TT

Selected model

Saturated
model

Composite
testing

Simple hypothesis testing

Yes

No

NoYes

Figure 12: Choosing the PSI testing method that matches your setting: SIGLE (this paper) or TT (from Taylor
and Tibshirani [2018]).
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Conclusion. The SIGLE procedures require to use either the rejection sampling method or the SEI-SLR
algorithm to estimate the matrix GN (π∗

0) (and the parameter θ(θ∗0) in the selected model) and to estimate the
parameter wN,1−α needed to define the rejection region. This sampling step is the main computational burden
of the SIGLE procedures. On the contrary, the approach of Taylor and Tibshirani [2018] does not require
such sampling stage and only requires to compute the bounds of the truncation interval of the distribution
the η⊤θ for some fixed vector η ∈ Rs under the null.
Figure 12 summarizes the main differences between the methods proposed in this paper and the one
from Taylor and Tibshirani [2018] and provides an easy way to select the best method for a given setting.
This organizational chart stresses that when d is small, the rejection sampling method allows to efficiently
sample states from the conditional distribution Pθ∗ while when N is small, the SEI-SLR algorithm allows to
efficiently sample states uniformly distributed on EM . In both cases, the SIGLE methods can be used with a
small computational time and they should be preferred to get more powerful methods.

5 Conditional Central Limit Theorems for SLR

5.1 Preliminaries
Before presenting our conditional CLTs, let us present the framework in which we state our asymptotic
results. Let (dN )N∈N be a non-decreasing sequence of positive integers converging to d∞ ∈ N ∪ {+∞} and
let s ∈ [d1, d∞] ∩ N. For any N , we consider [ϑ∗](N) ∈ RdN , λ(N) > 0, M (N) ⊆ [dN ] with cardinality s

and a design matrix X(N) ∈ RN×dN . We recall the definitions of the selection event E
(N)
M corresponding to

the tuple (λ(N),M (N),X(N)) and of the conditional probability distribution P
(N)

π∗ given in Section 1.4. We
assume that it holds

• K := sup
N∈N

max
i∈[N ],j∈M(N)

|X(N)
i,j | <∞,

• there exist constants C, c > 0 (independent of N) such that for any N ∈ N,

cN ≤ λmin(
[
X

(N)

M(N)

]⊤
X

(N)

M(N)) ≤ λmax(
[
X

(N)

M(N)

]⊤
X

(N)

M(N)) ≤ CN.

Remark. Note that the latter assumption holds in particular if the matrices
(
X(N)/

√
N
)
N≥1

satisfy
(uniformly) the so-called s-Restricted Isometry Property (RIP) condition [cf. Wainwright, 2019, Definition
7.10]. Let us recall that a matrix A ∈ RN×p satisfies the s-RIP condition if there exists a constant δs ∈ (0, 1)
such that for any N × s submatrix As of A, it holds

1− δs ≤ λmin(A
⊤
s As) ≤ λmax(A

⊤
s As) ≤ 1 + δs.

In Section 5.2, we start by presenting our first CLT for
[
X

(N)
M

]⊤
Y where Y is distributed according to P

(N)

π∗ .
Thereafter, we prove in Section 5.3 a CLT for the conditional unpenalized MLE θ̂ working with the design
X

(N)
M (see Eq.(12)).

The proofs of our conditional CLTs make use of [Bardet et al., 2008,
Thm.1] and rely on triangular arrays ξ⃗ :=

(
(ξi,N )i∈[N ], N ∈ N

)
where ξi,N is a random vector in Rs and is a function of the
deterministic quantities λ(N), X(N), M (N) and of the random
variable Y with probability distribution P

(N)

π∗ . Most dependent
CLTs have been proven for causal time series (typically satisfy-
ing some mixing condition) and are not well-suited to our case
since conditioning on the selection event introduces a complex
dependence structure.

ξ1,1

ξ1,2 ξ2,2

ξ1,3 ξ2,3 ξ3,3

. . . . . . . . . . . .

ξ1,N ξ2,N ξ3,N . . . ξN,N

. . . . . . . . . . . . . . . . . .
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The dependent Lindeberg CLT from [Bardet et al., 2008, Thm.1] gives us the opportunity to find conditions
involving mainly the covariance matrix of Y under which our conditional CLTs hold. More precisely, we
provide conditions ensuring that the lines of the Rs-valued process indexed by a triangular system ξ⃗ satisfy
some Lindeberg’s condition. Let us stress that we discuss the assumptions of the theorems presented in
Sections 5.2 and 5.3 in Section 5.4.

To alleviate this notational burden, we will not specify the dependence on N in the remainder of the paper,
meaning that we will simply refer to X(N), M (N), dN , [ϑ∗](N),P

(N)

π∗ , . . . as X, M , d, ϑ∗,Pπ∗ , . . . . Nevertheless,
let us stress again that the integer s is fixed and does not depend on N in this paper.

5.2 A conditional CLT for the saturated model
We aim at providing a simple hypothesis testing procedure and a confidence interval for the parameter X⊤

Mπ∗

conditionally on the selection event EM . To do so, we prove in this section a CLT for X⊤
MY when Y is a

random variable on {0, 1}N following the multivariate Bernoulli distribution with parameter π∗ ∈ [0, 1]N

conditionally on the event {Y ∈ EM}. Let us first recall the notation for the distribution of Y conditional
on EM in the saturated model

Pπ∗(Y ) ∝ 1EM
(Y )Pπ∗(Y ),

where the symbol ∝ means ‘proportional to’. In the following, we will denote by Eπ∗ the expectation with
respect to Pπ∗ . With Theorem 2, we give a conditional CLT that holds under some conditions that involve in
particular the covariance matrix of the response Y under the distribution Pπ∗ , namely

Γ
π∗

:= Eπ∗

[
(Y − ππ∗

)(Y − ππ∗
)⊤
]
∈ [−1, 1]N×N ,

where ππ∗
= Eπ∗ [Y ].

Theorem 2. We keep the notations and assumptions from Section 5.1. We denote π∗ = σ(Xϑ∗) and Y the
random vector taking values in {0, 1}N and distributed according to Pπ∗ . Assume further that

1.
N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ∗

i

)2
=

N→+∞
o(N),

2. there exists σ2
min > 0 such that ππ∗

i (1− ππ∗

i ) ≥ σ2
min for all i ∈ [N ].

Then it holds
u⊤[GN (π∗)]−1/2X⊤

M (Y − ππ∗
)

(d)−→
N→+∞

N (0, 1),

where u is a unit s-vector and where GN (π∗) := X⊤
MDiag((σπ∗

)2)XM with (σπ∗
)2 := ππ∗

⊙ (1− ππ∗
).

5.3 A conditional CLT for the selected model
We now work under the condition that there exists θ∗ ∈ Rs such that XMθ∗ = Xϑ∗. Given some Y ∈ {0, 1}N
and provided that X⊤

MY ∈ Im(Ξ), Ψ(X⊤
MY ) is the MLE θ̂ of the unpenalized logistic model. Sur and Candès

[2019, Theorem 1] ensures that the MLE exists asymptotically almost surely when Y is distributed as Pθ∗ .
When the distribution of Y is Pθ∗ , we prove in Section E.5 a weaker counterpart of this result showing that
for N large enough, the MLE exists with high probability.

We aim at providing a simple hypothesis testing procedure and a confidence interval for the parameter θ∗

conditionally on the selection event. To do so, we first prove a CLT for the MLE θ̂ when Y is distributed
according to Pθ∗ (i.e., Y is a random variable on {0, 1}N following the multivariate Bernoulli distribution
with parameter σ(XMθ∗) conditioned on the event {Y ∈ EM}). The unconditional MLE θ̂ (using only the
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features indexed by M) is known to be consistent and asymptotically efficient meaning that when Y is
distributed according to Pθ∗ ,

u⊤[HN (θ∗)]1/2(θ̂ − θ∗)
(d)−→

N→+∞
N (0, 1), (22)

where u is a unit s-vector and where

HN (θ) := X⊤
MDiag(σ′(XMθ))XM = X⊤

MDiag((σθ)2)XM ,

is the Fisher information matrix with (σθ)2 := πθ ⊙ (1− πθ) and πθ = Eθ[Y ].
In the following, we will consider the natural counterpart of the Fisher information matrix HN (θ∗) when

we work under the conditional distribution Pθ∗ ,

GN (θ∗) := X⊤
MDiag((σθ∗

)2)XM , (σθ∗
)2 := πθ∗

⊙ (1− πθ∗
), πθ∗

= Eθ∗ [Y ].

Theorem 3 proves that the MLE θ̂ under the conditional distribution Pθ∗ also satisfies a CLT analogous
to Eq.(22) by replacing respectively θ∗ and HN (θ∗)1/2 by θ(θ∗) (cf. Eq.(13)) and [GN (θ∗)]−1/2HN (θ(θ∗)).
This conditional CLT holds under some conditions that involve in particular the covariance matrix of the
response Y under the distribution Pθ∗ , namely

Γ
θ∗

= Eθ∗

[
(Y − πθ∗

)(Y − πθ∗
)⊤
]
∈ [−1, 1]N×N .

Theorem 3. We keep the notations and assumptions from Section 5.1. Let us consider θ∗ ∈ Rs and let us
denote by Y the random vector taking values in {0, 1}N and distributed according to Pθ∗ . Assume further that

1.
N∑
i=1

√
∥(X[i−1],M )⊤Γ

θ∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2πθ∗

i

)2
=

N→+∞
o(N),

2. there exists σ2
min > 0 such that for any N and for any i ∈ [N ],

πθ∗

i (1− πθ∗

i ) ∧ σ′(Xi,Mθ(θ∗)) ≥ σ2
min.

3. there exists some K > 0 such that for any N ∈ N,

Tr
[
G

−1

N X⊤
MΓ

θ∗

XM

]
< K.

Then,

u⊤[GN (θ∗)]−1/2HN (θ(θ∗))
(
θ̂ − θ(θ∗)

) (d)−→
N→+∞

N (0, 1),

where u is a unit s-vector and where we recall that θ̂ = Ψ(X⊤
MY ) is the MLE.

The proof of Theorem 3 can be found with full details in Section E.5 and we only provide here the
main arguments. First we use Theorem 2 that shows that the distribution of [GN (θ∗)]−1/2LN (θ, ZM )
is asymptotically Gaussian using a Lindeberg Central Limit Theorem for dependent random variables
from Bardet et al. [2008]. Then, we show that for N large enough, the following holds with high probability:
the MLE θ̂ exists and is contained within an ellipsoid centered at θ with vanishing volume. This kind of
result has already been studied in Liang and Du [2012] but the proof provided by Liang and Du is wrong
(Eq.(3.7) is in particular not true). As far as we know, we are the first to provide a correction of this proof in
Section E.5. Let us also stress that working with the conditional distribution Pθ∗ brings extra-technicalities
that need to be handled carefully.
Using this consistency of θ̂ together with the smoothness of the map θ 7→ LN (θ, ZM ), one can convert the
previously established result for

[GN (θ∗)]−1/2LN (θ, ZM ) = [GN (θ∗)]−1/2(LN (θ, ZM )− LN (θ̂, ZM )) ,

into a CLT for θ̂.
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5.4 Discussion
In this section, we discuss informally the assumptions of both Theorems 2 and 3. The conditions of Theorems 2
and 3 can be seen at first glance as arcane or restrictive. Without pretending that those conditions are
easy to check in practice, looking at these requirements through the lens of the usual asymptotic alternative
where ϑ∗ itself depends on N gives a different perspective. Such assumption on ϑ∗ has been considered
for example in Bunea [2008] or [Taylor and Tibshirani, 2018, Section 3.1]. Following this line of work, we
consider that ϑ∗ = α−1

N β∗ where each entry of β∗ is independent of N and (αN )N is a sequence of increasing
positive numbers such that αN →

N→∞
+∞. We further assume β∗ is s∗-sparse with support M∗ (and with

s∗ independent of N). Let us analyze the conditions of our theorems in this framework by considering that
EM = {0, 1}N (i.e. there is no conditioning). Then, condition 3 of Theorem 3 holds automatically since
in this case X⊤

MΓ
θ∗

XM = HN (θ∗) and G
−1

N = [HN (θ∗)]−1, meaning that K = s works. The condition 2 of
Theorems 2 and 3 holds also automatically since αN →

N→∞
+∞, while the condition 1 is satisfied as soon as

αN =
N→∞

ω(N1/2).
The quantity αN is quantifying the dependence arising from conditioning on the selection event: the

weaker the dependence between the entries of the random response Y ∼ Pπ∗ , the smaller αN can be chosen
while preserving the asymptotic normal distribution. Note that in the papers Bunea [2008] and [Taylor and
Tibshirani, 2018, Section 3.1], the authors typically consider the case where αN ∼

N→∞
N1/2, corresponding

to the regime at which the validity of our CLTs may be questioned based on the simple analysis previously
conducted. Nevertheless, we stress that stronger assumptions on the design could allow to bypass this apparent
limitation. A promising line of investigation is the following: taking a closer at the proofs of Theorems 2
and 3, one can notice that the condition 1 can actually be weakened by

min
ν∈SN

N∑
i=1

√
∥(Xν([i−1]),M )⊤Γ

π∗

ν([i−1]),ν([i−1])Xν([i−1]),M∥F
(
1− 2ππ∗

ν(i)

)2
=

N→+∞
o(N),

where SN is the set of permutations of [N ].
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Guidelines for the Appendix.

• Section A: Regularization bias and conditional MLE.

In this first section of the Appendix, we shed light on the difference between SIGLE and the work
of Taylor and Tibshirani [2018]. Both methods have already been compared on the practical side in
Section 4. In Section A, we take a step back to understand the different paradigms considered in these
two approaches. We describe the strengths and drawbacks of both methods, highlighting the fact that
the method of Taylor and Tibshirani [2018] rely on non rigorous computations while SIGLE can be
proved (see Section B) to be asymptotically valid under the set of assumptions presented in Section 5.4.

• Section B: Theoretical guarantees for SIGLE in SLR.

In this section, we show how the conditional CLTs of Section 5 can be used to prove that the SIGLE
methods are asymptotically correctly calibrated when the restrictive conditions of Section 5.4 are
satisfied.

• Section C: Confidence region.

Following the spirit of the previous section, we make use of the conditional CLTs presented in Section 5
to show how one can get confidence region using SIGLE.

• Section D: Side notes about SIGLE.

In this section, we put in the limelight more advanced questions related to the methods proposed in this
paper. We start by proposing a reinterpretation of the methods presented in this paper when we consider
that the model is misspecified in the sense that the observations yi’s have not been initially generated
from the GLM presented in Section 1.1. In a second and last part, we focus on the diffeomorphism
Ψ which is a key ingredient involved in SIGLE. We provide a new perspective on Ψ relying on tools
from convex analysis before explaining how we compute in practice quantities of the form Ψ(ρ) that are
involved in the algorithms presented in this paper.

• Section E: Proofs.

We provide all the proofs of the theoretical results presented in this paper.

• Section F: Inference conditional on the signs.

We start by a gentle introduction to the Leftover Fisher information. Introduced in Fithian et al. [2014],
this concept allows to show that conditioning on both the selected support and the signs of the dual
variable (i.e. ESM

M with the notations of Section 1) lead in general to wider (and thus worse) confidence
intervals. Our goal is to use this preliminary to discuss with more details the method proposed by Taylor
and Tibshirani [2018]. In particular, we explain that the former approach is doomed to work conditional
to ESM

M since the usual trick used in the linear model to condition only on EM does not apply for an
arbitrary GLM.

A Regularization bias and conditional MLE
In this section, we wish to emphasize the different nature of our approach and that of Taylor and Tibshirani
[2018] which we consider as the more relevant point of comparison, to the best of our knowledge. While we
rely on a conditional MLE viewpoint, the former paper consider a debiasing approach.

• The debiasing approach
ℓ1-penalization induced a soft-thresholding bias and one can first try to modify the solution of the
penalized GLM ϑ̂λ to approximate the unconditional MLE of the GLM using only the features in the
selected support M by some vector θ. Provided that we work with a correctly specified model M–i.e.,
one that contains the true support {j ∈ [d] |ϑ∗

j ̸= 0}–standard results ensure that the unconditional
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MLE is asymptotically normal, asymptotically efficient and centered at ϑ∗
M . If one can show that

the selection event only involve polyhedral constraints on a linear transformation η⊤θ of the debiased
vector θ, the conditional distribution of η⊤θ would be a truncated Gaussian. This is the approach
from Taylor and Tibshirani [2018] that we detail in Section A.1.

• SIGLE : the conditional MLE viewpoint
In this paper we follow a different route: one can grasp the nettle by studying directly the properties of
the unpenalized conditional MLE.

A.1 Selective inference through debiasing
The idea behind the method proposed by Taylor and Tibshirani [2018] is that we need two key elements to
deploy the approach from Lee et al. [2016] proposed in the linear model with Gaussian errors:

• A statistic T (Y ) converging in distribution to a Gaussian distribution with a mean involving the
parameter of interest;

• A selection event that can be written as a union of polyhedra with respect to η⊤T (Y ) for some vector η.

In practice, a solution of the generalized linear Lasso (cf. Eq.(2)) can be approximated using the Iteratively
Reweighted Least Squares (IRLS). Defining

W (ϑ) = ∇2
ηLN (η)

∣∣
η=Xϑ

= Diag(σ′(Xϑ)),

and z(ϑ) = Xϑ− [W (ϑ)]−1∇ηLN (η)
∣∣
η=Xϑ

= Xϑ+ [W (ϑ)]−1(Y − σ(Xϑ)),

the IRLS algorithm works as follows.

1: Initialize ϑc = 0.
2: Compute W (ϑc) and z(ϑc).
3: Update the current value of the parameters with

ϑc ← argminϑ
1

2
(z(ϑc)−Xϑ)⊤W (ϑc)(z(ϑc)−Xϑ) + λ∥ϑ∥1.

4: Repeat steps 2. and 3. until convergence.

If the IRLS has converged, we end up with a solution ϑ̂λ of Eq.(2) and, for M = {j ∈ [d] | ϑ̂λ
j ̸= 0}, the active

block of stationary conditions (Eq. (6) (i)) can be written as

X⊤
MW

{
z −XM ϑ̂λ

M

}
= λSM ,

where W = W (ϑ̂λ), z = z(ϑ̂λ) and SM = sign(θ̂λM ). The solution ϑ̂λ
M should be understood as a biased

version of the unpenalized MLE θ̂ obtained by working on the support M , namely

θ̂ ∈ arg min
θ∈ΘM

N∑
i=1

ξ(⟨Xi,M , θ⟩)− ⟨yiXi,M , θ⟩.

If we work with a correctly specified model M–i.e., one that contains the true support {j ∈ [d] |ϑ∗
j ̸= 0}–then it

follows from standard results that the MLE θ̂ is a consistent and asymptotically efficient estimator of ϑ∗
M (see

e.g. [Van der Vaart, 2000, Theorem 5.39]). A natural idea consists in debiasing the vector of parameters ϑλ
M

in order to get back to the parameter θ̂ and to use its nice asymptotic properties for inference. We thus
consider

θ = ϑλ
M + λ

(
X⊤

MWXM

)−1
SM ,
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so that θ satisfies
X⊤

MW {z −XMθ} = 0. (23)

If one replaces W and z in Eq.(23) by W (ϑ) and z(ϑ) (with the obvious notation that ϑM = θ and ϑ−M = 0),
Eq.(23) corresponds to the stationarity condition of the unpenalized MLE for the generalized linear regression
using only the features in M .

Hence, Taylor and Tibshirani [2018] propose to treat the debiased parameters θ has asymptotically
normal centered at ϑ∗

M with covariance matrix
(
X⊤

MW (ϑ∗)XM

)−1. Since ϑ∗ is unknown, they use a plug-in
estimate and replace W (ϑ∗) by W (ϑ̂λ) in the Fisher information matrix. By considering that ϑ∗ = N−1/2β∗

where each entry of β∗ is independent of N , they claim that the selection event ESM

M can be asymptotically
approximated by

Diag(SM )
(
θ − λ

(
X⊤

MWXM

)−1
SM

)
≥ 0.

Hence, to derive post-selection inference procedure, they apply the polyhedral lemma to the limiting
distribution of N1/2θ, with M and SM fixed.

A.2 Discussion
Duality between SIGLE and debiasing approaches. Oversimplifying the situation, our approach
could be understood as the dual counterpart of the one from Taylor and Tibshirani [2018] in the sense that
the former paper is first focused on getting an (unconditional) CLT and deal with the selection event in a
second phase. On the contrary, we are first focused on the conditional distribution (i.e., we want to be able to
sample from the conditional distribution) while the asymptotic (conditional) distribution considerations come
thereafter. Figure 13 provides a visualization of these two different perspectives that can be used for PSI.

N → +∞ Asymptotic
normality

· | EM

Conditioning
on EM

We prove a conditional CLT

V N (θ∗)1/2(θ̂ − θ(θ∗))
(d)−→

N→∞
N (0, Ids)

We consider θ̂ the
conditional MLE on M :
θ̂ ∈ argminθ∈Rs LM

N (θ, Y )

This paper

Taylor &
Tibshirani

Debiasing the generalized linear lasso solution

θλ
(d)−→

N→∞
N (θ∗, I(θ∗)−1)

Asymptotic description
of EM as Aθλ ≤ b

Inference using
the polyhedral Lemma

Inference using the
SEI-SLR algorithm

Figure 13: Duality between SIGLE and debiasing approaches.

Comprehensive comparison between SIGLE and Taylor and Tibshirani [2018]. In Taylor and
Tibshirani [2018], the authors consider only the more restrictive framework of the selected model where
Xϑ∗ = XMθ∗ for some θ∗ ∈ Rs. Their method allows to conduct PSI inference on any linear transformation
of θ∗ (including in particular the local coordinates θ∗j for j ∈ [s]), and can be efficiently used in practice. The
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authors do not provide a formal proof of their claim but rather motivate their approach with asymptotic
arguments where they consider in particular that ϑ∗ = N−1/2β∗ where each entry of β∗ is independent of N .

On the other hand, this paper presents simple hypothesis PSI methods in both the saturated and the
selected models, in the sense that statistical inference is conducted on the vector-valued parameter of interest.
Our methods are computationally more expensive than the one from Taylor and Tibshirani [2018], but they
are proved (see Section B) to be asymptotically valid under some set of assumptions that we discuss in details
in Section 5.4. Table 6 sums up this comparison.

Taylor and Tibshirani [2018] SIGLE (this paper)

Selected model ✓ ✓

Saturated model ✗ ✓

Hypotheses tested in the
selected model

Composite: θ∗j = [θ∗0 ]j for
some j

Simple: θ∗ = θ∗0

Formal proof ✗ ✓

Assumption on
ϑ∗ = α−1

N β∗ with entries
of β∗ independent of N

For the theoretical sketches
supporting their result, they

consider αN = N1/2.
Require αN = ω(N1/2).

Low computational cost ✓ ✗

Table 6: Comparison between SIGLE and Taylor and Tibshirani [2018].

Note that our paper should be understood as an extension of the work from Meir and Drton [2017] to
the SLR. Indeed, the authors of the former paper propose a method to compute the conditional MLE after
model selection in the linear model. They show empirically that the proposed confidence intervals are close
to the desired level but they are not able to provide theoretical justification of their approach.

In Section B, we show our the conditional CLTs provided in Section 5 can be used to derive theoretical
guarantees for the SIGLE procedures under the restrictive assumptions given in Theorems 2 and 3.

B Theoretical guarantees for SIGLE in SLR
In this section, we make use of the conditional CLTs presented in Section 5 to prove that the SIGLE methods
are asymptotically correctly calibrated when the assumptions of Section 5 are satisfied. Let us stress that
this section is not of practical interest for two main reasons. First, the condition under which the theoretical
guarantees presented in this section hold are restrictive and correspond to the ones usually considered in the
literature when analyzing the asymptotic properties of the MLE in high dimensions. Second, making use of
the conditional CLTs of Section 5 does not allow us to bypass the computational burden of sampling from
the conditional distribution. Indeed, to get the SIGLE statistics, one still need to compute quantities such
that GN (θ∗0) (resp. GN (π∗

0)) or θ(θ∗0) (resp. ππ∗
0 ). Since the distribution of the observations conditional to

the selection event has no closed form expression, we still need to use sampling methods such as the SEI-SLR
algorithm presented in Section 3 to estimate the SIGLE statistics.

In this section, we consider the notations and assumptions described at the beginning of Section 5 and
that rely on a system of triangular arrays.

B.1 In the selected model
We keep the notations and the assumptions of Theorem 3. Given some θ∗0 ∈ Rs, we consider the hypothesis
test with null and alternative hypotheses defined by

H0 : {θ∗ = θ∗0} and H1 : {θ∗ ̸= θ∗0} . (24)
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The CLT from Theorem 3 naturally leads us to introduce the ellipsoid WN given by

WN :=

{
Y ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MY ∈ Im(Ξ)

}
,

⋄
∥∥[GN (θ∗0)]

−1/2HN (θ(θ∗0))
(
Ψ(X⊤

MY )− θ(θ∗0)
)∥∥2

2
> χ2

s,1−α

where χ2
s,1−α is the quantile of order 1−α of the χ2 distribution with s degrees of freedom. If πθ∗

0 was known,
we could compute θ(θ∗0) (using Eq.(16)) and thus GN (θ∗0). Then the test with rejection region WN would be
asymptotically of level α since Theorem 3 gives that

Pθ∗
0
(Y ∈WN ) −→

N→+∞
α.

Based on this result, we construct an asymptotically valid simple hypothesis testing procedure for the
test (20). Our method consists in finding an estimate of the parameter πθ∗

0 in order to approximate the
rejection region WN with a Monte-Carlo approach. From Proposition 4, we know that under an appropriate
cooling scheme, the asymptotic distribution of the states visited by our SEI-SLR algorithm (cf. Algorithm 3)
is the uniform distribution on the selection event. We deduce that under the null, we are able to estimate πθ∗

and thus θ using Eq.(16). This leads to the testing procedure presented in Proposition 6, whose proof is
postponed to Section E.7.

Proposition 6. We keep notations and assumptions of Theorem 3. We consider two independent sequences
of vectors (Y (t))t≥1 and (Z(t))t≥1 generated by Algorithm 3. Let us denote

π̃θ∗
0 =

∑T
t=1Pθ∗

0
(Y (t))Y (t)∑T

t=1Pθ∗
0
(Y (t))

, θ̃ = Ψ(X⊤
M π̃θ∗

0 ), G̃N = X⊤
MDiag

(
π̃θ∗

0 ⊙ (1− π̃θ∗
0 )
)
XM ,

and W̃N :=

{
Y ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MY ∈ Im(Ξ)

}
.

⋄
∥∥∥G̃−1/2

N HN (θ̃)
(
Ψ(X⊤

MY )− θ̃
)∥∥∥2

2
> χ2

s,1−α

Then the SIGLE procedure consisting in rejecting the null hypothesis H0 when

ζN,T :=

∑T
t=1Pθ∗

0
(Z(t))1

Z(t)∈W̃N∑T
t=1Pθ∗

0
(Z(t))

> α,

has an asymptotic level lower than α in the sense that for any ϵ > 0, there exists N0 ∈ N such that for any
N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.

B.2 In the saturated model
We keep the notations and the assumptions of Theorem 2. Given some π∗

0 ∈ RN , we consider the hypothesis
test with null and alternative hypotheses defined by

H0 : {π∗ = π∗
0} and H1 : {π∗ ̸= π∗

0} . (25)

The CLT from Theorem 2 naturally leads us to introduce the ellipsoid WN given by

WN =

{
Y ∈ {0, 1}N |

∥∥∥[GN (π∗
0)]

−1/2X⊤
M

(
Y − ππ∗

0

)∥∥∥2
2
≥ χ2

s,1−α

}
,

where χ2
s,1−α is the quantile of order 1−α of the χ2 distribution with s degrees of freedom. If ππ∗

0 was known,
we could compute GN (π∗

0). Then the test with rejection region WN would be asymptotically of level α since
Theorem 2 gives that

Pπ∗
0
(Y ∈WN ) −→

N→+∞
α.
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Based on this result, we construct an asymptotically valid simple hypothesis testing procedure for the
test (19). Our method consists in finding an estimate of the parameter ππ∗

0 in order to approximate the
rejection region WN with a Monte-Carlo approach. From Proposition 4, we know that under an appropriate
cooling scheme, the asymptotic distribution of the states visited by the SEI-SLR algorithm (cf. Algorithm 3)
is the uniform distribution on the selection event. We deduce that under the null, we are able to estimate ππ∗

0

and thus GN (π∗
0). This leads to the testing procedure presented in Proposition 7, whose proof is strictly

analogous to the one of Proposition 6.

Proposition 7. We keep notations and assumptions of Theorem 2. We consider two independent sequences
of vectors (Y (t))t≥1 and (Z(t))t≥1 generated by Algorithm 3. Let us denote

π̃π∗
0 =

∑T
t=1Pπ∗

0
(Y (t))Y (t)∑T

t=1Pπ∗
0
(Y (t))

, G̃N = X⊤
MDiag

(
π̃π∗

0 ⊙ (1− π̃π∗
0 )
)
XM ,

and W̃N :=

{
Y ∈ {0, 1}N |

∥∥∥G̃−1/2
N X⊤

M

(
Y − π̃π∗

0

)∥∥∥2
2
> χ2

s,1−α

}
. Then the SIGLE procedure consisting of

rejecting the null hypothesis H0 when

ζN,T :=

∑T
t=1Pπ∗

0
(Z(t))1

Z(t)∈W̃N∑T
t=1Pπ∗

0
(Z(t))

> α,

has an asymptotic level lower than α in the sense that for any ϵ > 0, there exists N0 ∈ N such that for any
N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.

B.3 Calibration of SIGLE
In the main paper, we have clearly stated that SIGLE procedures are calibrated by sampling under the null
using the SEI-SLR algorithm or the rejection sampling method. In this section, we conduct some experiments
to study the distribution under the null of the p-values of the SIGLE methods when we calibrate the tests by
using the theoretical quantile given by Proposition 6 and Proposition 7.

A correct calibration under weak dependence. Our experiments have shown that calibrating
the SIGLE procedures using our conditional CLTs from Section 5 can lead to anti-conservative tests. This
undesirable property was still observed when we conducted experiments with large values for N (typically
N = 30, 000). Based on our extensive simulations, we strongly believe that our conditional CLTs hold when
the entries of the response vector Y ∼ Pθ∗ are weakly dependent. To illustrate our conclusions, we conducted
simulations with different regularization parameters λ using the Setting 1 (cf. Table 5). In the first situation,
a small regularization parameter is chosen (namely λ = 0.1), leading to select 9 out of the 10 features. In
the second situation, we choose λ = 1 leading to a set of active variables of size 8. Figure 14 shows that
for λ = 0.1, SIGLE in the saturated model is correctly calibrated while SIGLE in the selected model is
anti-conservative. When λ is increased to 0.5, we see that the SIGLE procedure in both the selected and the
saturated model is anti-conservative.

Despite the use the conditional CLTs for calibration, one still needs to sample under the
null. Let us point out that calibrating the SIGLE procedure using the conditional CLTs from Section 5 does
not exempt us from sampling states using the rejection method or the SEI-SLR algorithm since we need to
estimate GN (π∗

0) (and θ(θ∗0) in the selected model).
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(a) λ = 0.1. (b) λ = 0.5.

Figure 14: CDF of the p-values of the different testing procedures under the global null with the Setting 1
(cf. Table 5) for different regularization parameters λ.

C Confidence region

C.1 Asymptotic confidence region in the selected model
C.1.1 Main result

In the previous section, we proved that the MLE θ̂ satisfies a CLT with a centering vector that is not the
parameter of interest θ∗. Two questions arises at this point.

1. How can we compute a relevant estimate for θ∗?

2. Can we provide theoretical guarantees regarding this estimate?

Proposition 8 answers both questions. It provides a valid confidence region with asymptotic level 1− α for
any estimate θ⋆ of θ∗ where the width of the confidence region is asymptotically driven by ∥θ(θ⋆) − θ̂∥2.
The proof of Proposition 8 can be found in Section E.8.

Proposition 8. We keep notations and assumptions of Theorem 3 and we assume further that there exist
p ∈ [1,∞] and κ,R > 0 such that

θ∗ ∈ Bp(0, R) and ∀θ ∈ Bp(0, R), λmin(Γ
θ
) ≥ κ,

where Bp(0, R) := {θ ∈ Rs | ∥θ∥p ≤ R}. Let us consider any estimator θ⋆ ∈ Bp(0, R) of θ∗. Then the
probability of the event

∥θ∗ − θ⋆∥2 ≤ C (κc)
−1
{
∥θ(θ⋆)− θ̂∥2 + ∥(σθ)−2∥∞

(
Nc2/C

)−1/2
√
χ2
s,1−α

}
,

tends to 1− α as N →∞. We recall that (σθ)2 = σ′(XMθ(θ∗)).

Remarks. In Proposition 8, note that the constants c and C can be easily computed from the design
matrix. Nevertheless, we point out that the confidence region from Proposition 8 involves two constants
(namely κ and σθ) that cannot be a priori easily computed in practice.
Proposition 8 proves that when N is large enough, the size of our confidence region is driven by the
distance ∥θ(θ⋆)− θ̂∥2. This remark motivates us to choose θ⋆ among the minimizers of the function

m : θ 7→ ∥θ(θ)− θ̂∥22.

In the sake of minimizing m, a large set of methods are at our disposal. In the next section, we propose a
deep learning and a gradient descent approach for our numerical experiments.
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C.1.2 Simulations

Deep learning method We train a feed forward neural network with ReLu activation function and three
hidden layers. With this network, we aim at estimating any θ ∈ Rs by feeding as input θ(θ). We generate
our training dataset by first sampling ntrain = 500 random vectors θi ∼ N (0, Ids), i ∈ [ntrain]. Then, for any
i ∈ [ntrain] we compute the estimate θ̃(θi) of θ(θi) as follows

π̃θi =

∑T
t=1Pθi(Y

(t))Y (t)∑T
t=1Pθi(Y

(t))
and θ̃(θi) = Ψ(X⊤

M π̃θi),

where (Y (t))t≥1 is the sequence generated from the SEI-SLR algorithm (see Algorithm 3). We train our
network using stochastic gradient descent with learning rate 0.01 and 500 epochs. At each epoch, we feed to
the network the inputs (θ̃(θi))i∈[ntrain] with the corresponding target values (θi)i∈[ntrain]. We then compute
our estimate θ⋆ of θ∗ by taking the output of our network when taking as input the unpenalized MLE θ̂
using the design XM (cf. Eq.(12)). Figure 15 illustrates the result obtained from this deep learning approach.
We keep the experiment settings of Section 4.2.5 namely, we consider ϑ∗ = (1 1 0 . . . 0)⊤ ∈ Rd and we choose
the regularization parameter λ so that the selected model corresponds to the true set of active variables,
namely M = {1, 2}.

Figure 15: Visualization of the results obtained using our deep learning approach to compute an estimate θ⋆

(the blue hexagone) of θ∗ (the red star). θ⋆ corresponds to the output of the neural network when feeding as
input the MLE θ̂ (the green triangle). We also plot the parameter θ(θ∗) (the brown plus) and θ(θ⋆) (the
brown cross).

Gradient descent method As shown in the proof of the expression of Proposition 8 (cf. Eq.(48)), it holds

∀θ ∈ Rs, ∇θπ
θ = Γ

θ
XM .
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Recalling additionally that θ(θ) = Ψ
(
X⊤

Mπθ
)

(cf. Eq.(16)), we get that for any θ ∈ Rs,

∇θm(θ) = 2∇θθ(θ)(θ(θ)− θ̂)

= 2∇Ψ(X⊤
Mπθ)X⊤

MΓ
θ
XM (θ(θ)− θ̂)

= 2∇Ψ(X⊤
Mπθ(θ))X⊤

MΓ
θ
XM (θ(θ)− θ̂)

= 2
(
X⊤

MDiag(πθ(θ) ⊙ (1− πθ(θ)))XM

)−1

X⊤
MΓ

θ
XM (θ(θ)− θ̂).

Hence,
∇θm(θ) = 2

[
HN (θ(θ))

]−1
X⊤

MΓ
θ
XM (θ(θ)− θ̂).

Given some θ, πθ and Γ
θ

can be estimated using samples generated by the SEI-SLR algorithm (and thus the
same holds for θ(θ) = Ψ(X⊤

Mπθ) and for HN (θ(θ))).

Figure 16: Visualization of our gradient descent procedure to compute an estimate θ⋆ (the blue hexagone)
of θ∗ (the red star). The MLE θ̂ is the green triangle. We also plot the parameter θ(θ∗) (the brown plus)
and θ(θ⋆) (the brown cross).

C.2 Asymptotic confidence region in the saturated model
With Theorem 2, we proved that X⊤

MY with Y distributed according to Pπ∗ satisfies a CLT with an asymptotic
Gaussian distribution centered at X⊤

Mππ∗
. Using an approach analogous to Section C.1, we propose here to

build an asymptotic confidence region for π∗. The proof of Proposition 9 is postponed to Section E.9.

Proposition 9. We keep notations and assumptions of Theorem 2 and we consider α ∈ (0, 1). We assume
further that there exist p ∈ [1,∞] and κ,R > 0 such that

π∗ ∈ Bp

(1N

2
, R
)

and ∀π ∈ Bp

(1N

2
, R
)
, λmin(Γ

π
) ≥ κ.

Let us consider any estimator π⋆ ∈ Bp(
1N

2 , R) of π∗. Then the probability of the event

∥π∗ − π⋆∥2 ≤ (4κ)−1
{
∥ProjXM

(Y − ππ⋆

)∥2 + Cc−1
√

χ2
s,1−α + ∥Proj⊥XM

(ππ∗
− ππ⋆

)∥2
}
,

tends to 1− α as N →∞.
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Remarks.

• Analogously to Section C.1, Proposition 9 motivates us to choose π⋆ among the minimizers of the
function

M : π 7→ ∥X⊤
Mππ −X⊤

MY ∥22.

As mentioned in the Section C.1, one can rely for example on a deep learning or a gradient descent
method in order to reach a local minimum π⋆ for M .

• The term ∥Proj⊥XM
(ππ∗

− ππ⋆

)∥2 arising in the confidence region from Proposition 9 illustrates that
our conditional CLT from Theorem 2 holds on X⊤

MY and that we do not control what occurs in the
orthogonal complement of the span of the columns of XM . Nevertheless, let us comment informally our
result in the case where EM = {0, 1}N (meaning that there is no conditioning) and where ϑ∗ is close
to 0 (meaning that π∗ is close to 1N/2). In this framework, Γ

π
= Diag(π ⊙ (1− π)) is close to 1

4 IdN
for π in a small neighbourhood around 1N/2. Hence, we get that κ is approximately 1

4 . Since it also
holds that ππ∗

− ππ⋆

= π∗ − π⋆ (since EM = {0, 1}N ), we obtain from Proposition 9 that a CR for
ProjXM

π∗ with asymptotic coverage 1− α is

∥ProjXM
(π∗ − π⋆)∥2 ≤ ∥ProjXM

(Y − ππ⋆

)∥2 + Cc−1
√
χ2
s,1−α.

D Side notes about SIGLE

D.1 SIGLE for a misspecified model from the start
In this paper, we have considered the case where the observed data yi ∈ Y has indeed by generated from the
GLM presented in Section 1.1. Can we extend the methods presented in this paper when we remove this
assumption?

In this section, we consider that the yi’s are i.i.d. and distributed according to an arbitrary probability
distribution P.

D.1.1 SIGLE in the selected model

In the case of a misspecified model from the start, the assumption made to be in the selected model is

σ−1(E[Y ]) ∈ Im(XM ),

where the expectation is taken with respect to P. We define

θ∗ ∈ arg min
θ∈Rs

E
[
− logPθ(Y )

]
. (26)

Pθ∗ can be understood as the probability distribution belonging to the GLM family with design matrix XM

leading to the conditional distribution Pθ∗ that is the closest possible to P. More precisely, for any GLM
distribution Pθ, θ ∈ Rs, we have

KL(P | Pθ) ≥ KL(P | Pθ∗).

In the following, we reinterpret the methods of this paper relaxing the assumption that the model is
well-specified from the start, as it might happen that the true initial distribution of the observation P does
not belong to the GLM family. More precisely, considering the null hypothesis:

H0 : {P ≡ Pθ∗
0
} ,

we can fall into one of the following cases:
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P

Data distribution

P

Conditional distributions

Pθ∗

Pθ⃗

Projections on the model

Pθ̄(θ∗)

Figure 17: Visualizations of all distributions that we consider if the model is a priori not necessarily well-
specified from the start.

1. If the model was well-specified initially, this means that there exists some ϑ∗ ∈ Rd such that P = Pϑ∗

and thus P ≡ Pϑ∗
M

(in the selected model). Namely, the null hypothesis is true for at least one parameter
vector θ∗0 ∈ Rs.

2. If the model was not well-specified initially but the null is true for some θ∗0 ∈ Rs, this means that by
conditioning on the selection event, we lost the information regarding the fact that the model was
misspecified initially.

3. If the model was not well-specified initially and the null is false for any θ∗0 , this means that P still
carries the information of the initial model misspecificity.

A predictive viewpoint on SIGLE in the selective model. To obtain the SIGLE statistic in the
selected model, we need to compute θ(θ∗0) which is defined by

θ(θ∗0) ∈ arg min
θ∈Rs

Eθ∗
0

[
− logPθ(Y )

]
= arg min

θ∈Rs
KL(Pθ∗

0
| Pθ).

The question that we ask is how far is the distribution Pθ(θ∗
0 )

from P. This can be of interest for a prediction
task where one might want to use θ(θ∗0) to predict the response to new entries.

The best approximation of P that we can get considering an unconditional GLM distribution of the form
Pθ is Pθ⃗ where

θ⃗ ∈ arg min
θ∈Rs

E
[
− logPθ(Y )

]
= arg min

θ∈Rs
KL(P | Pθ).

Therefore, we want to compare the difference between the KL divergence between P and Pθ⃗, and the KL
divergence between P and Pθ(θ∗

0 )
. It holds

KL(P | Pθ(θ∗
0 )
) = KL(P | Pθ⃗) + E

[
log

Pθ⃗

Pθ(θ∗
0 )

]
,

where E
[
log

P
θ⃗

Pθ(θ∗0 )

]
≥ 0 by definition of θ⃗. Therefore, E

[
log

P
θ⃗

Pθ(θ∗0 )

]
corresponds to the additional error we

make in terms of KL divergence by working with the proxy Pθ∗
0

instead of the true conditional distribution of
the observations P.

D.2 Inverting the first order optimality condition
When characterizing the selection event ESM

M (see Theorem 1), we highlighted the crucial role of the
diffeomorphism Ξ = Ψ−1 arising in the first order optimality condition. In this section, we aim at presenting

• a different view on Ψ using tools from convex analysis,

• the practical methods we use to compute quantities involving Ψ in our simple hypothesis testing method
in the selected model.
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D.2.1 SIGLE through the lens of convex analysis

Recalling the definition of the negative log-likelihood LN (θ, (Y,XM )), we will denote in this section

LN,0,M (θ) := LN (θ, (0,XM )) =

N∑
i=1

ξ(⟨Xi,M , θ⟩).

Let us recall that the Fenchel conjugate of the map LN,0,M is defined by

L∗
N,0,M : ρ ∈ Rs 7→ sup

θ∈Rs

{⟨ρ, θ⟩ − LN,0,M (θ)} .

Since ξ is a convex and Cm+1 function, LN,0,M is also a convex and a Cm+1 map which implies that
LN,0,M = ∇LN,0,M is a homeomorphism. We deduce that for any ρ ∈ Rs,

L∗
N,0,M (ρ) = ⟨ρ, L−1

N,0,M (ρ)⟩ − LN,0,M (L−1
N,0,M (ρ)),

∇L∗
N,0,M (ρ) = L−1

N,0,M (ρ).

For any Y ∈ {0, 1}N , the unpenalized MLE θ̂ with the design matrix XM and the observed response Y is
given by (using the first order optimality condition)

θ̂ = L−1
N,0,M (X⊤

MY ).

We deduce that
θ̂ = ∇L∗

N,0,M (X⊤
MY ).

Similarly, using Eq.(16) we get
θ(θ∗) = ∇L∗

N,0,M (X⊤
Mπθ∗

).

We deduce that Ψ = ∇L∗
N,0,M .

In order to provide a concrete interpretation of the function Ψ, let us first characterize the Fenchel
conjugate L∗

N,0,M :

L∗
N,0,M (ρ) = sup

θ∈Rs

{⟨ρ, θ⟩ − LN,0,M (θ)}

= sup
θ∈Rs

N∑
i=1

{ρiθi − ξ(Xi,Mθ)}

= (

N∑
i=1

fi)
∗(ρ)

= (f∗
1□ · · ·□f∗

N )(ρ)

:= min
ρ=ρ(1)+···+ρ(N)

{
f∗
1 (ρ

(1)) + · · ·+ f∗
N (ρ(N))

}
, (27)

where in the last equality we used [Laurent, 1972, Theorem 6.5.8] and where for any i ∈ [N ],

fi : θ ∈ Rs 7→ ξ(Xi,Mθ).

Using Lemma 2, we obtain that L∗
N,0,M (ρ) is the minimal entropy obtained among the vectors of probabilities

π ∈ (0, 1)N satisfying ρ = X⊤
Mπ.

Lemma 2. The inf-convolution in Eq.(27) is attained for (ρ(i))i∈[N ] ∈ (Rs)
N such that for any i ∈ [N ],

ρ(i) = πiXi,M for some πi ∈ (0, 1). Moreover,

L∗
N,0,M (ρ) = min

π∈(0,1)N s.t. ρ=X⊤
Mπ

H(π), (28)
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where

H(π) =

N∑
i=1

{πi ln(πi) + (1− πi) ln(1− πi)}.

Proof of Lemma 2.

• The inf-convolution in Eq.(27) is attained.
First, we know from [Laurent, 1972, Theorem 6.5.8] that the minimum in the inf-convolution of Eq.(27)
is attained.

• ρ(i) in Eq.(27) can be chosen in the span of Xi,M .
Let us consider i ∈ [N ] and some ρ(i) ∈ Rs. Let us assume by contradiction that ρ(i) /∈ Span(Xi,M ).
Then considering

θ(i)(t) := t
(
Id− 1

∥Xi,M∥22
X⊤

i,MXi,M

)
ρ(i),

we have

lim
t→+∞

{
⟨ρ(i), θ(i)(t)⟩ − ξ(Xi,Mθ(i)(t))

}
= lim

t→+∞

{
t[ρ(i)]⊤Proj⊥Xi,M

ρ(i) − 0
}
= +∞,

which means that f∗
i (ρ

(i)) = +∞ since for any t > 0 it holds

f∗
i (ρ

(i)) = sup
θ∈Rs

{
⟨ρ(i), θ⟩ − ξ(Xi,Mθ)

}
≥
{
⟨ρ(i), θ(i)(t)⟩ − ξ(Xi,Mθ(i)(t))

}
.

We deduce that in the inf-convolution of Eq.(27), we can consider that for any i ∈ [N ], ρ(i) = πiXi,M

for some πi ∈ R.

• ρ(i) in Eq.(27) can be chosen as πiXi,M with πi ∈ (0, 1).
We have already proved that ρ(i) in Eq.(27) can be chosen as ρ(i) = πiXi,M . It holds

f∗
i (πiXi,M ) = sup

θ∈Rs

{⟨πiXi,M , θ⟩ − ξ(Xi,Mθ)}

= sup
θ∈Rs

{⟨πi,Xi,Mθ⟩ − ξ(Xi,Mθ)}

= sup
r∈R
{πir − ξ(r)}

= ξ∗(πi)

= H(πi),

where we used that the Fenchel conjugate of the softmax function is the entropy H defined by

H(p) =

{
p ln(p) + (1− p) ln(1− p) if p ∈ (0, 1),

+∞ otherwise.

Since in Eq.(27) we aim a reaching a minimum, we deduce from these computations that one can restrict ρ(i)

to be of the form πiXi,M with πi ∈ (0, 1).

Interpretation of Ψ(ρ). Lemma 2 shows that L∗
N,0,M (ρ) is the minimum entropy of a population charac-

terized by N binary features with the constraint that we have some information on the population given
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by ρ ∈ Rs. We assume that ρ depends linearly on the proportion of the population with the different features,
namely

ρ = X⊤
Mπ,

where for all i ∈ [N ], πi represents the proportion of people with feature i. Hence, given the observation of s
aggregated properties about the population (namely ρ), L∗

N,0,M (ρ) is the entropy corresponding to the most
uniform allocation of the N binary features in the population. Hence, Ψ(ρ) = ∇L∗

N,0,M (ρ) quantifies how
much the entropy of this ideal description of the population is changed when a small shift in the observation
of the s properties occurs.

Taking a concrete example, one can consider that the N features are the following: age between 20 and
40, age between 40 and 60, age above 60, manager, manual labourer, lives in a big city, lives in a small town,
... The vector ρ represents the number of votes obtained by s different candidates during an election. We
assume that the number of votes obtained by each candidate is a linear function of the proportion of the
population with the different features. We observe only the number of votes obtained by each candidate.
Then L∗

N,0,M (ρ) represents the entropy of the population assuming that the different features are distributed
as uniformly as possible in the population. Ψ(ρ) measures the variation of the entropy of the population
when a small change in the number of votes obtained by the different candidates is observed.

D.2.2 Practical implementation of SIGLE in the selected model

The PSI method in the selected model for the ℓ1-penalized logistic regression proposed in this paper requires
the ability to compute efficiently

• Ψ(X⊤
MY ) for any Y ∈ {0, 1}N ,

• Ψ(X⊤
Mπθ∗

0 ).

As already mentioned in Eq.(16), for any Y ∈ {0, 1}N , Ψ(X⊤
MY ) corresponds to the unpenalized MLE θ̂

computed using the design XM (see Eq.(12)). As a result, we compute Ψ(X⊤
MY ) by simply solving the

unpenalized MLE for logistic regression using standard open source libraries (such as scikit-learn in Python
where we remove the ℓ2-regularization which is applied by default).

Solvers computing the MLE for logistic regression require - as far as we know - the response vector to have
binary entries. As a consequence, a different approach is required to compute Ψ(X⊤

Mπθ∗
0 ) since πθ∗

0 ∈ (0, 1)N .
We found our method to be extremely accurate in our numerical experiments and it works as follows. First,
we compute

θc ∈ arg min
θ∈Rs

∥XMθ − σ−1(πθ∗
0 )∥22,

and we end up with two possible cases:

1. Either it holds
X⊤

Mσ(XMθc) = X⊤
Mπθ∗

0 , (29)

which is equivalent to θ(θ∗) = θc (see Eq.(16)). In this case, we output θc. Note that this situation
occurs in particular when

σ−1(X⊤
Mπθ∗

0 ) ∈ Im(XM ),

which can be understood as a conditional selected model-type assumption.

2. Or Eq.(29) does not hold and we consider a gradient descent approach using as warm start the vector
θc to minimize the map

G : θ 7→ ∥X⊤
Mσ(XMθ)−X⊤

Mπθ∗
0∥22.

Note that the gradient of G at θ ∈ Rs is given by

∇G(θ) = 2X⊤
MDiag(σ′(XMθ))XMX⊤

M

(
σ(XMθ)− πθ∗

0

)
,
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and satisfies
∀θ ∈ Rs, ∥G(θ)∥2 ≤

1

4
∥X⊤

MXM∥ × ∥XM∥1,2 =: LG,

where ∥XM∥1,2 :=
√∑N

i=1 ∥Xi,M∥21.

Our method is summarized with Algorithm 5.

Algorithm 5 Computing θ(θ∗0)

1: Input: tmax, ϵ, ℓr
2: θc ∈ argminθ∈Rs ∥XMθ − σ−1(πθ∗

0 )∥22
3: if G(θc) < ϵ then
4: return θc

5: else
6: θ(0) ← θc

7: t← 0
8: while t < tmax and G(θ(t)) > ϵ do
9: t← t+ 1

10: θ(t) ← θ(t−1) − ℓr
LG
∇G(θ(t−1))

11: end while
12: return θ(t)

13: end if

E Proofs

E.1 Proof of Proposition 1
Let us consider ϑ1, ϑ2 two vectors in Θ achieving the minimum in (2). Then, denoting ϑ3 = 1

2ϑ1 +
1
2ϑ2 it

holds
LN (ϑ1, Z) + LN (ϑ2, Z)

2
+ λ
∥ϑ1∥1 + ∥ϑ2∥1

2
≤ LN (ϑ3, Z) + λ∥ϑ3∥1.

Since the triangle inequality gives ∥ϑ3∥1 ≤ ∥ϑ1∥1+∥ϑ2∥1

2 and since the function ξ is strictly convex, it holds
that Xϑ1 = Xϑ2. Indeed, otherwise we would have by strict convexity

LN (ϑ3, Z) + λ∥ϑ3∥1

=

N∑
i=1

(ξ(⟨xi, ϑ3⟩)− ⟨yixi, ϑ3⟩) + λ∥ϑ3∥1

≤
N∑
i=1

(
ξ(⟨xi,

ϑ1 + ϑ2

2
⟩)− 1

2
⟨yixi, ϑ1⟩ −

1

2
⟨yixi, ϑ2⟩

)
+

1

2
λ∥ϑ1∥1 +

1

2
λ∥ϑ2∥1

<
LN (ϑ1, Z) + LN (ϑ2, Z)

2
+ λ
∥ϑ1∥1 + ∥ϑ2∥1

2
.

From the KKT conditions, we deduce that for a given Y ∈ YN , all solutions ϑ̂λ of (2) have the same vector
of signs denoted Ŝ(Y ) which is given

Ŝ(Y ) =
1

λ
X⊤

(
Y − σ(Xϑ̂λ)

)
,

where ϑ̂λ is any solution to (2).
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E.2 Proof of Proposition 2

Partitioning the KKT conditions of Eq.(3) according to the equicorrelation set M̂(Y ) leads to

X⊤
M̂(Y )

(
Y − σ(X

M̂(Y )
ϑ̂λ
M̂(Y )

)
)
= λŜ

M̂(Y )
,

X⊤
−M̂(Y )

(
Y − σ(X

M̂(Y )
ϑ̂λ
M̂(Y )

)
)
= λŜ−M̂(Y )

,

sign(ϑ̂λ
M̂(Y )

) = Ŝ
M̂(Y )

,

∥Ŝ−M̂(Y )
∥∞ < 1.

Since the KKT conditions are necessary and sufficient for a solution, we obtain that Y belongs to ESM

M if and
only if there exists θ ∈ ΘM satisfying

X⊤
M (Y − σ(XMθ)) = λSM ,

sign(θ) = SM ,

∥X⊤
−M (Y − σ(XMθ)) ∥∞ < λ.

E.3 Proof of Proposition 3
Let us consider θ, θ′ ∈ ΘM such that Ξ(θ) = Ξ(θ′). Then we have

0 = X⊤
Mσ(XMθ)−X⊤

Mσ(XMθ′)

= Ξ(θ)− Ξ(θ′)

=

∫ 1

0

∇Ξ(θt+ (1− t)θ′) · (θ − θ′)dt

=

∫ 1

0

X⊤
MDiag [σ′(XMθt+ (1− t)XMθ′)]XM (θ − θ′)dt

= X⊤
M

(∫ 1

0

Diag [σ′(XMθt+ (1− t)XMθ′)] dt

)
︸ ︷︷ ︸

=:D

XM (θ − θ′). (30)

Note that for any t ∈ [0, 1] and for any i ∈ [N ], {σ′(XMθt+ (1− t)XMθ′)}i > 0 since ξ′′(u) = σ′(u) > 0 for
any u ∈ R. We deduce that D ∈ RN×N is a diagonal matrix with strictly positive coefficients on the diagonal.
Eq.(30) gives that θ − θ′ ∈ Ker(X⊤

MDXM ) which implies that (θ − θ′)⊤X⊤
MDXM (θ − θ′) = 0. This means

that
N∑
i=1

Di,i [XM (θ − θ′)]
2
i = 0.

Since Di,i > 0 for all i ∈ [N ], we get that XM (θ − θ′) = 0, i.e. XMθ = XMθ′. Since XM has full column
rank, this leads to θ = θ′.

Since Ξ is injective and of class Cm with a differential given by ∇θΞ(θ) = X⊤
MDiag(σ′(XMθ))XM which is

invertible at any θ ∈ ΘM under the assumptions of Proposition 3. Hence the global inversion theorem gives
Proposition 3.

E.4 Proof of Theorem 2
For the sake of brevity, we will simply denote GN (π∗) by GN . Let us further denote X⊤

M = [w1 | w2 | . . . | wN ],
where wi = xi,M ∈ Rs.
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The proof of Theorem 2 relies on [Bardet et al., 2008, Theorem 1]. In the following, we check that
all the assumptions of [Bardet et al., 2008, Theorem 1] are satisfied. Denoting for any i ∈ [N ], ξi,N =

G
−1/2

N wi(yi − ππ∗

i ), it holds

G
−1/2

N X⊤
M (Y − ππ∗

) =

N∑
i=1

G
−1/2

N wi(yi − ππ∗

i ) =

N∑
i=1

ξi,N .

Let us also point that Eπ∗ [ξi,N ] = 0. In the following, we will simply refer to ξi,N as ξi to ease the reading of
the proof. Let us denote further

AN =

N∑
i=1

Eπ∗
(
∥ξi∥32

)
.

One can notice that

Eπ∗
(
∥ξi∥32

)
= Eπ∗

[
(yi − ππ∗

i )3
]
∥G−1/2

N wi∥32 ≤
(

K√
cσmin

)3

N−3/2s3/2,

where we used that

∥G−1/2

N wi∥22 ≤ ∥G
−1/2

N ∥2 × ∥wi∥22 ≤ ∥G
−1

N ∥(sK2) ≤ (cσ2
minN)−1(sK2).

We deduce that

AN ≤
(

K√
cσmin

)3

N−1/2s3/2.

Hence AN →
N→∞

0 which the first condition that needed to be checked to apply [Bardet et al., 2008, Theorem

1].
Let us now check the second condition from that Bardet et al. [2008] that consists in identifying the

appropriate asymptotic covariance matrix.

N∑
i=1

Covπ∗(ξi) =

N∑
i=1

Eπ∗

[
G

−1/2

N wiw
⊤
i G

−1/2

N (yi − ππ∗

i )2
]

=

N∑
i=1

G
−1/2

N wiEπ∗(yi − ππ∗

i )2︸ ︷︷ ︸
=(σπ∗

i )2

w⊤
i G

−1/2

N

= G
−1/2

N

N∑
i=1

wi(σ
π∗

i )2w⊤
i G

−1/2

N

= G
−1/2

N X⊤
MDiag

(
(σπ∗

)2
)
XMG

−1/2

N

= G
−1/2

N GNG
−1/2

N

= Ids.

To apply [Bardet et al., 2008, Theorem 1], it remains to check that the dependent Lindeberg conditions
hold. For this, we consider some map f ∈ C3b (Rs,R) where C3b (Rs,R) is the set of functions from Rs to R
with bounded and continuous partial derivatives up to order 3. In the following, we denote

Wi = G
−1/2

N (X[i−1],M )⊤(Y − ππ∗
)[i−1] =

i−1∑
a=1

ξa.

First dependent Lindeberg condition.
For any i ∈ [N ], let us consider W ′

i (resp. ξ′i) an independent copy of the random vector Wi (resp. ξi).
Let us recall the following well-known result
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Lemma 3. Let us consider two real valued random variables A,B on some probability space (Ω,F ,P). Let
us consider (A′, B′) an independent copy of the random vector (A,B). Then it holds,

Cov(A,B) =
1

2
E
[
(A−A′)(B −B′)

]
.

Using Lemma 3, the Cauchy-Schwarz inequality and Jensen’s inequalities, we get,

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

=

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

=

s∑
k,l=1

N∑
i=1

1

2
|Eπ∗

[(
∂2f

∂xl∂xk
(Wi)−

∂2f

∂xl∂xk
(W ′

i )

)
((ξi)k(ξi)l − (ξ′i)k(ξ

′
i)l)

]
|

≤
s∑

k,l=1

N∑
i=1

1

2
∥∇3f∥∞Eπ∗ (∥Wi −W ′

i∥2 × |(ξi)k(ξi)l − (ξ′i)k(ξ
′
i)l|)

≤
s∑

k,l=1

N∑
i=1

1

2
∥∇3f∥∞

√
Eπ∗ (∥Wi −W ′

i∥22)×
√
Eπ∗ (|(ξi)k(ξi)l − (ξ′i)k(ξ

′
i)l|2)

≤
s∑

k,l=1

N∑
i=1

∥∇3f∥∞
√
Varπ∗ (∥Wi∥2)×

√
Varπ∗ (|(ξi)k(ξi)l|)

≤ s

N∑
i=1

∥∇3f∥∞
√
Varπ∗ (∥Wi∥2)×

√√√√ s∑
k,l=1

Varπ∗ (|(ξi)k(ξi)l|),

where in the last inequality we used Jensen’s inequality. Let us upper-bound the terms Varπ∗ (∥Wi∥2) and∑s
k,l=1Varπ∗ (|(ξi)k(ξi)l|) independently. We have

Varπ∗ (∥Wi∥2)
≤ Eπ∗

(
∥Wi∥22

)
= Eπ∗

[
(Y − ππ∗

)⊤[i−1]X[i−1],MG
−1/2

N G
−1/2

N (X[i−1],M )⊤(Y − ππ∗
)[i−1]

]
= Eπ∗

[
Tr
(
G

−1/2

N (X[i−1],M )⊤(Y − ππ∗
)[i−1](Y − ππ∗

)⊤[i−1]X[i−1],MG
−1/2

N

)]
= Tr

(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

)
,
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and
s∑

k,l=1

Varπ∗ (|(ξi)k(ξi)l|)

=

s∑
k,l=1

((G
−1/2

N )k,:wi)
2((G

−1/2

N )l,:wi)
2

{
Eπ∗

[
(yi − ππ∗

i )4
]
− Eπ∗

[
(yi − ππ∗

i )2
]2}

=

s∑
k,l=1

((G
−1/2

N )k,:wi)
2((G

−1/2

N )l,:wi)
2(σπ∗

i )2(1− 2ππ∗

i )2

= ∥G−1/2

N wi∥42(σπ∗

i )2(1− 2ππ∗

i )2

≤ K4(cσ2
min)

−2 s2

N2
(σπ∗

i )2(1− 2ππ∗

i )2,

where (σπ∗

i )2 = ππ∗

i (1 − ππ∗

i ). Hence, coming back the first Lindeberg condition, we have (forgetting to
mention the constants K, s, c, σ2

min that do not depend on N , which is the sense of the symbol ≲),

s∑
k,l=1

N∑
i=1

|Covπ∗(
∂2f

∂xl∂xk
(Wi), (ξi)k(ξi)l)|

≲
1

N

N∑
i=1

∥∇3f∥∞
√
Tr
(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

)
(1− 2ππ∗

i )2(σπ∗
i )2

≤ 1

N

N∑
i=1

∥∇3f∥∞
√
∥G−1

N ∥F ∥(X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ∗
i )2(σπ∗

i )2

≲
1

N

N∑
i=1

∥∇3f∥∞

√
1

N
∥(X[i−1],M )⊤Γ

θ∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ∗
i )2(σπ∗

i )2

≤ 1

N3/2
∥∇3f∥∞

N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F (1− 2ππ∗
i )2(σπ∗

i )2,

where we used that ∥G−1

N ∥F ≤
√
s∥G−1

N ∥ ≲ N−1 (since G
−1

N has rank s, see Section 5.1). Hence, the first
dependent Lindeberg condition from Bardet et al. [2008] holds thanks to the assumptions made in Theorem 2.

Second dependent Lindeberg condition.
Using an approach analogous to the one conducted for the first dependent Lindeberg condition, one can
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obtain
s∑

l=1

N∑
i=1

|Covπ∗(
∂f

∂xl
(Wi), (ξi)l)|

≤
√
s

N∑
i=1

∥∇2f∥∞
√
Varπ∗ (∥Wi∥2)×

√√√√ s∑
l=1

Varπ∗ (|(ξi)l|)

≲
1√
N
∥∇2f∥∞

N∑
i=1

√
Tr
(
G

−1/2

N (X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],MG
−1/2

N

) (
1− 2ππ∗

i

)2
(σπ∗

i )2

≲
1√
N
∥∇2f∥∞

N∑
i=1

√
∥G−1

N ∥F ∥(X[i−1],M )⊤Γ
π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ∗

i

)2
(σπ∗

i )2

≲
1

N
∥∇2f∥∞

N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ∗

i

)2
(σπ∗

i )2,

where we used that

Varπ∗ (|(ξi)l|)

= Eπ∗
(
|(ξi)l|2

)
−
(
Eπ∗ |(ξi)l|

)2
= ((G

−1/2

N )l,:wi)
2

{
Eπ∗

(
(yi − ππ∗

i )2
)
−
(
Eπ∗ |yi − ππ∗

i |
)2}

= ((G
−1/2

N )l,:wi)
2

{
ππ∗

i (1− ππ∗

i )−
(
ππ∗

i (1− ππ∗

i ) + (1− ππ∗

i )ππ∗

i

)2}
= ((G

−1/2

N )l,:wi)
2ππ∗

i (1− ππ∗

i )
(
1− 4(1− ππ∗

i )ππ∗

i

)
= ((G

−1/2

N )l,:wi)
2(σπ∗

i )2
(
1− 2ππ∗

i

)2
≲

1

N
(σπ∗

i )2
(
1− 2ππ∗

i

)2
.

Assuming that
N∑
i=1

√
∥(X[i−1],M )⊤Γ

π∗

[i−1],[i−1]X[i−1],M∥F
(
1− 2ππ∗

i

)2
=

N→∞
o(N),

we obtain applying [Bardet et al., 2008, Theorem 1] the following CLT

G
−1/2

N X⊤
M (Y − ππ∗

)
(d)−→

N→+∞
N (0, Ids).

E.5 Proof of Theorem 3
To make the notations less cluttered, we will simply denote in the following GN (θ∗) by GN and θ(θ∗) by θ.

First step. We use Theorem 2 where we established a CLT for

−LN (θ, (Y,XM )) = X⊤
M (Y − πθ) = X⊤

M (Y − πθ∗
) = X⊤

M (Y − ππ∗
).

Let us highlight that the first equality comes directly from the definition of LN (θ, (Y,XM )) (see Section 1.4),
the second equality comes from Eq.(16) and the last equality holds since we work under the selected model
meaning that π∗ = σ(Xϑ∗) = σ(XMθ∗) (and thus that Pθ∗ ≡ Pπ∗). Let us recall that to prove Theorem 2,
we used a variant of the Linderberg CLT for dependent random variables proved by Bardet et al. [2008]. The
proof of Theorem 2 is given in Section E.4.
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Second step. We now prove that for any ϵ > 0 there is some δ > 0 such that when N is large enough

Pθ∗

(
there is θ̂ ∈ NN (θ, δ) such that LN (θ̂, (Y,XM )) = 0

)
> 1− ϵ,

with NN (θ, δ) = {θ : ∥G1/2

N (θ − θ)∥2 ≤ δ}. Stated otherwise, we will prove that there exist a constant δ > 0
and an integer Nδ ∈ N such that for any N ≥ Nδ, the following holds with high probability,

• the conditional MLE θ̂ exists,

• the conditional MLE θ̂ is contained in the ellipsoid NN (θ, δ) centered at θ.

Let us denote

F : θ ∈ Rs 7→ G
−1/2

N (LN (θ, (Y,XM ))− LN (θ, (Y,XM )))

= G
−1/2

N X⊤
M (πθ − πθ).

Note that F is a deterministic function and does not depend on the random variable Y . Moreover we choose
to leave implicit the dependence on N of F . We also point out that it holds for any θ ∈ Rs,

∇θF (θ) = −G−1/2

N X⊤
MDiag(σ′(XMθ))XM = −G−1/2

N HN (θ).

Hence F is a C1 map with invertible Jacobian at any θ ∈ Rs and is injective (thanks to Proposition 3).
Applying the global inversion theorem, we deduce that F is a C1-diffeomorphism from Rs to Rs.

Sketch of proof.
In the following, we prove that for any ϵ, we can choose δ > 0 such that for some Nδ ∈ N and for any N ≥ Nδ,
it holds on some event EN satisfying Pθ∗(EN ) ≥ 1− ϵ,

G
−1/2

N LN (θ, (Y,XM )) ∈ F (NN (θ, δ))

⇔ G
−1/2

N (X⊤
Mπθ∗︸ ︷︷ ︸

=X⊤
Mπθ

−X⊤
MY ) ∈ F (NN (θ, δ)). (31)

This would mean (by definition of F ) that on EN , there exists some θ̂ ∈ NN (θ, δ) such that G
−1/2

N LN (θ̂, (Y,XM )) =

0 or equivalently that LN (θ̂, (Y,XM )) = 0. A sufficient condition for Eq.(31) to hold is to check that on the
event EN it holds

∥G−1/2

N LN (θ, (Y,XM ))∥2 < inf
θ∈∂NN (θ,δ)

∥F (θ)∥2, (32)

where ∂NN (θ, δ) := {θ ∈ Rs | ∥G1/2

N (θ − θ)∥2 = δ}. This sufficient condition is a direct consequence of
Lemma 4 and Figure 18 gives a visualization of our proof strategy.

Lemma 4. Let f : Rs → Rs be a C1-diffeomorphism from Rs to f(Rs). Then for any closed space D ⊂ Rs

it holds
f(∂D) = ∂f(D),

where for any set U ⊆ Rs, ∂U = U\Ů with U the closure of the set U and Ů the interior of the set U .

Proof. As a C1-diffeomorphism, f is in particular a homeomorphism, and as such, it preserves the topological
structures.

Let ϵ > 0 and let us consider

δ :=
K1/2

ϵ1/22C−1cσ2
min

, (33)
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Rs

θ Space

• θ
NN (θ, δ)

F (NN(θ, δ))

• 0
×

× is G
−1/2

N LN (θ, (Y,XM ))

←→ has length infθ∈∂NN (θ,δ) ∥F (θ)∥2

F

Figure 18: Visualization support for the proof of the existence of the MLE with large probability in a
neighbourhood of θ. We show that with large probability, the orange cross is in the black circle (i.e., Eq.(32)
holds) which implies that the orange cross belongs to F (NN (θ, δ)) (i.e., Eq.(31) holds). The MLE is then
defined as θ̂ = F−1(G

−1/2

N LN (θ, (Y,XM )) ∈ NN (θ, δ).

(the reason of this choice will become clear with Eq.(38)). Let us first notice that for any θ ∈ Rs,

LN (θ, (Y,XM ))− LN (θ, (Y,XM )) (34)

= X⊤
M (πθ − πθ) (35)

=

∫ 1

0

HN (tθ + (1− t)θ)dt︸ ︷︷ ︸
=:QN (θ)

(θ − θ), (36)

where we used that the Jacobian of the map θ 7→ X⊤
Mπθ = X⊤

Mσ(XMθ) is XMDiag(σ′(XMθ))XM = HN (θ).
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Recalling further that ∥G−1/2

N (θ − θ)∥2 = δ for any θ ∈ ∂NN (θ, δ), it holds,

inf
θ∈∂NN (θ,δ)

∥F (θ)∥2

= inf
θ∈∂NN (θ,δ)

∥G−1/2

N QN (θ)(θ − θ)∥2 (using Eq.(36))

= inf
θ∈∂NN (θ,δ)

∥G−1/2

N QN (θ)(θ − θ)∥2 ×
∥G1/2

N (θ − θ)∥2
∥G1/2

N (θ − θ)∥2

≥ inf
θ∈∂NN (θ,δ)

(θ − θ)⊤QN (θ)(θ − θ)

∥G1/2

N (θ − θ)∥2
(using the Cauchy Schwarz’s inequality)

= δ inf
θ∈∂NN (θ,δ)

(θ − θ)⊤G
1/2

N

∥G1/2

N (θ − θ)∥2
G

−1/2

N QN (θ)G
−1/2

N

G
1/2

N (θ − θ)

∥G1/2

N (θ − θ)∥2
≥ δ inf

∥e∥2=1,θ∈∂NN (θ,δ)
e⊤G

−1/2

N QN (θ)G
−1/2

N e

= δ inf
∥e∥2=1,θ∈∂NN (θ,δ)

e⊤G
−1/2

N

∫ 1

0

HN (tθ + (1− t)θ)dtG
−1/2

N e

= δ inf
∥e∥2=1,θ∈∂NN (θ,δ)

∫ 1

0

(
e⊤G

−1/2

N HN (tθ + (1− t)θ)G
−1/2

N e
)
dt

≥ δ inf
∥e∥2=1,θ∈NN (θ,δ)

e⊤G
−1/2

N HN (θ)G
−1/2

N e

≥ δ

{
inf

∥e∥2=1
e⊤G

−1/2

N HN (θ)G
−1/2

N e− C δ

N1/2

}
=: IN (δ, θ), (37)

where in the penultimate inequality we used that θ ∈ NN (θ, δ) and the convexity of NN (θ, δ). In the last
inequality, we used Lemma 5 whose proof is postponed to Section E.6.

Lemma 5. Let us consider some δ > 0. Then for any N ∈ N and for any unit vector u ∈ Rs, it holds

sup
θ∈NN (θ,δ)

|u⊤G
−1/2

N (HN (θ)−HN (θ))G
−1/2

N u| ≤ C δ

N1/2
,

where NN (θ, δ) = {θ ∈ Rs : ∥G1/2

N (θ − θ)∥2 ≤ δ} and where C is a constant that only depends on the
quantities s,K, c, σ2

min (that do not depend on N).

To lower bound uniformly in N the term IN (δ, θ), we notice that

inf
∥e∥2=1

e⊤G
−1/2

N HN (θ)G
−1/2

N e

= inf
∥e∥2=1

e⊤G
−1/2

N

∥G−1/2

N e∥2
HN (θ)

G
−1/2

N e

∥G−1/2

N e∥2
∥G−1/2

N e∥22

≥ λmin(HN (θ)) inf
∥e∥2=1

∥G−1/2

N e∥22

≥ λmin(HN (θ))λmin(G
−1

N )

≥
(
σ2
mincN

)
×
(
4C−1N−1

)
≥ 4C−1cσ2

min,

56



where we used that for any i ∈ [N ], σ′(xi,Mθ) ≥ σ2
min. Let us denote Nδ := ⌈

( Cδ
2C−1cσ2

min

)2⌉ so that for any
N ≥ Nδ it holds

IN (δ, θ) ≥ δ2C−1cσ2
min.

Using Markov’s inequality, we get that for any N ≥ Nδ,

Pθ∗(∥G−1/2

N LN (θ, (Y,XM ))∥2 ≥ IN (δ, θ))

≤ (IN (δ, θ))−2Eθ∗(∥G−1/2

N LN (θ, (Y,XM ))∥22)

≤ (IN (δ, θ))−2Eθ∗((Y − πθ∗
)⊤XMG

−1

N X⊤
M (Y − πθ∗

))

= (IN (δ, θ))−2Eθ∗(Tr
[
(Y − πθ∗

)⊤XMG
−1

N X⊤
M (Y − πθ∗

)
]
)

= (IN (δ, θ))−2Eθ∗(Tr
[
XMG

−1

N X⊤
M (Y − πθ∗

)(Y − πθ∗
)⊤
]
)

= (IN (δ, θ))−2Tr
[
XMG

−1

N X⊤
MΓ

θ∗]
= (IN (δ, θ))−2Tr

[
G

−1

N X⊤
MΓ

θ∗

XM

]
.

Hence, it holds for any N ≥ Nδ,

Pθ∗(∥G−1/2

N LN (θ, (Y,XM ))∥2 ≥ IN (δ, θ))

≤
Tr
[
G

−1

N X⊤
MΓ

θ∗

XM

]
IN (δ, θ)2

<
K

δ2(2C−1cσ2
min)

2

≤ ϵ, (38)

where the last inequality comes from the choice of δ (see Eq.(33)). From Eq.(37) and Eq.(38), we deduce
that for any N ≥ Nδ, it holds

Pθ∗(EN ) ≥ 1− ϵ,

where

EN :=

{
∥G−1/2

N LN (θ, (Y,XM ))∥2 < inf
θ∈∂NN (θ,δ)

∥F (θ)∥2

}
.

Hence, on the event EN , we define θ̂ = F−1(G
−1/2

N LN (θ, (Y,XM ))) which means by definition of F that θ̂ is
the conditional MLE, namely

LN (θ̂, (Y,XM )) = 0.

Third and final step. In the previous step, we proved that for N large enough, the MLE exists and is
contained in an ellipsoid centered at θ with vanishing volume with high probability. Now we show how using
this result to turn the CLT on LN (θ, (Y,XM )) from Theorem 2 into a CLT for θ̂.

We consider N ≥ Nδ and we work on the event EN of the previous step. Since LN (θ̂, (Y,XM )) = 0 by
definition of θ̂, we get that

LN (θ, (Y,XM )) = LN (θ, (Y,XM ))− LN (θ̂, (Y,XM ))

= X⊤
M (πθ − πθ̂)

=

∫ 1

0

HN (tθ + (1− t)θ̂)dt︸ ︷︷ ︸
=QN (θ̂)

(θ − θ̂),
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where we used that the Jacobian of the map θ 7→ X⊤
Mπθ = XMσ(XMθ) is XMDiag(σ′(XMθ))XM = HN (θ).

From the Portmanteau Theorem [cf. Van der Vaart, 2000, Lemma 2.2]), we know that a sequence of Rs-valued
random vectors (Xn)n converges weakly to a random vector X if and only if for any Lipschitz and bounded
function h : Rs → R it holds

Eh(Xn) →
n→∞

Eh(X).

Hence, we consider a Lipschitz and bounded function h : Rs → R. We denote by Lh > 0 the Lipschitz
constant of h. It holds for any N ≥ Nδ,

|Eθ∗ [h(G
−1/2

N HN (θ)(θ − θ̂))]− Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
|

= |Eθ∗ [h(G
−1/2

N HN (θ)(θ − θ̂))]− Eθ∗ [h(G
−1/2

N QN (θ̂)(θ − θ̂))]|

≤ |Eθ∗

[
1EN

{
h(G

−1/2

N HN (θ)(θ − θ̂))− h
(
G

−1/2

N QN (θ̂)(θ − θ̂)
)}]
|+ 2∥h∥∞Pθ∗(Ec

N )

≤ Eθ∗
[
Lh1EN

∥G−1/2

N HN (θ)(θ − θ̂)−G
−1/2

N QN (θ̂)(θ − θ̂)∥2
]
+ 2∥h∥∞ϵ

≤ LhEθ∗
[
1EN
∥G−1/2

N (HN (θ)−QN (θ̂))G
−1/2

N ∥∥G1/2

N (θ − θ̂)∥2
]
+ 2∥h∥∞ϵ

≤ Lhδ sup
θ∈NN (θ,δ)

∥G−1/2

N (HN (θ)−QN (θ))G
−1/2

N ∥+ 2∥h∥∞ϵ, (39)

where we used that on the event EN , θ̂ ∈ NN (θ, δ), i.e. ∥G1/2

N (θ − θ̂)∥2 ≤ δ. Moreover, for any θ′ ∈ NN (θ, δ)
we have,

∥G−1/2

N (HN (θ)−QN (θ′))G
−1/2

N ∥

= sup
∥u∥2=1

|u⊤G
−1/2

N (HN (θ)−QN (θ′))G
−1/2

N u|

≤ sup
∥u∥2=1

∫ 1

0

∣∣∣u⊤G
−1/2

N (HN (θ)−HN (tθ + (1− t)θ′))G
−1/2

N u
∣∣∣ dt

≤ sup
∥u∥2=1

sup
θ∈NN (θ,δ)

|u⊤G
−1/2

N (HN (θ)−HN (θ))G
−1/2

N u|

≤ C δ

N1/2
, (40)

where in the penultimate inequality we used the convexity of the set NN (θ, δ)) and in the last inequality we
used Lemma 5 (which is proved in Section E.6). Using Eq.(39) and Eq.(40), we deduce that for G ∼ N (0, Ids)
we have

|Eθ∗ [h(G
−1/2

N HN (θ)(θ − θ̂))]− E[h(G)]|

≤ |Eθ∗ [h(G
−1/2

N HN (θ)(θ − θ̂))]− Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
|

+ |Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]|

≤ LhδC
δ

N1/2
+ 2∥h∥∞ϵ+ |Eθ∗

[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]|. (41)

The CLT from Theorem 2 states that

G
−1/2

N LN (θ, (Y,XM ))
(d)−→

N→∞
N (0, Ids),

which means by the Portmanteau Theorem [cf. Van der Vaart, 2000, Lemma 2.2]) that

|Eθ∗
[
h
(
G

−1/2

N LN (θ, (Y,XM ))
)]
− E[h(G)]| →

N→+∞
0.
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We deduce that for any ϵ > 0 and for any Lipschitz and bounded function h : Rs → R, one can choose N
large enough to ensure that the right hand side of Eq.(41) is smaller than 4∥h∥∞ϵ. Note that this is true
since the constant δ does not depend on N . This concludes the proof thanks to the Portmanteau Theorem.

E.6 Proof of Lemma 5
Let us first recall that HN (θ) = X⊤

MDiag(σ′(XMθ))XM and that X⊤
M = [w1 | w2 | . . . | wN ], where wi =

xi,M ∈ Rs. Let us consider some θ ∈ NN (θ, δ). We have that

HN (θ)−HN (θ) =

N∑
i=1

wi

[
σ′(w⊤

i θ)− σ′(w⊤
i θ)
]
w⊤

i

=

N∑
i=1

wi

∫ 1

0

σ′′(tw⊤
i θ + (1− t)w⊤

i θ)dt︸ ︷︷ ︸
=:Hi

w⊤
i (θ − θ)w⊤

i . (42)

We get using Eq.(42) that for any unit vector u ∈ Rs,

|u⊤G
−1/2

N (HN (θ)−HN (θ))G
−1/2

N u|

=

∣∣∣∣∣
N∑
i=1

u⊤G
−1/2

N wiHiw
⊤
i (θ − θ)w⊤

i G
−1/2

N u

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

w⊤
i (θ − θ)× u⊤G

−1/2

N wiHiw
⊤
i G

−1/2

N u

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

w⊤
i (θ − θ)×Hi|w⊤

i G
−1/2

N u|2
∣∣∣∣∣

≤ max
1≤j≤N

|w⊤
j (θ − θ)|

N∑
i=1

|Hi||w⊤
i G

−1/2

N u|2

= max
1≤j≤N

|w⊤
j (θ − θ)| ∥H1/2X⊤

MG
−1/2

N u∥22, (43)

where H1/2 := Diag((|Hi|1/2)i∈[N ]). The proof is concluded by upper-bounding both terms involved in the
product of the right hand side of Eq.(43). Using the assumption of the design matrix presented in Section 5.1
and recalling that θ ∈ NN (θ, δ), we have

max
1≤j≤N

|w⊤
j (θ − θ)| ≤ max

1≤j≤N
∥G−1/2

N wj∥2 ∥G
1/2

N (θ − θ)∥2︸ ︷︷ ︸
≤δ

= δK
√
(σ2

minc)
−1sN−1/2,

where we used that ∥G−1/2

N ∥2 = ∥G−1

N ∥ ≤ (cσ2
minN)−1 and that for any i ∈ [N ], ∥wi∥22 ≤ sK2. Since |Hi| ≤ 1

for any i ∈ [N ],

∥H1/2X⊤
MG

−1/2

N u∥22 ≤ ∥X⊤
MG

−1/2

N u∥22

=

N∑
i=1

(w⊤
i G

−1/2

N u)2

≤
N∑
i=1

∥G−1/2

N wi∥22 ≤ (σ2
minc)

−1sK2,

where in the penultimate inequality we used Cauchy-Schwarz inequality.
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E.7 Proof of Proposition 6
For any N ∈ N, let us denote

EN := {Z ∈ {0, 1}N |X⊤
MZ ∈ Im(Ξ)}. (44)

In order to clarify the notations of this proof, let us stress that we denote in the following by Pθ∗
0

the
distribution of Y , P1 the distribution of the sequence (Y (t))t≥1 and P2 the distribution of (Z(t))t≥1. Let us
consider some ϵ > 0.

Step 1: P1 almost sure convergences.
From Proposition 5, we know that under the null H0∑T

t=1 Y
(t)Pθ∗

0
(Y (t))∑T

t=1Pθ∗
0
(Y (t))

→
T→∞

Eθ∗
0
[Y ] = πθ∗

0 P1 − almost surely. (45)

Since π̃θ∗
0 →

T→∞
πθ∗

0 P1-a.s., we know that P1-a.s, there exists some T1 ∈ N such that for any T ≥ T1 it holds

∥π̃θ∗
0 ⊙ (1− π̃θ∗

0 )− πθ∗
0 ⊙ (1− πθ∗

0 )∥∞ < ϵ,

and since (σθ∗
0 )2 ≥ (σmin)

2 > 0, we get by continuity of the inverse of a matrix that P1-a.s, there exists
some T2 ∈ N such that for any T ≥ T2, it holds

∥G̃−1
N −G

−1

N ∥ < ϵ2,

where we recall that
G̃N = X⊤

MDiag(π̃θ∗
0 ⊙ (1− π̃θ∗

0 ))XM ,

and
GN = X⊤

MDiag(πθ∗
0 ⊙ (1− πθ∗

0 ))XM .

From Eq.(45) and by continuity of the map Ψ, we get that P1-a.s. θ̃ = Ψ(X⊤
M π̃θ∗

0 ) →
T→∞

Ψ(X⊤
Mπθ∗

0 ) = θ(θ∗0)

(see Eq.(16)). Hence, P1-a.s, there exists some T3 ∈ N such that for any T ≥ T3, it holds

∥θ̃ − θ∥2 ≤ ϵ.

Note that we left the dependence of π̃θ∗
0 and θ̃ on T implicit.

Step 2: Comparing W̃N and WN .
It holds for any Z ∈ EN ,∣∣∣∥∥∥G̃−1/2

N HN (θ̃)
(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N HN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤
∣∣∣∥∥∥G̃−1/2

N HN (θ̃)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2
−
∥∥∥G−1/2

N HN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
+
∥∥∥G̃−1/2

N HN (θ̃)
(
θ − θ̃

)∥∥∥
2

≤ ∥G̃−1/2
N −G

−1/2

N ∥∥HN (θ̃)∥
∥∥Ψ(X⊤

MZ)− θ
∥∥
2

+ ∥G−1/2

N ∥∥HN (θ̃)−HN (θ)∥
∥∥Ψ(X⊤

MZ)− θ
∥∥
2
+
∥∥X⊤

MXM

∥∥ ∥θ − θ̃∥2.

Using the Powers–Størmer inequality [cf. Powers and Størmer, 1970, Lemma 4.1] and denoting ∥M∥1 the
Schatten 1-norm of any matrix M , it holds

∥G̃−1/2
N −G

−1/2

N ∥2 ≤ ∥G̃−1/2
N −G

−1/2

N ∥2F ≤ ∥G̃−1
N −G

−1

N ∥1 ≤ 2s∥G̃−1
N −G

−1

N ∥,
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where in the last inequality we used that G̃N and GN have rank at most s. Hence, P1-a.s, for any T ≥
TN (ϵ) := max(T1, T2, T3) it holds∣∣∣∥∥∥G̃−1/2

N HN (θ̃)
(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N HN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤
∥∥Ψ(X⊤

MZ)− θ
∥∥
2

{
ϵ2sCN + (c(σmin)

2N)−1/2CNϵ
}
+ CNϵ =: CN (Z, ϵ).

We get that P1-a.s, for any T ≥ TN (ϵ) it holds

sup
Z∈EN

∣∣∣∥∥∥G̃−1/2
N HN (θ̃)

(
Ψ(X⊤

MZ)− θ̃
)∥∥∥

2
−
∥∥∥G−1/2

N HN (θ)
(
Ψ(X⊤

MZ)− θ
)∥∥∥

2

∣∣∣
≤ sup

Z∈EN

CN (Z, ϵ) =: CN (ϵ).

Step 3: Conclusion.
Let us consider some η ∈ (0, 1− α). Since CN (ϵ) goes to 0 as ϵ→ 0, we deduce that we can choose ϵ small
enough such that P1-a.s., for any T ≥ TN (ϵ) it holds

∀Z ∈ EN , 1
Z∈W̃N

≤ 1Z∈WN (α+η), (46)

where

WN (α+ η) :=

{
Z ∈ {0, 1}N

∣∣∣∣∣ ⋄ X⊤
MZ ∈ Im(Ξ)

}
,

⋄
∥∥[GN ]−1/2HN (θ)

(
Ψ(X⊤

MZ)− θ
)∥∥2

2
> χ2

s,1−α−η

Recalling the definition of EN from Eq.(44) and using the definitions of WN (α+ η) and W̃N , it also holds
trivially

∀Z ∈ {0, 1}N\EN , 0 = 1
Z∈W̃N

≤ 1Z∈WN (α+η) = 0. (47)

Using both Eq.(46) and Eq.(47), we deduce that

∀Z ∈ {0, 1}N , 1
Z∈W̃N

≤ 1Z∈WN (α+η),

and we then get that P1-a.s., for any T ≥ TN (ϵ), we have

ζN,T =

∑T
t=1Pθ∗

0
(Z(t))1

Z(t)∈W̃N∑T
t=1Pθ∗

0
(Z(t))

≤
∑T

t=1Pθ∗
0
(Z(t))1Z(t)∈WN (α+η)∑T
t=1Pθ∗

0
(Z(t))

.

The right hand side of the previous inequality converges P2-a.s. to Pθ∗
0
(Y ∈WN (α+ η)) as T → +∞ thanks

to Proposition 5. Since from Theorem 3 it holds,

lim sup
N→+∞

Pθ∗
0
(Y ∈WN (α+ η)) ≤ α+ η,

we get that for any ϵ > 0, there exists N0 ∈ N such that for any N ≥ N0 it holds,

P
( ⋃
TN∈N

⋂
T≥TN

{ζN,T ≤ α+ ϵ}
)
= 1.

E.8 Proof of Proposition 8
Let us denote M : θ ∈ Rs 7→ X⊤

Mπθ. Since for any z ∈ {0, 1}N , Pθ(z) = exp(−LN (θ, (z,XM ))), we
get ∇θPθ(z) = −LN (θ, (z,XM ))Pθ(z). Recalling that πθ = Eθ[Y ], we have for any k ∈ [s],

∂πθ

∂θk
=

( ∑
w∈EM

Pθ(w)

)−2 ∑
w,z∈EM

Pθ(z)Pθ(w)z {LN (θ, (w,XM ))− LN (θ, (z,XM ))}k

= Eθ [Z {LN (θ, (W,XM ))− LN (θ, (Z,XM ))}k]
= Eθ

[
Z
{
X⊤

M (Z −W )
}
k

]
= Γ

θ
X:,M [k], (48)
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where Z and W are independent random vectors valued in {0, 1}N and distributed according to Pθ. Note
that we used that for any W ∈ {0, 1}N , it holds

LN (θ, (W,XM )) = X⊤
M (σ(XMθ)−W ).

Hence it holds
∀θ ∈ Rs, ∇M(θ) = X⊤

MΓ
θ
XM .

Suppose that we are able to compute an estimate θ⋆ ∈ Bp(0, R) of θ∗. Using that θ∗ ∈ Bp(0, R) and that

inf
θ∈Bp(0,R)

λmin (∇M(θ)) ≥ κλmin

(
X⊤

MXM

)
≥ cκN,

it holds

∥M(θ⋆)−M(θ∗)∥22 = ∥
∫ 1

0

∇M(tθ⋆ + (1− t)θ∗)(θ⋆ − θ∗)dt∥22

= (θ⋆ − θ∗)⊤
{∫ 1

0

∇M(tθ⋆ + (1− t)θ∗)dt

}2

(θ⋆ − θ∗)

≥ ∥θ⋆ − θ∗∥22 inf
θ∈Bp(0,R)

λmin(∇M(θ))2

≥ (cκN)2∥θ⋆ − θ∗∥22.

Noticing further that

sup
θ∈Rs

∥∇Ψ−1(θ)∥ = sup
θ∈Rs

∥X⊤
MDiag(σ′(XMθ))XM∥ ≤

1

4
CN,

we get

∥θ∗ − θ⋆∥2 ≤ (κcN)
−1 ∥X⊤

Mπθ⋆

−X⊤
Mπθ∗

∥2
= (κcN)

−1 ∥X⊤
Mπθ(θ⋆) −X⊤

Mπθ(θ∗)∥2 (using Eq.(16))

≤ (κcN)
−1

sup
θ∈Rs

∥∇Ψ−1(θ)∥∥Ψ
(
X⊤

Mπθ(θ⋆)
)
−Ψ

(
X⊤

Mπθ(θ∗)
)
∥2

≤ C (κc)
−1 ∥Ψ

(
X⊤

Mπθ(θ⋆)
)
−Ψ

(
X⊤

Mπθ(θ∗)
)
∥2

= C (κc)
−1 ∥θ(θ⋆)− θ(θ∗)∥2

≤ C (κc)
−1
[
∥θ(θ⋆)− θ̂∥2 + ∥θ̂ − θ(θ∗)∥2

]
,

where we used that X⊤
Mπθ(θ∗) = X⊤

Mσ
(
XMθ(θ∗)

)
= Ξ

(
θ(θ∗)

)
∈ Im(Ξ) and thus Ψ(X⊤

Mπθ(θ∗)) is well-defined.
Similarly, we have that X⊤

Mπθ(θ⋆) ∈ Im(Ξ). Since Theorem 3 gives that

Pθ∗

(
∥VN (θ∗)(θ̂ − θ)∥22 ≤ χ2

s,1−α

)
→

N→+∞
1− α,

with VN (θ∗) := [GN (θ∗)]−1/2HN (θ(θ∗)), we deduce (using the assumption of the design matrix from Sec-
tion 5.1) that the event

∥θ̂ − θ(θ∗)∥2 ≤ ∥[VN (θ∗)]−1∥∥VN (θ∗)(θ̂ − θ)∥2 ≤ ∥(σθ)−2∥∞c−1 (N/C)
−1/2

√
χ2
s,1−α,

holds with probability tending to 1− α as N → +∞. Note that we used that

∥HN (θ(θ∗))−1∥ ≤ (cN)−1∥(σθ)−2∥∞,

and that
∥[GN (θ∗)]1/2∥ ≤ (CN)1/2.

Hence we obtain an asymptotic confidence region for θ∗ of level 1− α.
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E.9 Proof of Proposition 9
Let us denote R : π ∈ (0, 1)N 7→ ππ. It holds for any i ∈ [N ],

∂ππ

∂πi
=

( ∑
w∈EM

Pπ(w)

)−2 ∑
w,z∈EM

Pπ(z)Pπ(w)z {z − w}i
(
πi(1− πi)

)−1

= Eπ

[
Z(Z −W )⊤i

] (
πi(1− πi)

)−1
,

where Z and W are independent random vectors valued in {0, 1}N and distributed according to Pπ. Hence it
holds

∀π ∈ (0, 1)N , ∇R(π) = Γ
π
Diag(π ⊙ (1− π))−1.

Suppose that we are able to compute an estimate π⋆ ∈ Bp(
1N

2 , R) of π∗. Then since it holds for any v ∈ RN ,

inf
π∈Bp(

1N
2 ,R)

∥∇R(π)v∥2 ≥ 4κ∥v∥2,

we get that

∥R(π⋆)−R(π∗)∥2 = ∥
∫ 1

0

∇R(tπ⋆ + (1− t)π∗)(π⋆ − π∗)dt∥2

≥ 4κ∥π⋆ − π∗∥2.

Hence we have that

∥π∗ − π⋆∥2 ≤ (4κ)−1∥ππ⋆

− ππ∗
∥2

≤ (4κ)−1
{
∥ProjXM

(ππ⋆

− Y )∥2 + ∥ProjXM
(Y − ππ∗

)∥2
+ ∥Proj⊥XM

(ππ⋆

− ππ∗
)∥2
}
.

Since Theorem 2 gives that

Pπ∗

(
∥[GN (π∗)]−1/2(X⊤

MY −X⊤
Mππ∗

)∥22 ≤ χ2
s,1−α

)
→

N→+∞
1− α,

we deduce that the event

∥X⊤
MY −X⊤

Mππ∗
∥2 ≤ ∥[GN (π∗)]1/2∥∥[GN (π∗)]−1/2X⊤

M (Y − ππ∗
)∥2

≤ (CN)1/2
√
χ2
s,1−α,

holds with probability tending to 1− α as N → +∞. Noticing further that for any vector v ∈ RN ,

∥ProjXM
v∥2 ≤ ∥XM

(
X⊤

MXM

)−1 ∥ × ∥X⊤
Mv∥2 ≤ (CN)1/2(cN)−1∥X⊤

Mv∥2,

we get that for any ϵ > 0, there exists N0 ∈ N such that for any N ≥ N0, it holds with at least 1− α− ϵ,

∥π∗ − π⋆∥2 ≤ (4κ)−1
{
∥ProjXM

(Y − ππ⋆

)∥2 + Cc−1
√
χ2
s,1−α

+ ∥Proj⊥XM
(ππ⋆

− ππ∗
)∥2
}
.

Hence we obtain an asymptotic confidence region for π∗ of level 1− α.
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F Inference conditional on the signs

F.1 Leftover Fisher information
As highlighted in Fithian et al. [2014], conducting inference conditional on some random variable prevents the
use of this variable as evidence against a hypothesis. Selective inference should be understood as partitioning
the observed information in two sets: the one used to select the model and the one used to make inference.
This communicating vessels principle is illustrated with the following inclusions borrowed from Fithian et al.
[2014].

F0 ⊂︸︷︷︸
used for selection

F(1Y ∈M) ⊂︸︷︷︸
used for inference

F(Y ).

Typically, let us assume that we condition on both the selected support M̂(Y ) = M and the observed vector
of signs ŜM (Y ) = SM ∈ {0, 1}|M |, meaning that M = ESM

M (cf. Eq.(5)). Even if the vector of signs SM is
surprising under H0, we will not reject unless we are surprised anew by observing the response variable Y .
Stated otherwise, when we condition on both the selected support and the vector of signs, we cannot take
advantage of the possible unbalanced probability distribution of the vector of signs ŜM (Y ) conditionally
on EM . Hence, conditioning on a finer σ-algebra results in some information loss. Fithian et al. [2014] explain
that we can actually quantify this waste of information. The Hessian of the log-likelihood can be decomposed
as

∇2
ϑLN (ϑ, Y |EM ) = ∇2

ϑLN (ϑ, ŜM (Y ) |EM ) +∇2
ϑLN (ϑ, Y | {EM , ŜM (Y )}). (49)

For any σ-algebra F ⊆ σ(Y ), we consider the conditional expectation

IY | F (ϑ) := −E
[
∇2

ϑLN (ϑ, Y | F) | F
]
.

The leftover Fisher information after selection at ŜM (Y ) is defined by IY | {EM ,ŜM (Y )}(ϑ). Taking expectation
in both sides of Eq.(49) leads to

E
[
IY | {EM ,ŜM (Y )}(ϑ)

]
= E IY |EM

(ϑ)− E IŜM (Y ) |EM
(ϑ)

⪯ E IY |EM
(ϑ),

which can also be written as∑
SM∈{±1}s

P(ŜM (Y ) = SM |EM )EI
Y |ESM

M

(ϑ) ⪯ E IY |EM
(ϑ).

In expectation, the loss of information induced by conditioning further on the vector of signs is quantified by
the information ŜM (Y ) carries about ϑ. Let us stress that this conclusion is only true in expectation and it
may exist some vector of signs SM ∈ {−1,+1}s such that

IY |EM
(ϑ) ⪯ I

Y |ESM
M

(ϑ).

Hence, conditioning on the signs will generally lead to wider confidence intervals. Nevertheless, let
us stress that inference procedures correctly calibrated conditional on ESM

M will be also valid conditional
on EM . More precisely, considering some transformation T : RN → R and real valued random variables
L(Y, SM ) < U(Y, SM ) such that for any vector of signs SM ∈ {−1,+1}s it holds

P
(
T (π∗) ∈ [L(Y, SM ), U(Y, SM )] |ESM

M

)
= 1− α,

the confidence interval has also (1− α) coverage conditional on the EM = {M̂(Y ) = M} since

P(T (π∗) ∈ [L(Y, ŜM (Y )), U(Y, ŜM (Y ))] | EM )

=
∑

SM∈{±1}s

P(ŜM (Y ) = SM |EM )P(T (π∗) ∈ [L(Y, SM ), U(Y, SM )] | ESM

M )︸ ︷︷ ︸
=1−α

= 1− α.
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F.2 Discussion
Let us recall that in Taylor and Tibshirani [2018], the authors work in the selected model for logistic regression.
They consider a selected model M ⊆ [d] associated to a response vector Y = (yi)i∈[n] ∈ {0, 1}N where for
any i ∈ [N ], yi is a Bernoulli random variable with parameter {σ(XMθ∗)}i for some θ∗ ∈ Rs (s = |M |). As
presented in Section A, in Taylor and Tibshirani [2018] the authors claim the following asymptotic distribution

θ ∼ N (ϑ∗
M , HN (ϑ∗

M )−1), (50)

where θ = ϑ̂λ
M + λHN (ϑ̂λ

M )−1ŜM (Y ). Note that this approximation corresponds to the one usually made
to form Wald tests and confidence intervals in generalized linear models. They claim that the selection
event {Y ∈ {0, 1}N : M̂(Y ) = M, ŜM (Y ) = SM} can be asymptotically approximated by

{Y : Diag(SM )
(
θ −HN (ϑ∗

M )−1λSM

)
≥ 0}.

Let us denote by F
[a,b]
µ,σ2 the CDF of a N (µ, σ2) random variable truncated to the interval [a, b]. Then they

use the polyhedral lemma to state that for some random variables V− and V+ it holds[
F

[V−
SM

,V+
SM

]

ϑ∗
M[j]

,[HN (ϑ∗
M )−1]

j,j

(θj) | M̂(Y ) = M, ŜM (Y ) = SM

]
∼ U([0, 1]).

Several problems arise at this point.

1. Lack of theoretical guarantee due to the use of Monte-Carlo estimates.
The first problem is that both θ and the selection event {M̂(Y ) = M, ŜM (Y ) = SM} involve the
unknown parameter ϑ∗

M through HN (ϑ∗
M ). Taylor and al. propose to use a Monte-Carlo estimate

for HN (ϑ∗
M ) by replacing it with HN (θ̂λ). Using this Monte-Carlo estimate, one can compute L and U

such that
F

[V−
SM

,V+
SM

]

L,[HN (ϑ∗
M )−1]

j,j

(θj) = 1− α

2
and F

[V−
SM

,V+
SM

]

U,[HN (ϑ∗
M )−1]

j,j

(θj) =
α

2
.

Then, [L,U ] is claimed to be a confidence interval with (asymptotic) (1−α) coverage for ϑ∗
M [j] conditional

on {M̂(Y ) = M, ŜM (Y ) = SM}, that is,

P(ϑ∗
M [j] ∈ [L,U ] | M̂(Y ) = M, ŜM (Y ) = SM ) = 1− α.

2. Their approach is not well suited to provide more powerful inference procedures by
conditioning only on EM .
In the linear model, Lee et al. [2016] also start by deriving a pivotal quantity by conditioning on
both the selected variables and the vector of signs. However, in the context of linear regression,
the vector of signs only appears in the threshold values V− and V+. Hence, conditioning only on
the selected variables {M̂(Y ) = M} simply reduces to take the union ∪SM∈{±1}s [V−

SM
,V+

SM
] for the

truncated Gaussian. In the method proposed by Taylor and Tibshirani [2018], the vector of signs also
appears in the computation of θ. The consequence is that the (asymptotic) distribution of θ conditional
on {M̂(Y ) = M} is not a truncated Gaussian anymore but a mixture of truncated Gaussians. In this
situation, it seems unclear how to take advantage of this structure to provide more powerful inference
procedures.
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