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Abstract

A recent stream of structured learning approaches has improved the practical state of the art for a
range of combinatorial optimization problems with complex objectives encountered in operations research.
Such approaches train policies that chain a statistical model with a surrogate combinatorial optimization
oracle to map any instance of the problem to a feasible solution. The key idea is to exploit the statistical
distribution over instances instead of dealing with instances separately. However learning such policies by
risk minimization is challenging because the empirical risk is piecewise constant in the parameters, and few
theoretical guarantees have been provided so far. In this article, we investigate methods that smooth the risk
by perturbing the policy, which eases optimization and improves generalization. Our main contribution is a
generalization bound that controls the perturbation bias, the statistical learning error, and the optimization
error. Our analysis relies on the introduction of a uniform weak property, which captures and quantifies
the interplay of the statistical model and the surrogate combinatorial optimization oracle. This property
holds under mild assumptions on the statistical model, the surrogate optimization, and the instance data
distribution. We illustrate the result on a range of applications such as stochastic vehicle scheduling. In
particular, such policies are relevant for contextual stochastic optimization and our results cover this case.

1 Introduction

1.1 Learning policies instead of minimizing

Operations Research (OR) aims to optimize industrial processes by allocating resources efficiently. Often,
these resources are indivisible, such as a truck that either delivers a request or not. Indivisible ressources lead
to combinatorial optimization problems, where larger instances offer more flexibility and economy of scale.
Consider for instance a vehicle routing problem: if there are more requests to deliver in the same neighborhood,
the distance travelled between two requests is smaller, and the marginal costs per request decreases. However,
achieving economy of scale requires algorithms that can handle huge instances. Exploring large combinatorial
spaces (with up to 10100 solutions) is extremely challenging and most of the research focus has been on scalable
algorithms. This scalability has been achieved at the price of simplifying the objective function, a fact reflected
in the OR practitioners’ tools, where mixed integer linear programming (MILP) dominates. When it comes to
making algorithms scale, focusing on MILP has been a success story, with solvers in 2015 being 540 billion
times faster than in 1991 as recalled by Bertsimas et al. [2016], and instances with millions of variables and
constraints being solved routinely in the industry.

1



Consider now the following combinatorial optimization problem where we have made the dependency on the
instance x in X explicit

min
y∈Y(x)

f 0(y , x) (1.1)

where Y(x) is the finite set of feasible solutions for instance x ∈ X . The objective f 0 may model any complex
phenomena. We assume that f 0 comes with an oracle, that can be mildly expansive to compute, i.e., can
take a few seconds to evaluate and for instance be the result of a simulation. We focus on settings where the
problem defined by f 0 is challenging in two ways: i) its modeling is too complex to be cast as a mathematical
programming formulation that can be solved with off the shelf algorithms; ii) its computational cost prohibits
the use of a local descent heuristic. Since combinatorial algorithms must scale to be useful in OR, practitioners
generally simplify (1.1) into

min
y∈Y(x)

f̃ 0(y , x) (1.2)

where f̃ 0 a possibly-over-simplified deterministic objective amenable to classical algorithms. Such algorithms
are implicitly supposed to work on any instance of the problem, and distributional aspects over the instances,
i.e., that instances that have to be solved in practice have a specific structure, have been overlooked in the
literature. This results in worst case analysis to be the main setting considered by complexity theory.

On the other hand, a recent line of works detailed below has proposed with some successes a learning
methodology that directly address the objective of (1.1) in its full complexity. Instead of solving each instance
independently, we consider a family H of policies h : x ∈ X 7→ y ∈ Y(x). Our goal is to learn a mapping h⋆

that minimizes the risk
min
h∈H
R(h) := EX

[
f 0(h(X), X)

]
, (1.3)

where X is a random instance distributed according to some distribution PX . If the set H corresponds to all
the possible measurable mappings x ∈ X → (Y(x))x∈X , then we get back to the classical approach where each
instance is solved independently.

We instead restrict ourselves to a family of tractable policies parametrized by a vector w belonging to a
setW, and we learn the parameter w that minimizes the risk. For such an approach to work, the policy mappings
of H need to be able to properly explore the large combinatorial set of solutions Y(x). One approach has proved
successful on a variety of applications such as portfolio optimization [Elmachtoub and Grigas, 2021], path finding
in images [Pogancic et al., 2020], vehicle scheduling [Parmentier, 2021a], machine scheduling [Parmentier and
T’Kindt, 2021], dynamic vehicle routing [Baty et al., 2024] in the last few years. It consists in delegating the
exploration of Y(x) to the linear optimization problem

ŷ(θ) ∈ argmax
y∈Y(x)

⟨y , θ⟩ , (1.4)

which we assume tractable, and where ŷ : θ ∈ Y(x) 7→ ŷ(θ) ∈ Y(x) is an oracle returning an optimal solution
of (1.4). We omit the dependency of ŷ in x throughout the paper, for sake of readability. In Equation (1.4),
vector θ is a direction in Rd(x) and ⟨·, ·⟩ denotes the standard inner product. A statistical model ψw is used to
find a direction vector θ that leads to promising solutions. In other words, we consider the following family of
parameterized policy mappings

H :=
{
hw : x ∈ X 7→ ŷ(ψw (x)) ∈ Y(x) , w ∈ W

}
, (1.5)

Note that the objective of (1.4) nevertheless relies on an embedding of Y(x) in Rd(x), whose dimension d(x)
may depend on the instance considered.

In a nutshell, instead of approximating the objective function f 0 in (1.1) by a simpler f̃ 0 as in (1.2), we
study an average error EX

[
f 0(h(X), X)

]
as in (1.3). The latter involves a statistical model H defined in (1.5)

and derived from the linear combinatorial optimization problem (1.4). The role of the model is to explore
efficiently the solution set Y(x) and we do not seek to approximate f 0 in any way. In practice, as usual in
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machine learning, it is the distribution PX in (1.3) that is approximated through samples (X1, . . . , Xn), in an
empirical risk minimization fashion. Our Theorem 3 provides error guarantees when n goes to +∞ to show the
convergence to (1.3).

The idea of transforming an optimization problem into a learning one is motivated by industrial practice.
In many real-world scenarios, the problem instances that practitioners in the industry need to solve come from
a specific but unknown distribution. For example, an airline optimizes the routes of its airplanes based on a
schedule and some operational constraints that do not vary much from one day to another. The traditional
approach does not take advantage of this distributional information. Learning is a sensible strategy as it
allows the algorithm to adapt to the problem structure. Moreover, it enables to focus on optimizing the true
objective f 0 instead of pushing the optimization of (1.2) beyond the statistical accuracy of f̃ . Furthermore,
the choice of H allows the combinatorial aspects to be handled only through the linear optimization oracle.
This enables the use of very efficient algorithms, developed by the combinatorial optimization community for
problems with linear objectives. Finally, most of the computational burden is pushed into the learning problem,
which is solved offline: only the linear surrogate (1.4) needs to be solved online. This is helpful in industrial
settings, where the full information on the instance is often known at the last minute, which strongly constrains
the computing time and forces to use only objective functions simple enough to allow for fast optimization
algorithms.

1.2 Learning problem

Finding a suitable policy in H requires designing a learning algorithm that selects a parameter w that leads
to a good performance in practice. Two typologies of learning strategies have been proposed in the literature:
supervised learning and regret minimization, a.k.a. imitation learning and learning by experience [Bengio et al.,
2021]. Supervised learning approaches assume that the training set contains instances X1, . . . , Xn of (1.1)
and their solutions ȳ1, . . . , ȳn. In this setting, the objective f 0 is dismissed, and surrogate losses evaluate how
far the model output ŷ(ψw (x)) ∈ Y(x) of the model is from the training set target ȳi . Regret minimization
approaches instead only require instances X1, . . . , Xn and being able to evaluate f 0, by focusing on minimizing
the empirical regret

min
w∈W

Rn(hw ), where Rn(hw ) =
1

n

n∑
i=1

f 0
(
hw (Xi), Xi

)
. (1.6)

Unfortunately, due to the combinatorial nature of (1.4), this objective is piecewise constant, which has two
negative impacts: it makes the optimization problem intractable, and leads to poor generalization properties.
To that purpose, we rely on a perturbation strategy developed in Berthet et al. [2020] to turn the linear
optimization problem (1.4) into a family of tractable distributions pλ(y |θ), with λ > 0 a parameter controlling
the smoothness of θ 7→ pλ(y |θ). And we formulate the learning problem as

min
w∈W

{
1

n

n∑
i=1

∑
y∈Y(Xi )

pλ(y |ψw (Xi)) f 0
(
y , Xi

)}
. (1.7)

1.3 Related works

Relevant applications A first natural application of our approach is black-box optimization for combinatorial
problems, see for instance Vu et al. [2017]. When modeling complex phenomena, the cost function oracle
f 0(y , x) typically involves running a simulation, which can be computationally expensive. When the set of feasible
solutions Y(x) is large, it is intractable to directly optimize the objective function f 0 in (1.1). It is then natural
to replace the black-box f 0 by a tractable surrogate in a parametric family. As a variant, f 0 may be sufficiently
simple to be optimized directly, but the algorithm solving (1.1) is too slow or does not scale to large instances.
In that setting, using a surrogate f can be a way to obtain a fast heuristic for large instances. Parmentier
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and T’Kindt [2021] obtained the best fast heuristic for large instances of a classic single machine scheduling
problem using such an approach. The need for such algorithms is notably important in the context of stochastic
optimization [Shapiro et al., 2021], where the objective f 0(y , x) = Eξg(y , ξ, x) involves an expectation with
respect to an uncertain parameter. There exists plenty of algorithms to solve (1.1), but these are typically
able to solve only instances of moderate size, while algorithms for deterministic versions can address large
industrial instances. Such techniques have been applied to a stochastic vehicle scheduling problem [Parmentier,
2021a]. They can also be used to approximate of two stage stochastic problems by single stage deterministic
surrogates [Dalle et al., 2022, Parmentier, 2021b]. In that context, f 0(y , x) = Eξ,zg(y , z , ξ, x), where ξ is
again an uncertainty, y is a decision taken before knowing ξ, and z is a decision taken after observing ξ. The
surrogate ψw (x)⊤y is then a deterministic approximation of the function minz Eξ,zg(y , z , ξ, x). Moreover, these
methods are particularly well suited for contextual stochastic optimization problems [Sadana et al., 2024], see
Example 1 below. Finally, one context where such surrogates are very useful but which is beyond the scope of
this paper is multistage stochastic optimization [Shapiro et al., 2021] for combinatorial problems, as illustrated
by the winning approach for the 2022 EURO-NeurIPS challenge on dynamic vehicle routing [EUR, Baty et al.,
2024].

To illustrate our theoretical guarantees, we present three examples, one generic and two more industrial.

Example 1. (Contextual Stochastic Optimization) Consider a stochastic optimization problem where the cost
over a solution is influenced by some noise ξ, [Sadana et al., 2024]. The decision maker does not observe ξ, but
has access to some contextual data X̃ that is correlated to ξ. A solution is a policy h that maps any context x̃
to a feasible decision y ∈ Y(x̃) given x̃ . Given a joint distribution over (X̃, ξ) and a hypothesis class H for h,
the goal of contextual stochastic optimization is to find the policy that minimizes the expected risk

min
h∈H

E
[
f c
(
h(X̃), X̃, ξ

)]
(1.8)

An optimal policy is provided by the conditional distribution

h⋆ : x̃ 7−→ argmin
y∈Y(x̃)

E
[
c
(
δ(X̃), X̃, ξ

)∣∣∣X̃ = x̃] (1.9)

However, contextual stochastic optimization considers the setting where the joint distribution over (X̃, ξ) is
unknown, but we have access to a training set x̃1, ξ1, . . . , xn, ξn. This makes the optimal policy (1.9) impractical.
Sadana et al. [2024] survey this emergent field. Contextual stochastic optimization can be considered as a special
case of our setting. It suffices to define X as (X̃, ξ), and f 0(y , x) as f c(y , x̃ , ξ) for x = (x̃ , ξ). We then restrict
ourselves to statistical models ψw (x) of the form ψ̃w (x̃) that exploit only the contextual information and not
the noise.

Example 2. (Stochastic Vehicle Scheduling [Parmentier, 2021a]) Consider a set of tasks with fixed begin and
end times operated by a fleet of vehicles. When a task is late, the assigned vehicle may propagate the delay to
the next tasks. The goal is to build the sequence of tasks operated by each vehicle in such a way that each task
is operated by exactly one vehicle and the expected cost of delay f 0(y , x) is minimized. The instance x can
typically be encoded as a digraph D = (V, A) where V is the set of tasks, and there is an arc a in A between v
and v ′ if these two tasks can be operated by the same vehicle in a sequence, and a vector φ(a, x) of additional
information for each arc a. Since a solution corresponds to a partition of the vertices of an acyclic digraph
into paths, the set of feasible solutions Y(x) can be identified with the vertices of the flow polytope over D.
As statistical model, one can take ψw : x 7→ θ = (θa)a∈A with θa = w⊤φ(a, x) for each a. Aircraft routing
problems solved routinely by airlines are variants of this problem. The stochastic version of it aims for its part
at controlling delay propagation. Solvers used in production typically solve the linear oracle. Switching from the
deterministic and delay-agnostic approaches in production to our policy that avoids delay propagation does not
impact the algorithm used online in production. It amounts to changing the parametrization of the online solver.
Although, computing this new parametrization requires solving a computationally intensive learning problem,
this can be done offline.

4



Example 3. (Single Machine Scheduling [Parmentier and T’Kindt, 2021]) In single machine scheduling problems,
n jobs have to be performed on a given machine. A solution is a permutation of {1, . . . , n} giving the order in
which the jobs are processed. Several objectives can be used. In the reference above, jobs have release times,
before which they cannot be started, and processing times, which indicate the time needed by the machine to
operate the job. The vector y encodes a permutation, and the goal here is to minimize f 0(y , x) which is equal
to the sum (the average) of the job completion times, taking into account the release time. Permutations y
can be encoded by vectors yi giving the position of job i in the permutation. Optimizing a linear objective θ⊤y
amounts to sorting θ, and we can therefore use a sorting algorithm as linear minimization oracle.

Learning algorithms and generalization bounds. In order to train policies that embed a combinatorial
optimization oracle using a supervised learning approach, recent advances have focused on Fenchel-Young
losses [Berthet et al., 2020, Blondel et al., 2020, Dalle et al., 2022]. In contrast, the regret minimization
paradigm has been overlooked [Parmentier, 2021b]. As far as we know, the only well-established for regret is
the “smart predict then optimize” [Elmachtoub and Grigas, 2021], which relies on a surrogate Structured Hinge
Loss [Nowozin and Lampert, 2011, Chapter 6]. It applies only to the case of an f 0 that is linear but noisy. In this
paper, we focus on the theoretical analysis of the regret minimization approach (1.6). One natural estimator
consists in solving the empirical learning problem. To the best of our knowledge, generalization bounds for
structured regret minimization have been studied in Parmentier [2021b], which bounds the empirical process
error on the regularized risk when parameters w are restricted to some ℓ∞ ball. A similar result has been shown
in Qi et al. [2021] which also used Rademacher complexity to derive the statistical excess risk in contextual
stochastic optimization.

Our problem could also be seen as a special case of data-driven algorithm design, in a setting introduced
by Gupta and Roughgarden [2016]. We refer to Balcan [2021] for a summary of the literature on this topic.
Given a training set of instances of a problem coming from an unknown distribution, a regret minimization
approach is used to select the hyperparameters. Balcan et al. [2021] consider generalization guarantees for
the optimum of piecewise decomposable risk such as our piecewise constant non-regularized risk (1.6). This
framework could apply in our context when ψw is linear, but we do not have an algorithm to optimize such a
piecewise constant risk. Since the regularized risk is smooth and therefore no more piecewise decomposable,
their result cannot be applied in our context. The counterpart of their result is our Theorem 3 and relies on
tools more appropriate to our smoothed context.

Such questions of generalization are also studied in the structured learning literature [Ciliberto et al., 2016,
2020], where the problem consist in finding the best function hw minimizing EX,Y f 0(hw (X), Y ) for some prob-
ability distribution over (X, Y ), given examples sampled from the same probability. The results are very general,
holding under mild assumptions on f 0, and have been specialized to discrete spaces, in Nowak-Vila et al. [2019].
In particular, the results in the latter paper allow deriving automatically functions hw with a method that avoids
the curse of dimensionality in the dimension of the discrete space. However, it is unclear how to generalize this
technique to an arbitrary f 0 since the result depends on some internal properties of such function that are not
easy to check in a general case.

1.4 Contributions

In this paper, we build upon the normal fan geometry (see Section 2) involved by the linear optimization
program (1.4) and upon a perturbation approach to deliver a generalization bound that controls the perturbation
bias, the statistical learning error, and the optimization error (Theorem 1).

Perturbation makes the learning problem smooth and amenable to gradient descent methods. We choose
to study the so-called kernel Sum-of-Squares method [Rudi et al., 2024] in this paper. Furthermore, we prove
non-asymptotic guarantees on the performance of the learned policy, as well as convergence rates toward the
best policy encoded by (1.5).
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Statistical
model ψw (x)

CO oracle ŷ
min
y∈Y(x)

⟨y |θ⟩
Instance
x ∈ X

Direction vector

θ ∈ Rd(x)
Surrogate Policy

y ∈ Y(x)

Figure 1: Surrogate policy encoded by the statistical model ψw : x ∈ X 7→ θ ∈ Rd(x) with combinatorial
optimization (CO) layer given by a linear program over solutions y ∈ Y.

To obtain our performance guarantees, we introduce the uniform weak (UW) moment property. It corre-
sponds to controlling uniformly over w the moments of the distance of ψw (X) and the boundaries of the cones
of the normal fan of Y(x). Hence, it quantifies the interplay of the statistical model and (1.4). From this prop-
erty, we prove an explicit control of the variation of the risk when varying the scale λ > 0 of the perturbation.
Furthermore, we show that the UW property holds under mild assumptions on the statistical model ψw on and
on PX . We illustrate this on several examples in Section 3.2.

1.5 Outline

The next section (Section 2) presents our surrogate policy model (Section 2.1), the different kind of risks
(Section 2.2) and the main theorem on generalization guarantees (Section 2.3). Section 3 proves the main
theorems. It starts with a presentation the conditions required by our analysis (Section 3.1) and a discussion
on the UW property (Section 3.2). In Section 3.3 we show a control on the regularized risk under UW
property. Section 3.4 focuses on the discrepancy between the risk and its empirical version. Finally, we provide
in Section 3.5 the optimization error bound when using kernel Sum-of-Squares.

1.6 Notation

We denote by L(U) the law of some random variable U and by PU (resp. EU) the probability (resp. expectation)
with respect to the law L(U). We denote the stochastic boundedness by OP: for a sequence of random
variables (Un)n, notation Un = OP(1) means that for any ε > 0, there exists a finite M > 0 and a finite m ≥ 0
such that for every n ≥ m, P(|Un| > M) ≤ ε. For a sequence of non-zero reals (an)n, Un = OP(an) denotes
that (Un/an) = OP(1).

The set of instances is denoted by X , and the set of feasible solutions for an instance x ∈ X by Y(x) ⊆ Rd(x).
Given an instance x ∈ X , the objective function is f 0(·, x) whose optimal solution is denoted by y0(x) or
simply y0. The oscillation of f 0 is defined by

osc(f 0) := sup
y ,x

{
f 0(y , x)

}
− inf
y ,x

{
f 0(y , x)

}
.

The set of parameters is denoted by W and the statistical model by ψw : x ∈ X 7→ θ ∈ Rd(x). The solution
given by parameter w ∈ W is given by ŷ(ψw (x)).

2 The surrogate policy model and its guarantees

2.1 Surrogate policy model

Figure 1 illustrates the policies we consider. We start with a statistical model x 7→ ψw (x) ∈ Rd(x) that embeds
an instance x ∈ X into Rd(x) and we set θ := ψw (x) ∈ Rd(x). We build our surrogate policy ŷ(ψw (x)) ∈ Y(x)
by considering a solution to the linear program

max
y∈C(x)

⟨y , θ⟩ where θ := ψw (x). (2.1)
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We minimize over the convex hull
C(x) := conv(Y(x)).

which is a polytope since Y(x) is finite. This surrogate optimization problem is tractable in practice. It is given
by the family of surrogate maps f (y , x ;w) = ⟨y , ψw (x)⟩ linear in θ = ψw (x).

By construction, the surrogate policy ŷ(θ) is an extreme point of C(x). For each y ∈ Y(x) one can define
the normal cone Fy as the set of directions θ such that y is a solution to (2.1), equivalently

Fy :=
{
θ ∈ Rd(x)

∣∣∣ ⟨y , θ⟩ ≥ ⟨y ′, θ⟩ for all y ′ ∈ C(x)
}

The normal fan N (C(x)) is the collection of all such cones, illustrated on Figure 2.

y5 y6

y1

y2y3

y4
θ

Fy1

Fy2Fy3

Fy4

Fy5
Fy6

θ
ρ

Figure 2: Normal cone at point y1 to the polytope (left) and normal fan with internal radius ρ at point θ (right).

Example 2 (continued). In the context of stochastic vehicle scheduling, Y(x) corresponds to the partitions of
the vertices V into paths. Solutions are encoded by indicator vectors y = (ya)a∈A where ya is a binary variable
equal to 1 if arc a is in the solution, and to 0 otherwise. Its convex hull, C(x), is known to be a flow polytope
and has a compact formulation.

Example 3 (continued). The feasible solutions Y(x) of single machine scheduling are the vectors y encoding
a permutation of {1, . . . , n}. Their convex hull C(x) is a polytope known as the permutahedron.

For a given x ∈ X , it can occur that several y ∈ Y are optimal, i.e., there exists several y ∈ Y(x) such that
ψw (x) ∈ Fy . In this case, ŷ(ψw (x)) is defined as a probability distribution on such y ’s. A formal definition of
the surrogate policy ŷ(ψw (x)) is given as follows.

Definition 1 (Surrogate policy). Let θ ∈ Rd(x), and define the internal cone radius as

ρ(θ) := sup
{
r > 0

∣∣∣ ∀u ∈ B(0, 1) ,∃y ∈ Y s.t. θ ∈ Fy and θ + ru ∈ Fy
}
,

where B(0, 1) ⊂ Rd(x) is the standard Euclidean ball. We define the surrogate policy measure

ŷ(θ) :=
∑
y∈Y

p0(y |θ)δy

where δy is the Dirac mass at point y and

p0(y |θ) := PU
[
θ + ρ(θ)U ∈ Fy

]
where U is uniformly distributed on B(0, 1).
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Note that p0(y |θ) measures the proportion of normal cone Fy locally around θ.

Remark 2 (Generic case and an abuse of notation). Generically, a direction θ is in the interior of a normal
cone Fy and y ′ 7→ p0(y

′|θ) is zero except at point y . In this case, the measure ŷ(θ) is a Dirac mass at point y
and, by an abuse of notation, we denote by ŷ(θ) the vector y ∈ Rd(y).
To ease notation, we will consider that, by convention,

f (ŷ(θ)) :=
∑
y∈Y(x)

p0(y |θ)f (y)

for all functions f and all θ ∈ Rd(x).

2.2 The regularized and empirical risks

In our algorithms, we optimize an empirical and regularized version of the risk R, which we now introduce. We
observe n instances X1, . . . , Xn drawn independently according to a (possibly unknown) distribution PX . For all
w ∈ W, we denote the policy by hw : x 7→ ŷ(ψw (x)) and introduce the regularized population risk Rt and its
empirical version Rn,t by

Rt(hw ) := EX,Z
[
f 0(ŷ(ψw (X) + tZ(X)), X)

]
, (2.2)

Rn,t(hw ) :=
1

n

n∑
i=1

EZ

{[
f 0(ŷ(ψw (Xi) + tZ(Xi)), Xi)

]}
, (2.3)

where t ≥ 0 is some regularization parameter and Z(·) is a perturbation defined as follows.

Definition 3 (Law of the perturbation). Given x ∈ X , Z(x) has the same law as R × U where the random
vector U is uniformly distributed on the Euclidean sphere of Rd(x) and the random positive scalar R ∈ (0,∞)
is independent of U.

Remark 4. The perturbation Z(x) is a random vector in Rd(x) that is uniformly distributed on the Euclidean
sphere of Rd(x) and is scaled by a random positive scalar R. As such, the perturbed vector ψw (x) + tZ(x)
belongs to the normal cone of ψw (x) whenever tR ≤ ρ(ψw (x)), where ρ(ψw (x)) is the internal radius of the
normal cone at ψw (x). Note that this latter condition does not depend on the direction U(G) of the perturbation
Z(x).

For later use in our analysis we introduce the following quantity.

Definition 5 (Perturbed surrogate policy probabilities). Let λ > 0 and x ∈ X . Let θ ∈ Rd(x) and y ∈ Y(x).
We define the perturbed surrogate policy probability at solution point y for the direction θ as

pλ(y |θ) := EZ [p0(y |θ + λZ(x))] .

The (non-perturbed) surrogate policy of x ∈ X is defined as a solution ŷ(ψw (x)) ∈ Rd(x) to (1.4), and the
surrogate policy model is defined by (1.5).

Now, let ε0 ≥ 0 and consider the risk

Rε0(H) := min
w∈W

{
EX,Z

[
f 0(ŷ(ψw (X) + ε0Z(X)), X)

]}
, (2.4)

= min
w∈W

{
EX,Z

[ ∑
y∈Y(x)

p0(y |ψw (X) + ε0Z(X)) f 0(y , X)
]}
,

= min
w∈W

{
EX
[ ∑
y∈Y(x)

pε0(y |ψw (X)) f 0(y , X)
]}
,

= inf
w∈W

Rε0(hw ) ,

= Rε0(hw ⋆) . (2.5)
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We aim at finding the optimal surrogate policy hw ⋆ : x 7→ ŷ(ψw ⋆(x)), where w ⋆ is a solution to (2.4), assumed
to exist.

Remark 6. (cases ε0 = 0 and ε0 > 0) In the case where ε0 = 0, note that R0(hw ) = EX
[
f 0(ŷ(ψw (X)), X)

]
and it may fail to be continuous in w . Hence it may not be clear that a solution to (2.4) exists.

In the case ε0 > 0, we will prove that the risk is continuous and hence a solution always exists, under
mild assumptions (Proposition 1). Furthermore, we will also prove that the Property (UWε0), introduced later,
holds, under mild assumptions (Proposition 2). So rather than studying a perturbation scaling λ such that
λ ∈ (0,+∞), we suggest instead to fix ε0 > 0 and focus on λ ∈ [ε0,+∞). The small constant ε0 should be
then understood as a minimal amount of regularization to introduce, playing the role of machine precision.

2.3 Guarantees

Policy model misspecification error. We define the policy model misspecification error as

Eε0(H) := Rε0(H)− EX
[
f 0(y0(X), X)

]
= EX,Z

[
f 0(ŷ(ψw ⋆(X) + ε0Z(X)), X)

]
− EX

[
f 0(y0(X), X)

]
≥ 0

where y0(x) minimizes (1.1).
In PX-average, it measures, for the loss given by f 0, how the policy ŷ(ψw ⋆(X) + ε0Z(X)) fails to approxi-

mate y0(X) or equivalently how ψw ⋆(X)+ ε0Z(X) fails to point towards normal cones Fy at point y such that
f 0(y , X) − f 0(y0(X), X) is small. To apprehend the term Eε0(H), one needs some regularity-related notion
for y0 and f 0. This study is out of the scope of this paper, and we focus on the optimal risk defined in (2.4).

Error bounds We will introduce an estimator hwM,n,λ which depends on some complexity integer parameter
M ≥ 1, the sample size n, and a real valued tuning parameter λ > 0 such that λ ≥ ε0. Assume that w ⋆ exists,
then one has the following decomposition of the error, with each term handled separately,

0 ≤ Rε0(hwM,n,λ)− EX
[
f 0(y0(X), X)

]
= Rε0(hwM,n,λ)−Rλ(hwM,n,λ)︸ ︷︷ ︸

Theorem 2

+Rλ(hwM,n,λ)−Rn,λ(hwM,n,λ)︸ ︷︷ ︸
Theorem 3

+Rn,λ(hwM,n,λ)−Rn,λ(hwn,λ)︸ ︷︷ ︸
Theorem 4

+Rn,λ(hwn,λ)−Rn,λ(hw ⋆)︸ ︷︷ ︸
≤0

+Rn,λ(hw ⋆)−Rλ(hw ⋆)︸ ︷︷ ︸
Theorem 3

+Rλ(hw ⋆)−Rε0(hw ⋆)︸ ︷︷ ︸
Theorem 2

+ Eε0(H)

where, for any w ∈ W, we define hwn,λ such that

Rn,λ(hwn,λ) = min
w∈W

Rn,λ(hw ) .

In practice, we will make some working assumptions, to obtain the following, possibly probabilistic, bounds on
each of the terms.

Theorem 1. Under the conditions given in Section 3.1, the following holds true. Let ε0 ≥ 0 and λ > 0 be such
that λ ≥ ε0. Let τ ∈ (0, 1). There exists a constant C > 0 that depends only on ε, τ and f 0 such that for any
w ∈ W and n ≥ 1, one has

|Rε0(hw )−Rλ(hw )| = Cλτpolylog(λ) (Theorem 2, Perturbation bias)

|Rλ(hw )−Rn,λ(hw )| = OP
( 1

λ
√
n

)
(Theorem 3, Empirical process)
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and, for hwn,λ given by the kernel Sum-of-Squares estimate solution to min
w∈W

Rn,λ,

|Rn,λ(hwM,n,λ)−Rn,λ(hwn,λ)| = OP

[(
1

λ(M/ logM)
1
d

)s− d
2

]
by Theorem 4 (K-SoS)

where polylog(λ) is a polynomial logarithm term and s > d/2 is some tuning parameter on the order of regularity
of the admissible functions. It yields the following bound on the error between the risk and the regularized risk

0 ≤ Rε0(hwM,n,λ)− EX
[
f 0(y0(X), X)

]
≤ Cλτpolylog(λ) +OP

[( 1

λ
√
n

)
+

(
1

λ(M/ logM)
1
d

)s− d
2

]
+ Eε0(H) ,

where the K-SoS bound is given up to a small a posteriori error, see Remark 11.

Our excess risk bound is of the type statistical to computational showing the effect of regularisation λ,
sampling n and the complexity of the algorithm M. It shows that, when λ goes to zero, the excess risk goes
to zero if

√
n dominates 1/λ and M dominates 1/λd . The first shows quantitatively how many sample points

the practitioner needs when diminishing the regularization λ. Our statistical bound matches the parametric
rate 1/

√
n and 1/λ can be interpreted as a standard error. The latter is a so-called curse of dimension, the

complexity of the algorithm is exponential in the dimension d and 1/λ can be interpreted as a smoothness
parameter.

Example 1 (continued). In our reduction of contextual stochastic optimization to the setting of this article,
the definition of X as (X̃, ξ) and of f 0(y , x) as f c(y , x̃ , ξ) may have seemed surprising. The common practice
in stochastic optimization would have suggested defining X as X̃ and f 0(y , x) as E

[
f c(y , X, ξ)

∣∣X = x]. Our
reduction has however two advantages.

First, we do not know the distribution over (X̃, ξ), but only have access to a training set x̃1, ξ1, . . . , x̃n, ξn.
Hence, we have all the data needed to formulate the empirical risk minimization problem with our reduction,
while the alternative reduction would require the conditional distribution on ξ given X̃ = xi , which we do not
know.

Second, with our reduction, Theorem 1 applies out of the box to contextual stochastic optimization. In
stochastic optimization, we select a decision by coordinating the different scenarios for a given instance/context.
In our case, we select instead a policy by coordinating scenarios across different instances/context. Using a
machine learning terminology, our reduction is a discriminative approach, while the other one, which would be
closer to the common practice in stochastic optimization, is a generative approach. Theorem 1 provides as
theoretical basis for this discriminative approach.

3 Main results

We present in this section the results we use to obtain Theorem 1. As discussed above, our analysis involves a
parameter ε0 ≥ 0 that accounts for a small perturbation defining the riskRε0 . Our main result is an upper bound
on the excess risk when Property (UWε0), defined later, is met. We show that this property is always satisfied
when ε0 > 0. In the case ε0 = 0 there is no regularization on the risk, but one has to check Property (UWε0)

to apply our result. We will give four cases in which Property (UWε0) is met when ε0 = 0.

3.1 The conditions

Partition of the instances On many combinatorial optimization problems, instances x are pairs (G, ξ), where
G is a combinatorial object, and ξG is a vector of parameters whose dimensions depend only on G, e.g., G is
typically a graph and ξG contains a vector of parameters (a label) for each vertex or edge of G. Furthermore,
we know an embedding of Y(x) in the Euclidean space Rd(x) with d(x) of polynomial size in x . For instance,

10



solutions of the shortest path problems are the vertices of the path polytope, solutions of the minimum weight
spanning tree problem are the vertices of the spanning tree polytope, and so on. More generally, most combi-
natorial optimization problems admit a mixed integer linear programming formulation. As illustrated by these
examples, the set of feasible solutions Y(x) frequently depends only on G. To avoid technicalities, we omit G
and ξG in the analysis but make the following assumption about a partition of the space of instances.

Assumption (Part). The following holds.

• There is a finite partition G of X into (XG)G∈G such that Y(x) are constant and finite for all x ∈ XG ;

• The absolute value of the target function |f 0| is uniformly bounded on XG for each G ∈ G and, hence, its
oscillation is finite, osc(f 0) <∞, with

osc(f 0) := sup f 0 − inf f 0 .

Example 2 (continued). In the context of the stochastic vehicle scheduling, G corresponds to the digraph D
we introduced, and G to all possible digraphs"? Assuming that G is finite is therefore natural: since no firm
is going to serve an infinite number of requests, G is a subset of the set of acyclic digraphs with at most nv

vertices for some nv. Since we are working with the flow polytope, d(G) corresponds to the number of arcs |A|
in digraph D. The second part of the assumption holds if costs are positive and if there is a maximum cost that
can be encountered per task, which is natural in any real life setting.

Example 3 (continued). In the context of single machine scheduling, the set of feasible solutions depends only
on the number n of tasks. As a consequence, G can be identified with n, and G is the subset of Z+ corresponding
to instance sizes. Supposing that it is finite only amounts to having an upper bound on the number of tasks.
Finally, d(G) = n.

Remark 7. Under Assumption (Part), note that, for each G ∈ G, and all x ∈ XG , the embedding of Y(x)
into Rd(x) and the dimension x → d(x) are constant. We denote by d(G) the value of d(x) for x ∈ XG .
Without loss of generality, we assume that Y(x) ⊆ Rd(x) and Vect(Y(x)) = Rd(x).

Under Assumption (Part), we have the following decomposition of the law PX of X.

EX [t(X)] :=

∫
X
t(x)dPX(x) =

∑
G∈G

P[X ∈ XG ]
∫
XG
t(x)dPξG (x) , (3.1)

where PξG is the law of ξG , namely the conditional law of L(X|X ∈ XG), and t is any bounded continuous
function. Denote by P(n)X its empirical version, given by

E
(n)
X [t(X)] :=

1

n

∑
i∈[n]

t(Xi) =
1

n

∑
i∈[n]

∑
G∈G

1{Xi∈XG}t(Xi). (3.2)

The Gaussian perturbation assumption: Throughout this paper, we consider that the perturbation random
field Z(·) is a Gaussian random field satisfying the following assumption.

Assumption (Gauss). We assume that
√
d(G)R(G) has chi-distribution with d(G) degrees of freedom which

is equivalent to
∀x ∈ XG ,

√
d(G)Z(x) ∼ N (0, Idd(G)) . (3.3)

Under Assumptions (Part) and (Gauss), we have the following decomposition of the law L(X,Z),

EX,Z
[
t(X,Z)

]
:=
∑
G∈G

P[X ∈ XG ]
∫
XG

(∫
Rd(G)

t(x , z)ϕd(G)(z)dz
)
dPξG (x) , (3.4)

where PξG is the law of ξG , namely the conditional law of L(X|X ∈ XG), ϕd(G) is the Gaussian density of
N (0, (1/d(G))Idd(G)), and t(·) is any bounded continuous function.
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Lipschitz feature map: The following assumption is about the Lipschitz continuity of the feature map.

Assumption (Lip). For all x ∈ X , the function w ∈ W 7→ ψw (x) ∈ Rd(x) is LW -Lipschitz continuous with a
constant LW which does not depend on x .

Example 2 (continued). In the stochastic vehicle scheduling problem example, we use a generalized linear
model with θa = w⊤φa, which φa being some features of the connection a, related to the slack between the
tasks that are the tails and the head of a. In applications, it is natural to assume that this slack is bounded,
which gives our Lipschitz assumption.

Under these assumptions

Remark 8. When w encodes the parameters of a neural network with smooth activation functions one can
compute the differential with respect to w at input point x of neural network, namely the gradient of w 7→ ψw (x).
By the chain rule, one obtain that partial gradients ∂ψw (x)/∂wi are product of derivatives of the activation
functions evaluated at layers values, matrices of some of the parameters w , and input vector x . Since the layers
values are themselves composition of activation functions and product of matrices of some parameters w and
input vector x , they are bounded by compactness of W and X . Hence, partial gradients ∂ψw (x)/∂wi are also
bounded by compactness. We deduce that (Lip) is satisfied.

Existence of solutions: We assume that the optimization problem (2.4) has a solution and that the minimum
of the risk has a minimizer.

Assumption (Sol). There exists w ⋆ ∈ W solution to (2.4) and min
w∈W

Rn,ε0(hw ) has a minimizer.

Proposition 1. Let ε0 be positive and let Assumptions (Gauss) and (Lip) hold. Then, Assumption (Sol) is met.

Proof. When ε0 > 0, the risk w 7→ Rε0(hw ) is continuous with respect to w (see Lemma 7) and the set W is
compact. Therefore, the infimum in (2.4) is attained.

The uniform weak (UW) moment property: We introduce a property that is useful for the proofs, and use
it to discuss the impact of the perturbation on the policy.

Given a regularization parameter λ > ε0 ≥ 0, we will see later that the uniform weak moment property,
given below, implies that w 7→ |Rλ(hw )−Rε0(hw )| is uniformly bounded by O(λτpolylog(λ)) where polylog(λ)
is a polynomial logarithm term and τ ∈ (0, 1), see Theorem 2.

Property (UWε0). For all τ ∈ (0, 1), it exists a positive constant Cε0,τ > 0 such that

∀w ∈ W , EX,Z

[(ρ(ψw (X) + ε0Z(X))√
d(X)

)−τ]
≤ Cε0,τ . (3.5)

3.2 Discussion on the UW property

UW is always met for positive regularization: We have the following proposition showing that, when ε0 > 0,
Property (UWε0) holds with a constant Cε0,τ that depends only on ε0 and τ .

Proposition 2. If ε0 > 0 then, under Assumptions (Part) and (Gauss), Property (UWε0) holds and

Cε0,τ ≤
( ∫

R

|t|−τϕ(t)dt
)
× ε−τ0 ×

∑
G∈G

P[X ∈ XG ] |Y(G)|2 d(G)τ ,

where ϕ is the standard Gaussian density on R.
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Proof. In view of (3.4) and without loss of generality, we consider that X ∈ XG almost surely, for G fixed.
Let H be an hyperplane and d(θ,H) be the Euclidean distance between θ and H. By (3.4), note that

EX,Z

[(d(ψw (X) + ε0Z(X))√
d(X)

)−τ]
= EξG ,Z

[( d(G)
τ
2

d(ψw (ξG) + ε0Z(ξG), H)τ

)]
= d(G)

τ
2 EξG

[
EZ

( 1

d(ψw (ξG) + ε0Z(ξG), H)τ

∣∣∣ξG)] .
Conditionally to ξG , observe that d(ψw (ξG) + ε0Z(ξG), H)τ is the distance between the hyperplane H and a
Gaussian with mean ψw (ξG) and variance (ε20/d(G))Idd(G). This distance is

d(ψw (ξG) + ε0Z(ξG), H)
τ = |⟨nH , ψw (ξG) + ε0Z(ξG)⟩|τ

where nH is a unitary orthogonal vector to H. Conditionally to ξG , ⟨nH , ψw (ξG) + ε0Z(ξG)⟩ is a Gaussian
random variable with mean ⟨nH , ψw (ξG)⟩ and variance ε20/d(G).

Observe that the level sets of t 7→ |t|−τ are symmetric convex bodies, namely intervals of the form [−a, a]
for a > 0. By Anderson’s lemma [Giné and Nickl, 2021, Theorem 2.4.4], it holds that

EZ

( 1

d(ψw (ξG) + ε0Z(ξG), H)τ

∣∣∣ξG) ≤ EZ( 1

d(ε0Z(ξG), H)τ

∣∣∣ξG) = d(G)
τ
2

ετ0

∫
R

|t|−τϕ(t)dt .

We deduce that

EX,Z

[(d(ψw (X) + ε0Z(X))√
d(X)

)−τ]
≤
d(G)τ

ετ0

∫
R

|t|−τϕ(t)dt <∞

Then observe that for Q a polyhedral cone with non-empty interior we have that Q is the intersection of
halfspaces delimited by H1, . . . , HD. Note also that 1

d(θ,Q)τ ≤
1

d(θ,H1)τ
+ . . .+ 1

d(θ,HD)τ
, and thus θ 7→ 1

d(θ,Q)τ is
integrable with respect to the law of ψw (X) + ε0Z(X) conditional to X ∈ XG . Finally, observe that θ 7→ ρ(θ)

is the distance to the boundaries of polyhedral cones.

The no perturbation case: We would like to show that Property (UWε0) is met when ε0 = 0 in some cases.
Under Assumption (Part) and without loss of generality, we consider that d(X) is constant almost surely, say
d(X) = d . We consider four scenarios on the family of laws

L :=
{
L(ψw (X)) : w ∈ W

}
where L(ψw (X)) denotes the law of ψw (X), given by

(i) There exists a compact K ⊂ Rd such that the supports of the laws of L are included in K and these laws
are absolutely continuous, with respect to the Lebesgue measure, with uniformly bounded density;

(ii) There exists a finite set K ⊂ Rd such that the laws of L are finite with support included in K;

(iii) There exists a compact Riemannian submanifold K ⊂ Rd (with metric induced by the Euclidean metric)
such that the supports of the laws of L are included in K and these laws are absolutely continuous, with
respect to the Riemannian measure, with uniformly bounded density;

(iv) The laws of L are a mixture of an absolutely continuous law satisfying (i), a discrete law satisfying (ii),
and a singular continuous law satisfying (iii).
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Now, using that

• θ 7→ ρ(θ) is the distance to the boundaries of polyhedral cones;

• 1
d(θ,Q)τ ≤

1
d(θ,H1)τ

+. . .+ 1
d(θ,HD)τ

where Q a polyhedral cone wich is the intersection of halfspaces delimited
by H1, . . . , HD;

• θ 7→ 1
d(θ,Q)τ is integrable with respect to the uniform measure on compacts, hence with respect to any

bounded density with compact support;

we deduce that Property (UWε0) holds for the four scenarios above.

Remark 9. Let us first consider a generalized linear model, such as in our stochastic vehicle scheduling of
Example 2, where θ = ΦΦΦ(x)⊤w for a given matrix of features. Then Case (i) is satisfied when every feature is
continuous and upper bounded and the number of features is rich enough. If the number of features is small,
then the image of the instances through the model may be included in a hyperplane, which leads to Case (iii).
Case (ii) corresponds to features that take integer values and are finite. Using a submanifold instead of a
hyperplane, Case (iii) enables us to deal with neural networks in ψw .

Example 2 (continued). In the stochastic vehicle scheduling problem example, continuous features would
typically correspond to features reflecting properties of the delay or the distance, which are by nature continuous
and upper bounded. Discrete features can for instance indicate combinatorial properties such as the number of
arcs departing from the tail of an arc a.

3.3 Regularization by perturbation and perturbation bias

We start by introducing

Vw (λ) := EXPZ

[
∥Z(X)∥2 >

ρ(ψw (X))

λ

∣∣X] = EXPR[R(X) > ρ(ψw (X))

λ

∣∣X] ,
for λ > 0 and w ∈ W. By dominated convergence, note that Vw (λ) tends to zero as λ goes to zero and
that Vw (λ) tends to one as λ goes to infinity. Note also that the function λ 7→ Vw (λ) ∈ [0, 1] is non-decreasing.

Our first contribution is a bound on the risk perturbation.

Proposition 3. Let ε0 ≥ 0 and λ > 0 be such that λ ≥ ε0. It holds that, for all w ∈ W,∣∣Rλ(hw )−R(hw )∣∣ ≤ 2 osc(f 0)Vw (λ) and
∣∣Rλ(hw )−Rε0(hw )∣∣ ≤ 4 osc(f 0)Vw (λ) .

Proof. Recall that p0(y |ψw (x)) = P[ψw (x) + ρ(ψw (x))U ∈ Fy ] where U is uniformly on B(0, 1) and

pλ(y |ψw (x)) = PZ [ψw (x)/λ+ Z(x) ∈ Fy ] = PZ [ψw (x)/λ+ R(x)U(x) ∈ Fy ] .

Observe that p0(y |ψw (x)) = P[ψw (x) + ρ(ψw (x))U ∈ Fy ] = PU [ψw (x) + ρ(ψw (x))U(x) ∈ Fy ] where U(x) is
uniformly distributed on the Euclidean sphere Rd(x).

Note that

Rλ(hw )−R(hw )

= EX
[ ∑
y∈Y(X)

pλ(y |ψw (X))f 0(y , X)−
∑
y∈Y(X)

p0(y |ψw (X))f 0(y , X)
]

= EX,R,U
[ ∑
y∈Y(X)

(
1
(
ψw (x)/λ+ R(x)U(x) ∈ Fy

)
− 1

(
ψw (x) + ρ(ψw (x))U(x) ∈ Fy

))
︸ ︷︷ ︸

A(X,y ,R,U)

f 0(y , X)
]

= EX,R,U
[ ∑
y∈Y(X)

(
1
(
R(x) ≤ ρ(ψw (x))/λ

)
+ 1

(
R(x) > ρ(ψw (x))/λ

))
A(X, y , R, U)f 0(y , X)

]
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where we have introduced the random variable A(X, y , R, U). By a zero-sum argument, one can replace f 0(y , X)
by f 0(y , X)− inf f 0 in the calculation above.

By definition of ρ, if R(x) ≤ ρ(ψw (x))/λ then 1
(
ψw (x)/λ + R(x)U(x) ∈ Fy

)
is equal to 1

(
ψw (x) +

ρ(ψw (x))U ∈ Fy
)
. Hence A(X, y , R, U)1

(
R(x) ≤ ρ(ψw (x))/λ

)
= 0.

We therefore have

∣∣Rλ(hw )−R(hw )∣∣ = ∣∣EX,R,U[ ∑
y∈Y(X)

1
(
R(X) > ρ(ψw (X))/λ

)
A(X, y , R, U)(f 0(y , X)− inf f 0)

]∣∣
≤ EX,R,U

[ ∑
y∈Y(X)

1
(
R(x) > ρ(ψw (x))/λ

)
|A(X, y , R, U)|(f 0(y , X)− inf f 0)

]
≤ EX,R,U

[
osc(f 0)1

(
R(X) > ρ(ψw (X))/λ

) ∑
y∈Y(X)

|A(X, y , R, U)|

︸ ︷︷ ︸
≤2

]

≤ 2 osc(f 0)EXPR
(
R(X) > ρ(ψw (X))/λ|X

)
= 2osc(f 0)Vw (λ).

Using that the function λ 7→ Vw (λ) ∈ [0, 1] is non-decreasing, we have∣∣Rλ(hw )−Rε0(hw )∣∣ ≤ ∣∣Rλ(hw )−R(hw )∣∣+ ∣∣R(hw )−Rε0(hw )∣∣
≤ 2 osc(f 0)Vw (λ) + 2 osc(f 0)Vw (ε0)
≤ 4 osc(f 0)Vw (λ) ,

which concludes the proof.

Corollary 4. Under Condition (Sol), it holds that

Rλ(H)−R(H) ≤ 2 osc(f 0)Vw ⋆(λ) .

Proof. Observe that R(H) = EX
[∑

y∈Y(X) p0(y |ψw ⋆(X))f 0(y , X)
]

and remark that it holds

Rλ(H) ≤ EX
[ ∑
y∈Y(X)

pλ(y |ψw ⋆(X))f 0(y , X)
]
,

which gives the result by substracting the first equality.

Combining Proposition 3 and Proposition 10 we get the following theorem.

Theorem 2. Under (UWε0) and (Gauss), the following holds true. Let ε0 ≥ 0 and λ > 0 be such that λ ≥ ε0.
Let τ ∈ (0, 1). There exists a constant C > 0 (that may depend on the constant Cε0,τ , appearing in (UWε0),
and osc(f 0)) such that, for all w ∈ W,∣∣Rλ(hw )−Rε0(hw )∣∣ ≤ C λτpolylog(λ) ,
where polylog(λ) is a polynomial logarithm term.

Proof. Assumption (Mom.) is implied by Assumption (UWε0), see Proposition 3 and Proposition 10 of Ap-
pendix B.
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3.4 Empirical process control

We consider the empirical regularized risk (2.3) and

Rn,λ(H) := min
w∈W

{1
n

n∑
i=1

EZ
[
f 0
(
ŷ(ψw (Xi) + λZ(Xi)), Xi

)]}
. (3.6)

We would like to control the random variable

∆n = sup
w∈W

∣∣Rn,λ(w)−Rλ(w)∣∣ .
We are going to use a Bernstein inequality for bounded sub-Gaussian random variables. In this analysis, we use
the oscillation of f 0, recalled in Assumption (Part), and the Dudley’s entropy integral, defined as

IW :=
∫ ∞
0

√
logN (W, ∥ · ∥, ε) dε , (3.7)

where N (W, ∥ · ∥, ε) is ε-covering number of W with respect to ∥ · ∥, for further details the reader may refer to
[Wainwright, 2019, Chapter 5].

Remark 10 (Example). Let B be the unit ball of ∥ · ∥ and assume that there exists R > 0 such that W ⊂ RB.
The volume ratios lemma [Wainwright, 2019, Lemma 5.7] states that

IW ≤ Cd log(R + 1/R) ,

where C > 0 is a universal constant.

Theorem 3. Let Assumptions (Lip) and (Gauss) hold. Assume that d(X ) := max
x∈X

d(x) <∞ (which is implied

by (Part)). Then, for all δ ∈ (0, 1), it holds that

∆n = sup
w∈W

∣∣Rn,λ(w)−Rλ(w)∣∣ ≤ osc(f 0)
λ
√
n

(
(ln 2)

−3/4 LW IW
√
d(X ) + 4

√
ln
8

δ

)
, (3.8)

with probability higher than 1− δ.

Proof. Bounding ∆n is related to studying the zero-mean random variables

Vi ,w :=
1

n

[ ∑
y∈Y(Xi )

pλ(y |ψw (Xi))f 0(y , Xi)− E(X,Y )
[
pλ(Y |ψw (X))f 0(Y,X)

]]
, (3.9)

which depend on the random samples Xi ∼ PX . Indeed ∆n = supw∈W
∣∣∑

i∈[n] Vi ,w
∣∣ for a given draw. Rather than

studying the absolute value, we focus on Z := supw∈W
∑

i∈[n] Vi ,w and use a symmetrization argument. Since
∆n = max(supw∈W

∑
i∈[n] Vi ,w ,− infw∈W

∑
i∈[n] Vi ,w ), focusing on the first term, the second one being dealt

similarly, we will show that Z is close to its mean EZ with high probability (through a Bernstein inequality) and
then bound the mean EZ by O(1/√n) (through Hoeffding and Dudley’s inequalities).

Let (X ′i ) ∼ P
⊗n
X be drawn independently from (Xi)i∈[n] and define V ′i ,w as in Equation (3.9). Then (Vi ,w )i∈[n]

and (V ′i ,w )i∈[n] are independent with the same distribution.

Lemma 5. We have that almost surely

sup
w∈W

∑
i∈[n]

(Vi ,w − V ′i ,w )2 ≤
(osc(f 0))2

n
. (3.10)
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Proof. We use the fact that pλ ∈ [0, 1] to obtain that

Vi ,w − V ′i ,w =
1

n

[ ∑
y∈Y(Xi )

pλ(y |ψw (Xi))f 0(y , Xi)−
∑

y∈Y(X ′
i
)

pλ(y |ψw (X ′i ))f 0(y , x ′i )
]]

≤
1

n

[
sup

x ,x ′∈X , y ,y ′∈Y
f 0(y , x)− f 0(y ′, x ′)

]]
=
osc(f 0)

n
,

Since (V ′i ,w − Vi ,w ) is equal in law to (Vi ,w − V ′i ,w ), this yields (3.10).

Owing to Lemma 5, we can thus apply Boucheron et al. [2013, Theorem 12.3, Page 333] since

EX ′
i
∼PX [ sup

w∈W

∑
i∈[n]

(Vi ,w − V ′i ,w )2] ≤
osc(f 0)

n
.

Consequently, for all t ≥ 0, we have

P[Z ≥ EZ + t] ≤ 4e−
nt2

16(osc(f 0))2 . (3.11)

We are now going to show that EZ = O(1/√n) through a chaining argument. Fix w ,w ′ ∈ W. By Lemma 9,
note that w 7→

∑
y∈Y(x) pλ(y |ψw (x)) is Lipschitz with constant LW

√
d(x)/λ. We obtain that for all i ∈ [n],

as 1n
∑
y∈Y(Xi ) pλ(y |ψw (Xi)) = 1,

Vi ,w − Vi ,w ′ =
1

n

∑
y∈Y(Xi )

(pλ(y |ψw (Xi))− pλ(y |ψw ′(Xi))f 0(y , Xi)

=
1

n

∑
y∈Y(Xi )

(pλ(y |ψw (Xi))− pλ(y |ψw ′(Xi))(f 0(y , Xi)− inf
x ′,y ′

f 0(y ′, x ′))

≤
1

n
LW

√
d(X )
λ

osc(f 0)∥w − w ′∥ =: an ,

and similarly Vi ,w ′ − Vi ,w ≤ an. For Vw :=
∑

i∈[n] Vi ,w , we deduce that the random variable (Vw − Vw ′) is sub-
Gaussian as a sum of zero-mean independent sub-Gaussians [Vershynin, 2018, Proposition 2.6.1, Page 29], and
it holds that for the associated ψ2-norm [Vershynin, 2018, Example 2.5.8, Page 28],

∥Vw − Vw ′∥ψ2 ≤
[ 1√
ln 2

∑
i∈[n]

∥Vi ,w − Vi ,w ′∥2ψ2
]1/2
≤

an
√
n

(ln 2)1/4
=
LW
√
d(X )

(ln 2)1/4λ
√
n
osc(f 0)∥w − w ′∥ ,

with, for a sub-Gaussian X, the ψ2-norm is defined as ∥X∥ψ2 := inf{t ≥ 0 |Ee
X2/t2 ≤ 2}. In other words, we

have shown that the zero-mean random variable Vw has sub-Gaussian increments. We can thus apply Dudley’s
inequality [Vershynin, 2018, Theorem 8.1.3, Page 188],

EV = E[ sup
w∈W

Vw ] ≤
LW
√
d(X )

(ln 2)3/4λ
√
n
osc(f 0) IW .

We proceed similarly with infw∈W
∑

i∈[n] Vi ,w . We obtain that, setting t =
√
16(osc(f 0))2

n ln 4δ in (3.11), with
probability 1− 2δ,

∆n = max
{
sup
w∈W

∑
i∈[n]

Vi ,w ,− inf
w∈W

∑
i∈[n]

Vi ,w
}
≤ EV + t

Using the bound on EV , this yields (3.8).
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3.5 Optimization error bound on the Kernel-SoS case

The last part of the proof consists in bounding the optimization error when minimizing Rn,λ. Up to our
knowledge, many global optimization algorithms converge because they provably do an exhaustive search, as is
the case for DIRECT for instance [Jones et al., 1993, Section 5]. Consequently, their convergence bounds are
most often affected by the curse of dimensionality. Here we have an advantage since Rn,λ is a smooth function
thanks to the parameter λ > 0. This incites us to use a specific kernel-based approach recently suggested in
Rudi et al. [2024] to leverage the smoothness of the function Rn,λ. To alleviate notation, we set

Rn,λ(w) := Rn,λ(hw ).

The key idea will be to find an (approximate) Sum-of-Squares representation for Rn,λ while minimizing Rn,λ.
Fix s > 1+ d/2 and let Hφ be the Sobolev space over W of smoothness s. Denote by k its reproducing kernel,
i.e. k(·,w) ∈ Hφ such that for all g ∈ Hφ,w ∈ W, we have g(w) = ⟨g, k(·,w)⟩Hφ . Let φ : W → Hφ be the
kernel embedding, i.e. φ(w) = k(·,w). Set s̃ = s − d/2 ≥ 1. Let S+(Hφ) be the set of self-adjoint positive
semidefinite operators from Hφ to Hφ.

Assumption (kSoS). We assume that W is the closure of a union of closed balls ∪w∈SB(w , r) for some
r > 0 and a bounded set S ⊂ Rd . Assume furthermore that Rn,λ ∈ Cs+3(W,R) and that Rn,λ has a kernel
Sum-of-Square representation, i.e. there exists An,λ ∈ S+(Hφ) such that

Rn,λ(w)− min
w ′∈W

Rn,λ(w
′) = ⟨φ(w), An,λφ(w)⟩Hφ , ∀w ∈ W. (3.12)

For the following, we fix the An,λ with minimal trace satisfying (3.12).

The requirement on W is to use scattering bounds and is quite mild for compact sets. We mostly ensure
Rn,λ ∈ Cs+3(W,R) by regularizing Rn,0 through λ > 0 and using a smooth feature map w 7→ ψw , e.g.
ψw (x) = Φxw with Φx ∈ Rd(x)×d . By Rudi et al. [2024, Theorem 3] (see also Marteau-Ferey et al. [2024]),
the existence of An,λ is for instance guaranteed if Rn,λ and its second order partial derivatives belong to Hφ,
and Rn,λ has a finite number of minimizers, all with positive Hessian. We will see an explicit example below.

Recall that a global optimization problem can always be cast as a convex one under the form

max
c∈R,

c

s.t. c ≤ Rn,λ(w), ∀w ∈ W.

We consider the kernel Sum-Of-Squares approximation of it, namely

min
c∈R,

A∈S+(Hφ)

− c + λφTr(A) (3.13a)

s.t. Rn,λ(w̃m)− c = ⟨φ(w̃m), Aφ(w̃m)⟩Hφ , ∀m ∈ [M] (3.13b)

where λφ > 0 is some parameter, the (w̃m)m∈[M] are sampled uniformly at random in W.

Remark 11. A few words are in order. We want a c ∈ R such that w 7→ Rn,λ(w) − c ≥ 0. On the other
hand, for any A ∈ S+(Hφ), the function w 7→ ⟨φ(w), Aφ(w)⟩Hφ is nonnegative, and under some assumptions
on φ and Hφ [Marteau-Ferey et al., 2020], these functions are pointwise dense in the nonnegative continuous
functions. So we look for one such A for which the two functions are equal at least at the sampled points
and we penalize the extra variable A by its trace. For (3.13), the Newton-based algorithm detailed in Rudi
et al. [2024, Section 6] outputs the infimum value estimate R̂ = ĉ , the corresponding Â and a candidate
ŵn,λ =

∑
m∈[M] αmw̃m where each αm is the Lagrange multiplier of the equality constraint (3.13b) at w̃m.

Contrary to Rudi et al. [2024], an extra term |Rn,λ(ŵn,λ) − R̂| appears in our analysis. One expects that this
error goes to zero as M grows large, and we referred to it as a posteriori error.

18



Theorem 4. Fix δ ∈ (0, 1). With the above notation, under Assumption (kSoS), there exists explicit constants
M̄ ∈ N and C̄ ∈ R+ depending on s, d, δ, r, diam(W) such that for M ≥ M̄ and λφ ≥ C̄M−s̃/d

(
log Mδ

)s̃/d
we

have, with probability at least 1− δ,

|Rn,λ(ŵn,λ)− Rn,λ(wn,λ)| ≤ Rn,λ(ŵn,λ)− R̂ + λφ
(
Tr (An,λ) + |Rn,λ|W,⌈s̃⌉

)
, (3.14)

depending on the Sobolev norm |Rn,λ|W,⌈s̃⌉ = sup|α|=s̃ supw ′∈W |DαRn,λ(w ′)|.

The estimate (3.14) has the advantage that if s ≫ d then the smoothness mitigates the curse of dimen-
sionality. Indeed, to achieve an a priori error ϵ on the last term of (3.14), which we denote λφCn,λ, we can take
M ∝ ϵ−d/s̃ rather than the more usual, and much larger, M ∝ ϵ−d . Note however that the constants M̄ and C̄
can still depend exponentially in the dimension, their closed-form expressions can be found in Rudi et al. [2024,
Theorem 5]. Furthermore the Sobolev norm |Rn,λ|W,⌈s−d/2⌉ and the cost of the Sum-of-Square representa-
tion Tr (An,λ) depend crucially on the noise parameter λ since the latter plays a role on the regularity of Rn,λ,
and we expect both terms to diverge when λ goes to 0. On the other hand, as just said, λφ can be taken very
small when the number of sampling points M is large, so that it compensates the other terms. In other words
the computational complexity, which is polynomial in M, of solving larger SDP problems will offset the cases
when λ is taken small and the function Rn,λ is less smooth. We face thus a classical tradeoff between having a
better estimate of Rn,0 or doing fewer computations.

The case of generalized linear embeddings

Assume θ = ψw (x) = Φxw with Φx ∈ Rd(x)×d and the added noise Z(x) is Gaussian with zero mean, then we
can provide more explicit estimates for Tr (An,λ) and |Rn,λ|W,⌈s−d/2⌉.

Decompose Z(x) = ΦxZ′(x) + Z′′(x) with Z′ Gaussian over Rd with covariance Σx and Z′′ Gaussian with
values in the complement Im(Φx)⊥ to the range of Φx . Then

EZ(x)
[
f 0(ŷ(ψw (x) + λZ(x)), x)

]
= EZ′(x)EZ′′(x)

[
f 0(ŷ(Φx(w + Z

′(x)) + λZ′′(x)), x)
]

(3.15)

Let R̃n,λ,x = EZ′′(x)
[
f 0(ŷ(Φxw+λZ

′′(x)), x)
]
. We then observe that the objective function is a sum of Gaussian

convolutions

Rn,λ(w) =
1

n

n∑
i=1

R̃n,λ,xi ⋆NλΣxi (w) (3.16)

so Rn,λ is smooth. Moreover the convolution commutes with the derivation, and |g ⋆ g′|∞ ≤ |g|∞|g′|1 for any
functions g, g′. Moreover |Rn,λ,xi |∞ ≤ |f 0|∞, whence for s̃ = s − d/2,

|Rn,λ|W,⌈s̃⌉ ≤
1

n

n∑
i=1

sup
|α|=s̃

sup
θ∈Ω
|DαRn,λ,xi ⋆NλΣxi (w)︸ ︷︷ ︸

=Rn,λ,xi ⋆D
αNλΣxi

|

≤ |f 0|∞ sup
i∈[n],|α|=s̃

|DαNλΣxi |1

= O
(
λ−s̃

)
.

Moreover, defining Mλ,i =
√
NλΣxi , clearly Mλ,i ∈ Hφ and we can obtain a closed-form sum-of-squares

expression of Rn,λ for the chosen kSoS feature map φ, so that we justify the assumption (3.12). Indeed by the
reproducing property, we have

Rn,λ(w) =
1

n

n∑
i=1

〈
φ(w),

[∫
Rd
Mλ,i(w

′, ·)⊗Mλ,i(w
′, ·)Rn,0(w ′)dw ′

]
φ(w)

〉
Hφ

=:
〈
φ(w), Ãn,λφ(w)

〉
Hφ
.
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and since An,λ was chosen as the operator with minimal trace

Tr(An,λ) ≤ Tr(Ãn,λ) =
∫
Rd
⟨Mλ,i(w

′, ·),Mλ,i(w
′, ·)⟩Hφ Rn,0(w

′)dw ′ .

Since the RKHS associated with φ is the Sobolev space of order s, then we have a characterization of the norm
through the Fourier transform

⟨Mλ,i(w
′, ·),Mλ,i(w

′, ·)⟩Hφ =
∫
Rd
(1 + |ξ|2)s |M̂λ,i(w

′, ξ)|2dξ = O(λ−s̃).

Example 2 (continued). The stochastic vehicle scheduling problem (StoVSP) is an instance of generalized
linear embedding. As such, the previous calculation holds.
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Supplemental Materials

A Technical lemmas

Lemma 6. Let u : Rd → R be an integrable bounded function, Z a standard normal random vector of Rd ,
σ > 0 a positive real number, and G(w) := EZ [u(w + σZ)]. Then w 7→ G(w) is

√
d∥u∥∞/σ-Lipschitz.

Proof. Let h be the density of σZ. One has G(w) =
∫
Rd
u(w+v)h(v)dv =

∫
Rd
u(v)h(v−w)dv . By dominated

convergence, it holds that

∇G(w) = −
∫
Rd
u(v)∇h(v − w)dv = −

∫
Rd
u(w + v)∇h(v)dv .

By Jensen inequality and standard calculation with the Gaussian density, one has

∥∇G(w)∥ ≤ ∥u∥∞
∫
Rd
∥∇h(v)∥dv ≤

√
d∥u∥∞
σ

,

which gives the result.

Lemma 7. Under Assumptions (Lip) and (Gauss), the following holds. When ε0 > 0, the risk w 7→ Rε0(hw )
is continuous with respect to w .

Proof. Let x ∈ X and y , θ ∈ Rd(x). Invoke Lemma 6 with u(θ) = p0(y |θ) ∈ [0, 1] to get that θ 7→
EZ [

∑
y∈Y(x) p0(y |θ+ ε0Z(x)) f 0(y , x)] is continuous. Now, note that w 7→ ψw (x) is LW -Lipschitz by Assump-

tion (Lip), hence w 7→ EZ [
∑
y∈Y(x) p0(y |ψw (x) + ε0Z(x)) f 0(y , x)] is continuous. Taking the expectation, by

dominated convergence, we deduce the result.

Lemma 8. Let λ > 0, x ∈ X and y ∈ Y(x). Then, the function θ ∈ Rd(x) 7→
∑
y∈Y(x) pλ(y |θ) is

√
d(x)/λ-

Lipschitz, under Assumption (Gauss).

Proof. Note that
∑
y∈Y(x) pλ(y |θ) = EZ [u(θ+λZ)] where u(·) =

∑
y∈Y(x) p0(y |·) ∈ [0, 1] and apply Lemma 6.

Lemma 9. The function w ∈ W 7→
∑
y∈Y(x) pλ(y |ψw (x)) ∈ [0, 1] is LW

√
d(x)/λ-Lipschitz, under Assump-

tions (Lip) and (Gauss).

Proof. Let x ∈ X and y , θ ∈ Rd(x). Invoke Lemma 8 to get that θ 7→ pλ(y |θ) is
√
d(x)/λ-Lipschitz. Now,

observe that w 7→ ψw (x) is LW -Lipschitz to conclude.

B Perturbation bias with remarks

Proposition 10. If Assumption (Gauss) holds, then, for all λ ∈ (0, 1) and all w ∈ W,

Vw (λ) ≤ inf
q∈(0,1)

{
PX

(ρ(ψw (X))√
d(X)

< λq
)
+ exp

(
−

1

10λ2(1−q)

)}
.

Furthermore, under the following Assumption (Orl.),

∃τ > 0 s.t. EX

[
exp

((ρ(ψw (X))√
d(X)

)−τ)]
<∞ , (Orl.)

1



it holds
Vw (λ) = Oλ→0

(
exp(−λ−

2τ
2+τ )

)
;

And under the following Assumption (Mom.),

∃τ > 0 s.t. EX

[(ρ(ψw (X))√
d(X)

)−τ]
<∞ , (Mom.)

it holds
Vw (λ) = Oλ→0

(
λτpolylog(λ)

)
,

where polylog(λ) is a polynomial logarithm term.

Proof. Invoke [Laurent and Massart, 2000, Lemma 1] to get that, for x ∈ X , for all t ≥ d(x),

P[∥Z(x)∥22 ≥ t] ≤ exp(−0.1 t) ,

for the Gaussian model (see Assumption ((Gauss))). Hence, for all λ ∈ (0, 1), all q ∈ (0, 1),

∀x s.t. ρ(ψw (x)) ≥ λq
√
d(x) , P

[
∥Z(x)∥2 ≥

ρ(ψw (x))

λ

]
≤ exp

(
− 0.1

ρ2(ψw (x))

λ2

)
.

Hence It follows that, for all λ ∈ (0, 1) and all q ∈ (0, 1),

V (λ) = EXPZ

[
∥Z∥2 ≥

ρ(ψw (X))

λ

∣∣X] ,
≤ PX

[
ρ(ψw (X)) < λq

√
d(X)

]
+ EX

[
exp

(
− 0.1

ρ2(ψw (X))

λ2

)
1{ρ(ψw (X))≥λq

√
d(X)}

]
,

≤ PX
[
ρ(ψw (X)) < λq

√
d(X)

]
+ EX

[
exp

(
−

d(X)

10λ2(1−q)

)]
,

≤ PX
[
ρ(ψw (X)) < λq

√
d(X)

]
+ exp

(
−

1

10λ2(1−q)

)
,

the last inequality stemming from d(X) ≥ 1 PX-almost surely.
Assume (Orl.), by Markov’s inequality it holds

PX

[
ρ(ψw (X)) < λq

√
d(X)

]
≤ C exp

(
− λ−τq

)
.

Taking q = 2/(2 + τ) gives the result.
Assume (Mom.), by Markov’s inequality it holds

PX

[
ρ(ψw (X)) < λq

√
d(X)

]
≤ C λτq .

Taking q = 1 − log(−10τ logλ)/(−2 log(λ)) gives the result (note that q < 1, and q > 0 for λ sufficient
small).

Remark 12 (On the conditions (Orl.) and (Mom.)). These conditions describe the tail behavior of the random
variable R :=

√
d(X)/ρ(ψw (X)). Condition (Orl.) is of Orlicz-norm type, it states that R belongs to τ-Orlicz

space and, as such as, it has τ-exponentially light tail, see for instance [Chafaï et al., 2012, Section 1.1] for
a review on Orlicz spaces. Hence, the distribution of the random variable ρ(ψw (X))/

√
d(X) = 1/R is τ-

exponentially light at edge support point zero. The random variable ρ(ψw (X))/
√
d(X) = 1/R is close to zero

when switching from a normal cone to another. Roughly speaking, Condition (Orl.) means that the distribution
of ψw (X) does not put too much mass around decision boundaries (the border of the normal cones), the learnt
direction ψw (X) points towards the interior of the normal cone far from its boundaries.

2



Condition (Mom.) is a moment type assumption on R. It is weaker than Condition (Orl.). Indeed, by [Chafaï
et al., 2012, Theoreme 1.1.5], note that (Orl.) is equivalent to

∀p ≥ τ ,
[
EX

(ρ(ψw (X))√
d(X)

)−p] 1p
≤ Cpτ ,

for some positive constant C > 0. Hence, Condition (Orl.) implies (Mom.). Condition (Mom.) gives a slower
rate of convergence of V (λ) than Condition (Orl.).

Note that both convergence rates are decreasing in τ and one cannot have better rate than the sub-Gaussian
type bound Oλ→0

(
exp(−λ−2)

)
.
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