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Abstract

Node regression consists in predicting the value of a graph label at a node, given observa-
tions at the other nodes. To gain some insight into the performance of various estimators
for this task, we perform a theoretical study in a context where the graph is random.
Specifically, we assume that the graph is generated by a Latent Position Model, where each
node of the graph has a latent position, and the probability that two nodes are connected
depend on the distance between the latent positions of the two nodes.

In this context, we begin by studying the simplest possible estimator for graph regres-
sion, which consists in averaging the value of the label at all neighboring nodes. We show
that in Latent Position Models this estimator tends to a Nadaraya-Watson estimator in
the latent space, and that its rate of convergence is in fact the same.

One issue with this standard estimator is that it averages over a region consisting of
all neighbors of a node, and that depending on the graph model this may be too much
or too little. An alternative consists in first estimating the “true” distances between the
latent positions, then injecting these estimated distances into a classical Nadaraya-Watson
estimator. This enables averaging in regions either smaller or larger than the typical graph
neighborhood. We show that this method can achieve standard nonparametric rates in
certain instances even when the graph neighborhood is too large or too small.

1 Introduction

Given an undirected graph with n+1 vertices and an adjacency matrix A = [ai,j ] where all
but the (n+1)-st node have labels yi, the node regression problem addresses the prediction
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of the (continuous valued) label yn+1 of the remaining node1. This framework represents
a simplified version of the so-called transductive Semi-Supervised Learning (SSL) problem
on graphs (Song et al., 2021), where the labels of some nodes on a graph are known and
the goal is to predict the labels of the other nodes in the same graph. While some SSL
theoretical works focus on how to best exploit a large quantity of unlabelled nodes, this
simplified framework with only one unlabelled node is closer to classical Machine Learning,
where generalization is computed (in expectation) for one unknown sample only. As we will
see, this allows us to draw parallels between Graph Machine Learning (ML) and “regular”
ML, and better isolate the effects of the graph structure on the problem. Despite the
vastness of the Graph ML literature, this simplified framework has rarely been studied.
While there are numerous works on unsupervised tasks such as node clustering (Athreya
et al., 2017; Abbe, 2018), supervised tasks have received less attention in this framework.
To our knowledge, the only authors to study this framework are Tang et al. (2013), where
they use the approximation of some kernel mapping as a node embedding in latent position
graphs. Here we will study an even simpler, arguably more foundational approach: a simple
1-hop averaging, mimicking the classical Nadaraya-Watson estimator in the graph context.

We consider the node regression problem with the goal of establishing generalization
bounds in the context of random graphs. Specifically, we work with the Latent Position
Model (LPM) (Hoff et al., 2002), where each node i is associated to a latent, unknown
variable x i ∈ Q ⊆ Rd. An edge between nodes i and j occurs with a probability that depends
on the distance ||x i − x j || of the latent positions of nodes i and j, and occurrences are
independent conditionally on the latent positions. Like often in the literature, our random
graph model will essentially depend on a parameter that we call the length-scale hg.
This represents the “typical scale” of the model2: intuitively speaking, nodes with latent
positions at distance below length-scale hg are highly likely to be connected, and vice-versa.
As mentioned above, in addition to the graph, we observe continuous labels yi on the first n
nodes of the graph. We will assume that the labels yi are noisy observations of some
deterministic function of the latent positions x i, allowing for a direct comparison between
node regression and classical (nonparametric) regression.

Graphical Nadaraya Watson Estimator (GNW) In this paper, we focus on a very
simple (arguably, the simplest non-trivial) estimator for the missing label of node n + 1,
which computes the average of the labels over all of its neighbors, i.e.,

ŷn+1 =

∑n
j=1 yjaj,n+1∑n
j=1 aj,n+1

(1)

The estimator (1) resembles the Nadaraya-Watson (NW) estimator, a fundamental esti-
mator for nonparametric regression (Tsybakov, 2008), but where the “soft” distance kernel
k(xn+1,x i) usually computed in NW is here replaced by the graph edges (recall that the
x i’s are unknown in our context). Therefore, we decide to call estimator (1) the Graphical
Nadaraya-Watson (GNW) estimator. Note that, although we had to pick a name for the
estimator (1) because to our knowledge it did not bear any particular name as a standalone

1. Our assumption that the regression node is numbered node n + 1 is made purely out of notational
convenience

2. It may be found under other names in the literature, e.g. “kernel bandwidth”.
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estimator, the “1-hop averaging” principle is of course far from new and appears in many
contexts (e.g. most recently as an aggregation function in Graph Neural Networks).

As we will see, the hidden geometrical structure of the LPM allows us to study and
compare the GNW estimator with the classical NW estimator with techniques from classical
nonparametric regression. There is however one major difference between the two. In the
classical nonparametric settings, the statistician is free to select a parameter of NW known
as the bandwidth τ , which sets the spatial scale over which the NW estimator performs

averaging, e.g. through a kernel ϕ
(
∥x i−x j∥

τ

)
with a decreasing function ϕ. Thus, in the

classical literature of nonparametric regression, for a given regression function f and a noise
level σ2, there exists an optimal bandwidth τ⋆ that minimizes the risk. On the contrary,
there are no tunable parameters for GNW. In our setting, the neighborhood “size” is imposed
by the graph, which depends on a length-scale hg that is not user-chosen. In fact, we will
show in Sec. 3.1 that the risk of the GNW estimator with length-scale hg is surprisingly
comparable to that of a NW estimator with fixed bandwidth τ := hg. In other words,
replacing a fixed kernel with the corresponding Bernoulli variables does not (asymptotically)
degrade the performance of the estimator. As a consequence, GNW is nearly optimal if
the length-scale hg of the LPM is sufficiently close to the optimal bandwidth τ⋆ for the
corresponding nonparametric regression problem. On the other hand, if this is not the case,
the lack of tunable parameters for GNW is a major limitation: if hg is far away from τ⋆,
GNW will perform poorly.

Estimated Nadaraya Watson Estimator (ENW) In light of the previous discussion,
there are two unfavorable scenarios for GNW - the under averaging regime hg ≪ τ⋆ (averag-
ing is performed on a scale significantly smaller than the optimal one) and the over averaging
regime hg ≫ τ⋆ (averaging performed on a scale too large relative to the underlying label).
In order to address this problem, in the second part of the paper we study an estimator in
two steps. Since the most direct obstacle to choosing a bandwidth τ is arguably the fact
that the pairwise distances ∥x i − x j∥ are unknown, the first stage is a distance recovery
algorithm A, that is, an algorithm that estimates the latent distances based on the observed
adjacency matrix A. The second stage simply uses the approximated distances to compute
the regular Nadaraya-Watson estimator with tunable bandwidth τ in the hope that, if the
estimated distances are sufficiently close to the true ones, then the optimal bandwidth τ⋆
(approximately known or, in practice, estimated by cross-validation) leads to a better result
than the previous GNW. We call this estimation procedure the A-Estimated Nadaraya-
Watson estimator (A-ENW), where the adjective estimated refers to the distances between
the latent positions. In Section 3, our theoretical analysis will decouple these stages, al-
lowing for separate treatment of the two problems. Our contribution is in regards to the
second step, that is, the stability of the Nadaraya-Watson estimator to perturbations of the
distances between the design points. We provide a risk bound for A-ENW in terms of the
probability of the algorithm A to land within a prescribed noise level of the true positions.
Concerning the algorithm A itself, we do not make any novel contribution per se (as this is
slightly out-of-scope here), but we build on some existing algorithms A from the literature
and point out instances in which A-ENW outperforms GNW both in the under averaging
(hg ≪ τ⋆) and in the over averaging (hg ≫ τ⋆) regimes. In particular, in some instances we
can achieve standard nonparametric rate.
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1.1 Background on the Latent Position Model

A Random graph consists of a vertex set V = [n] and a random edge set E ⊆ V × V .
The study of random graphs begins with the Erdös-Renyi model, where each edge occurs
independently with probability 0 ≤ p ≤ 1. However, real world networks do not have the
same distributional properties as the Erdös-Renyi model, for example it has been observed
that the distribution of degrees in real world networks follows a power law (Albert and
Barabási, 2002). Such observations prompted research into models that can better capture
the topology of real world networks, yielding richer models of random graphs. One such
model for studying community structure is called the Stochastic Block Model (Holland et al.,
1983). Here nodes belong to latent communities and the probability that two nodes i, j are
linked depends only on the communities of the nodes Ci, Cj . This model has been studied
extensively from a theoretical point of view (Abbe, 2018). Another popular model is the
random geometric graph (Penrose, 2003), where nodes are associated to latent positions x i.
Here nodes i and j are linked if the distance between their latent positions x i and x j is
within a prescribed threshold r > 0, i.e. if ||x i−x j ||2 < r. These two models can be unified
in the Latent Position Model (Hoff et al., 2002). In this model each node i is associated to
a latent position3 x i ∈ Q, where Q is the latent space. The probability of having an edge
between nodes i and j is then given by

P
(
ai,j = 1|x i,x j

)
= k(x i,x j) (2)

where k : Q×Q → [0, 1] is (in general) a nonparametric link function.

Figure 1: Sampling a LPM: Left — generating uniformly 1000 latent positions on [−1, 1]2.
Left: Latent positions. Right: generating a random geometric graph with hg = 0.1. The
color represents the labels — brighter colors correlate with higher values

3. these positions may be deterministic or i.i.d. draws from some distribution
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To relate the node regression problem with the classical theory of (non-parametric)
regression, we will suppose that Q ⊆ Rd and that the link function has the following shape

P
(
ai,j = 1|x i,x j

)
= k(x i,x j) = αK

(
||x i − x j ||

hg

)
(3)

Here 0 < α ≤ 1, hg > 0 and K : [0,∞) → [0, 1]. When we observe a LPM graph with link
function (3), we do not assume to know anything but the graph itself: we do not have
access to the latent positions x i, i ∈ [n], nor to the parameters α, hg. The function K is
in general assumed to be decreasing and we will add the assumption that it is compactly
supported and non-vanishing in a neighborhood of 0, See Assumption 8. In the literature,
the parameters α, hg are generally used to model sparsity in random graphs, that is, the
relative number of edges with respect to n, and may thus depend on the number of nodes n.
When α, hg are fixed, the expected number of edges is in O(n2), and the random graph is
said to be dense. When the number of edges is in O(n), the graph is sparse. In-between
those two rates, the graph is relatively sparse. Most real-world graphs are observed to
be relatively sparse or sparse. To model this, taking a decreasing multiplicative factor α
when n increases is e.g. more common in the SBM literature, while using a decreasing
length-scale hg is more common in the geometric graph literature. For the GNW, we take
both parameters hg and α into account, and we show that our results hold for any relatively
sparse graph, as soon as the expected degrees grow with the number of nodes, even if this
growth is arbitrarily slow. For A-ENW, we fix α = 1 in order to facilitate the analysis; we
leave the case of α decreasing with n for future work.

1.2 Framework and Notation

We denote the indicator of a set S by I [S], the Lebesgue measure on Rd by m and the
volume of the unit ball in Rd by vd. The standard Euclidean distance between x , z ∈ Rd is
denoted by ||x − z ||. We introduce the notation

Xn = [x1 , . . . ,xn ] (4)

to denote the matrix that contains the latent positions of nodes 1 through n (the labeled
nodes), and

Xn+1 = [Xn,xn+1] = [x 1, . . . ,xn,xn+1] (5)

to denote the extended matrix that contains the latent position of the regression node,
node (n+ 1). The observed label y = [y1, . . . , yn]

t is given by

yi = f(x i) + ϵi (6)

where f : Q → R is a regression function belongs to a Hölder class (See Assumption 9) and

ϵ = [ϵ1, . . . , ϵn]
t (7)

is label additive noise vector with independent entries of finite variance (See Assump-
tion 2). An LPM graph can be represented by the (n + 1) × (n + 1) adjacency matrix
A =

[
a(x i,x j)

]
1≤i,j≤n+1

, where the indicator of an edge between nodes i and j is given by

a(x i,x j) = I
[
Ui,j ≤ k(x i,x j)

]
(8)
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where
U =

[
Ui,j

]
1≤i,j≤(n+1)

(9)

are uniform variables on [0, 1], with Ui,i = c > 1 (by convention, this prevents self edges),
independent for distinct pairs (i1, j1) and (i2, j2) with i1 < j1 and i2 < j2, and satisfying the
symmetric constraint Ui,j = Uj,i (imposed by the symmetry of the adjacency matrix A).
The matrix U is also independent from Xn+1 and ϵ. Throughout the paper, we will assume
that the latent positions are either fixed or they are i.i.d. samples with density p with
support Q ⊆ Rd. In the latter case, the local edge density and the local expected degree at
a point x ∈ Rd are given by

c(x ) =

∫
Rd

k(x , z )p(z )dz, d(x ) = nc(x ) (10)

respectively. For x ∈ Rd, we define the operator S(·,x ) on the set of bounded and measur-
able functions by

S(f,x ) =


∫
f(z )k(x ,z )p(z )dz

c(x ) if c(x ) > 0

0 otherwise
(11)

Furthermore, we denote by
δi = ||x i − xn+1|| (12)

the distance between the ith latent variable and the one of the node of interest n+ 1.

1.3 Differences between Classical Nonparametric Regression and Node
Regression in LPMs

1.3.1 Risks

The (nonparametric) regression problem in its simplest form can be stated as estimating a
regression function f : Q → R based on a sample D := (Xn,y) = {(x 1, y1), . . . , (xn, yn)|x i ∈
Q, yi ∈ Y ⊆ R} where x i are either deterministic points from a domain Q ⊆ Rd or are i.i.d.
samples from a distribution with density p, supported on Q ⊆ Rd and

yi = f(x i) + ϵi (13)

with ϵi i.i.d. centered, finite variance noise variables. The nonparametric literature uses the
nomenclature of fixed and random design for the case of deterministic samples and random
samples x i, respectively. An estimator f̂ = f̂D is any random (measurable) function f̂ : Q →
R that depends on the data D. Traditionally, assuming observations of the form (13), in
the case of fixed design the quality of the estimator f̂ is measured by the risk

R
(
f̂(xn+1), f(xn+1)

)
= Eϵ

[(
f̂(xn+1)− f(xn+1)

)2]
Under the random design assumption there are two notions of risks: point-wise and global.
For a (non-random) point xn+1 ∈ Q, the point-wise risk is given by

R
(
f̂(xn+1), f(xn+1)

)
= EXn,ϵ

[(
f̂(xn+1)− f(xn+1)

)2]
(14)
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which captures statistical information about the particular point x of the domain Q. The
global risk

R
(
f̂ , f

)
= EXn+1,ϵ

[(
f̂(xn+1)− f(xn+1)

)2]
(15)

where xn+1 is an out of sample example not used in the training process. Note that the
integrated and the point-wise risk are related by the equation

R
(
f̂ , f

)
=

∫
R
(
f̂(x ), f(x )

)
p(x )dx (16)

The global risk (15) can be interpreted as the average of the point-wise risk (14) over the
data distribution p.

In contrast, when considering a node regression estimator, we will consider the risk
taken with respect to the randomness of the edges, the additive noise on the label, and the
latent positions (when they are treated as random variables). In other words if f̂ is a node
regression estimator (i.e. it depends on Dg = (A, y), the adjacency matrix A and the graph
label y), we define the pointwise risk

Rg(f̂(xn+1), f(xn+1)) = EU ,ϵ

[(
f̂(xn+1)− f(xn+1)

)2]
(17)

and, in the case of random latent positions Xn+1, the global risk, as

Rg(f̂ , f) = EXn+1,U ,ϵ

[(
f̂(xn+1)− f(xn+1)

)2]
(18)

In Equation (18) the expectation is taken as before over the latent positions Xn+1 (which
include the latent position of the regression node), the additive label noise ϵ, but also the
random matrix U which, we recall, is used along with Xn+1 to generate the random adja-
cency matrix A through (8). It is often convenient to write the expectation this way instead
of the conditional expectation EXn+1EA|Xn+1

, since Xn+1 and U are independent. Some-
times we will adopt the shortcut x = xn+1 in the notation above, with the understanding
that random edges “link” the point x with all the others using the last column of U as
before: a(x i,x ) = I[Ui,n+1 ≤ k(x i,x )]. Again, the risk (18) is the pointwise risk (17)
integrated with respect to xn+1.

1.3.2 Estimators

Nadaraya-Watson A classical approach for the regression problem is the weighted av-
erage Nadaraya-Watson estimator, for which a modern theoretical analysis may be found
in (Tsybakov, 2008; Györfi et al., 2002)

f̂NW,τ (x ) =


∑n

i=1 yiϕ
(

||x−xi||
τ

)
∑n

i=1 ϕ
(

||x−xi||
τ

) if
∑n

i=1 ϕ
(
||x−x i||

τ

)
̸= 0

0 otherwise

(19)

Here, ϕ : R → R is called a kernel function. Some popular choices for ϕ are the rectangular
kernel (ϕ (z) = I

[
|z| ≤ 1

]
), Gaussian kernel (ϕ (z) = e−z2), the sinc kernel (ϕ (z) = sin(πz)

πz ).
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Other common choices are discussed in (Tsybakov, 2008). The parameter τ > 0 is called
the bandwidth and it controls the scale on which the data is being averaged. This pa-
rameter needs to be chosen carefully, as too small values of τ produce estimates of high
variance (overfitting), while too large values of τ give highly biased estimators (underfit-
ting), an instance of the Bias-Variance tradeoff, a well known phenomenon in statistics.
The Nadaraya-Watson estimator is a local estimator, in that a prediction for a point x will
depend on the distances of the samples x i ∈ D from the point of interest x ; NW is averaging
the observations {yi|x i ∈ D}, giving higher weights to observations yi with covariates x i

close to the point x . Therefore, the NW is a reasonable estimator for regression functions
that vary smoothly across the domain Q. More precisely, a natural class for the regression
function f is the Hölder class Σ(a, L) (Tsybakov, 2008) given by

Σ(a, L) =
{
g : Rd → R| for all x , z ∈ Rd, |g(x )− g(z )| ≤ L||x − z ||a

}
, (20)

for a ∈ [0, 1], L > 0. The larger the parameter a, the smoother the function is. Indeed, for
a = 1, one recovers the class of Lipschitz functions.

Minimax rates of NW The standard nonparametric rate in terms of the bandwidth is

R
(
f̂NW,τ , f

)
≤ C1τ

2a +
C2

nτd
(21)

where C1, C2 > 0 depend on the variance of the label σ2, and the Hölder constant L, but
not on the sample size n. In the large n regime, optimizing this rate in terms of τ , one gets
that

inf
τ>0

R
(
f̂NW,τ , f

)
≤ C⋆n

− 2a
2a+d (22)

obtained for bandwidth τ⋆ of order n
− 1

2a+d (Tsybakov, 2008; Györfi et al., 2002). It can also
be shown that the rate (22) is optimal in a minimax sense for the Hölder class Σ(a, L) (Tsy-
bakov, 2008), i.e given the prior that the regression function f belongs in the Hölder class
Σ(a, L), asymptotical improvements are only possible on the multiplicative constant C⋆,
but not on the rate (22). In presence of additional smoothness of the regression function f ,
one can improve upon the rate (22).

Graphical NW In this paper, we do not observe the positions x i, but we observe instead
a random graph with n+1 nodes sampled according to a LPM with kernel function (3). We
assume that for all but the last node there is a label of the form (13). Denoting x = xn+1

for convenience, we introduce the (random) empirical degree

d̂(x ) =
n∑

i=1

a(x ,x i) (23)

where we recall that a(x ,x i) are the random edges between the nodes n + 1 and i taken
as (8). With this notation, the GNW estimator (1) is given by

f̂GNW(x ) =

 1
d̂(x )

∑n
i=1 yia(x ,x i) if d̂(x ) > 0

0 otherwise
(24)
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Note that the only edges of interest for the Graphical Nadaraya-Watson estimator are those
adjacent to node (n + 1), so in the discussion of GNW we will not be concerned with the
remaining edge variables a(x i,x j) for 1 ≤ i, j ≤ n. Since the edges a(x ,x i) are Bernoulli

variables with expectation αK
(
||x−x i||

hg

)
, GNW can be considered as a quite noisy version of

NW, where the true weights αK
(
||x−x i||

hg

)
are replaced by 1 with probability αK

(
||x−x i||

hg

)
and by 0 with complementary probability. Given the potentially high variance introduced
by such nonlinear perturbations, it is somewhat surprising that GNW achieves the NW-
rate (21) for τ := hg, as we will show in Section 2.

Estimated NW As mentioned in the introduction, in order to address some shortcomings
of GNW, we also study a broad family of node regression estimators that are built using a
plug-in estimator of the latent distances. Specifically, we use an estimator of either latent
distances or latent positions, then plug those estimates in a classical NW estimator. In
addition to the observed label y on the first n nodes (13), namely y = [y1, . . . , yn]

t and
the adjacency matrix A, we also assume that there exist an algorithm A that takes in the

observed graph with adjacency matrix A as an input4 and outputs a vector δ̃ =
[
δ̃1, . . . , δ̃n

]
,

an estimation of the distances δ = [δ1, . . . , δn] where δi is given by (12). The A-Estimated
Nadaraya-Watson is given by

f̂A
ENW,τ (xn+1) =


∑n

i=1 yiϕ
(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

) if

n∑
i=1

ϕ

(
δ̃i
τ

)
> 0

0 otherwise

(25)

where ϕ : [0,∞) → R and τ > 0 are user chosen. The theoretical analysis of A-ENW is
conducted in Sec. 3.

1.4 Related work

The node regression problem has been thoroughly studied in non-random edge graphs. Ko-
vac and Smith (2009) studies a penalized least square method, where the penalization is in
terms of l1 norm over the edges of the graph. The authors in (Belkin et al., 2004) provide
generalization bounds by assuming that edges are weighted and depend on the latent vari-
ables, the generalization result is over the randomness of the latent positions. Our analysis
includes 3 sources of randomness: (potential) randomness of latent positions Xn+1, ran-
domness of edges U , and additive noise randomness ϵ. As far as we know, one of the only
work to study this framework is (Tang et al., 2013), where the authors draw connections
with kernel methods and RKHS.

On random graphs, there is a significant literature on unsupervised learning, e.g. for
clustering in SBMs (Snijders and Nowicki, 1997; Abbe, 2018). As large graphs in the real
world tend to be sparse (Albert and Barabási, 2002), a significant effort in the community
detection literature is dedicated to understanding statistical properties of graphs with low
expected degrees (Oliveira, 2009; Lei and Rinaldo, 2015; Le et al., 2015). Another vast line

4. potentially depending on some hyperparameters as well
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of work in LPMs studies algorithms for recovering latent positions or latent distances (Arias-
Castro et al., 2018; Chen et al., 2020; Giraud et al., 2023; Dani et al., 2022). We will leverage
some of the results established in this literature to demonstrate that A-ENW achieves the
standard nonparametric rate (22) in certain under-averaging (hg ≪ τ⋆) and over-averaging
(hg ≫ τ⋆) regimes.

1.5 Outline

In Section 2 we show that under classical assumptions on the regression function f and the
kernel K, the Graphical Nadaraya-Watson (GNW) estimator achieves the same risk rates
as those of the Nadaraya-Watson estimator. A precise formulation of this statement can
be found in Theorems 16 and 17. We follow an approach inspired by the classical bias-
variance decomposition, buut we use instead two quantities which we call bias and variance
proxies, which are close but not equal to the exact bias and variance. The bias and variance
proxies have simpler expressions and are easier to study. Under minimal assumptions on
the additive noise, we show that the variance proxy of GNW is inversely proportional to
the expected degree; a precise statement is in Sec. 2.1. In Sec. 2.2 we study the bias proxy.
To do so, we require more assumptions on the kernel K as well as the distribution of latent
positions p. Finally, in Sec. 2.3, we conclude the GNW analysis by combining the bias and
variance analysis.

In Section 3 we study the two-stage estimator that consists in estimating the latent
distances by some user-chosen algorithm A and then plugging those estimated distances
into the classical NW (often with a bandwidth parameter τCV that is chosen by cross-
validation by the user). Our analysis treats these two steps separately. In Sec 3.1 we show
that Nadaraya-Watson with bandwidth τ and maximum perturbation of the distances ∆ ≥ 0
preserves the classical rate (21) as long as ∆ ≲ τ (See Theorem 21) and, building on that
result, we prove a bound on the risk of A-ENW in terms of the probability of success of the
Algorithm A (See Theorem 22). In Sec. 3.2 we give several examples of existing literature on
distance estimation algorithms A in LPMs to derive risk bounds on A-ENW. We point out
certain under-averaging and over-averaging regimes in which distance recovery can yield
optimal nonparametric rates for A-ENW.

In Section 4 we corroborate on our theoretical results by numerical experiments. We
consider two simple position recovery algorithms that achieve (sometimes only empirically)
optimality in the under-averaging and over-averaging regimes respectively.

2 The Graphical Nadaraya Watson (GNW) estimator

In this section we adopt the random design setting, i.e. we assume that the latent posi-
tions Xn+1 are i.i.d. samples with density p supported on Q ⊆ Rd. We will work condition-
ally on node n+1 having latent position xn+1 = x . The goal of this section is to provide a
bound on the global risk of GNW (18). The approach we take is thus to provide an upper
bound of (17) and then to integrate it in order to obtain a bound on the global risk (18).
There will often be a need to take expectations with respect to the random matrix U that
generates the random edges (9), the latent positions Xn (4) and the additive noise ϵ (7).
In lieu of writing EXn,U ,ϵ [·], we will simply use the notation E [·].

10
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Recall that the labels are yi = f(x i)+ϵi. We make the following two general assumptions
on the regression problem.

Assumption 1 There exists B > 0 such that

||f ||∞ := sup
z∈Q

|f(z )| ≤ B < ∞

Assumption 2 The additive noise ϵ is such that its entries are independent random vari-
ables and

E [ϵi] = 0 and max
i∈[n]

E
[
ϵ2i

]
≤ σ2 < ∞

Assumption 1 is somewhat restrictive but it holds in various settings. For example, if
the domain Q is compact and there is a continuity assumption on f , then Assumption 1 is
satisfied. The classical setup in (Györfi et al., 2002) includes this assumption. Assumption 2
is the most general assumption under model (13): while it is classical to assume stronger
tail control of the distribution of the noise, here we just assume that it has finite variance.

We will follow a bias-variance decomposition inspired approach. For x ∈ Q we introduce
a variance proxy and a bias proxy at x :

v(x ) = E
[(

f̂GNW(x )− S(f,x )
)2]

(26)

b(x ) = S(f,x )− f(x ) (27)

where S(f,x ) is the operator given by (11). We remark that these variance and bias proxies
do not correspond to the exact variance and bias, but are simpler to manipulate. In fact,
for the true bias and variance, we have the following result.

Proposition 3 Let Bias
[
f̂GNW(x )

]
and Var

[
f̂GNW(x )

]
denote the standard bias and vari-

ance of f̂GNW(x ), i.e.

Bias
[
f̂GNW(x )

]
= E

[
f̂GNW(x )

]
− f(x ) and

Var
[
f̂GNW(x )

]
= E

[(
f̂GNW(x )− E

[
f̂GNW(x )

])2
]

If Assumptions 1 and 2 hold, then

0 ≤
[
b(x )− Bias(f̂GNW(x ))

]2
≤ B2 exp(−2d(x ))

and
0 ≤ v(x )−Var

[
f̂GNW(x )

]
≤ B2 exp(−2d(x ))

The rest of this Section is dedicated to bounding the variance and bias proxies, in
order to obtain a bound on the global risk. The variance proxy (26) governs the statistical
fluctuation of f̂GNW(x ) around the quantity S(f,x ). Its analysis is relying principally on
probability techniques such as concentration inequalities. We provide a bound of this term

11
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in Sec. 2.1. The main result of the sharp variance bound given in Theorem 4, which states
that v(x ) behaves like 1/d(x ).

The bias proxy (27) on the other hand, measures the proximity of quantity S(f,x )
towards the regression function f(x ). Unlike the variance proxy (26) which can be univer-
sally controlled by concentration inequalities, the bias proxy (27) must be controlled on a
case-by-case basis. To this end, we will focus on radial (3) kernels. In this scenario, for
compactly supported link functions, S(f,x ) approximates f(x ) uniformly within precision
O(hag), where 0 < a ≤ 1 is the Hölder exponent of the regression function f and hg is the
length-scale of the random graph kernel. This dependence is described in Sec. 2.2.

2.1 A Variance Bound

The goal of this subsection is to bound the variance proxy v(x ) (26) in terms the expected

degree d(x ) (10). Theorem 4 shows that v(x ) is of order O
(

1
d(x )

)
. Later, in Section 2.2 we

will show how the local degree depends d(x ) (10) depends on the parameters hg and α in
the kernel function (3).

Theorem 4 (Sharp Variance Bound)
Suppose that Assumptions 1 and 2 hold. Then

v(x ) ≤ 9B2 + 2σ2

d(x )

In large random graphs, where the number of nodes grows to infinity, we may consider
an asymptotic regime where d(x ) depends on the number of vertices n. Theorem 4 shows
that f̂GNW concentrates towards S(f,x ) as soon as the local degree (10) grows to infinity,
even arbitrarily slowly. In comparison, most methods in the literature require a certain
growth rate in order to provide a theoretical guarantee: for instance, a classical threshold
is logarithmic degrees, d(x ) ≳ log(n) (Lei and Rinaldo, 2015).

Proof of Theorem 4 For convenience of notation, let

Z := I
[
d̂(x ) > 0

]
(28)

Note that by Definition (24) and Equation (28)

(1− Z)f̂GNW(x ) = 0 (29)

or equivalently

Zf̂GNW(x ) = f̂GNW(x ) (30)

Keeping in mind that Z is {0, 1}-valued variable signifying the occurrence of an edge incident
to node (n+ 1), we have

E
[
1− Z

]
= P

(
a(x ,x 1) = a(x ,x 2) = · · · = a(x ,xn) = 0

)
= (1− c(x ))n (31)

12
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Additionally, we have Z2 = Z and (1− Z)2 = 1− Z, so using Equations (29) and (30), we
get

v(x ) = E
[(

f̂GNW(x )− S(f,x )
)2

Z

]
+ E

[(
f̂GNW(x )− S(f,x )

)2
(1− Z)

]
= E

[(
f̂GNW(x )Z − S(f,x )Z

)2]
+ E

[(
f̂GNW(x )(1− Z)− S(f,x )(1− Z)

)2]
= E

[(
f̂GNW(x )− S(f,x )Z

)2]
+ S2(f,x )E [1− Z]

= E
[(

f̂GNW(x )− S(f,x )Z
)2]

+ S2(f,x )
(
1− c(x )

)n
(32)

where we used Equation (31) in line (32). In particular, we get

v(x ) ≤ E
[(

f̂GNW(x )− S(f,x )Z
)2]

+ e−d(x )S2(f,x ) (33)

From Equation (33) it follows that we only need to focus on control of

E
[(

f̂GNW(x )− S(f,x )Z
)2]

(34)

We will show that the term (34) is of order O( 1
d(x )), and hence, in Equation (33) we may

substitute e−d(x ) with 1
d(x ) . The key insight is that the expression within the expectation of

Equation (34) has a representation as a sum of identically distributed, uncorrelated variables
whose variance is easy to compute. We now derive this representation, using a method that
we title the decoupling trick.

The decoupling trick For I ⊆ [n], let

RI(x ) =


1

|I|+
∑

j /∈I a(x ,x j)
, I ̸= ∅

1
d̂(x )

, I = ∅ and d̂(x ) > 0

0, otherwise

For I ̸= ∅, consider the graph GI obtained by adding the edges {(n + 1, i)|i ∈ I} to the
original LPM graph G (of course, not all edges of the form (n+ 1, i), i ∈ I need to exist in
the original graph). Then 1/RI(x ) = |I|+∑j /∈I a(x ,x j) can be thought of as counting the
number of neighbors of node n+ 1 in the modified graph GI . For I = ∅, observe that when
d̂(x ) > 0, R∅(x ) = 1/d̂(x ) whereas when d̂(x ) = 0, R∅(x ) = 0, and hence one can easily
see that

f̂GNW(x ) =
n∑

i=1

yia(x ,x i)R∅(x ) (35)

At this point we placed the inconvenience of having a bracket in the definition (24) into the
variable R∅(x ). For convenience of notation we define

Ri(x ) := R{i}(x ) (36)

13



Gjorgjevski, Keriven, Barthelmé, De Castro

Taking into account the fact that a(x ,x i) is a Bernoulli variable, i.e. it takes values in
{0, 1}, it follows that for all i ∈ [n]

R∅(x )a(x ,x i) = Ri(x )a(x ,x i) (37)

Indeed, if a(x ,x i) = 0 then both sides of Equation (37) are 0. Otherwise a(x ,x i) = 1 and
both sides in Equation (37) equal Ri(x ). Moreover, Ri(x ) is independent from a(x ,x i).
More generally we have the following observation.

Lemma 5 (Decoupling trick) For all pairs of disjoint subsets I, J ⊆[n] we have

RJ(x )
∏
i∈I

a(x ,x i) = RI∪J(x )
∏
i∈I

a(x ,x i)

and RI∪J(x ) is independent from {a(x ,x i)|i ∈ I}.
Proof If

∏
i∈I a(x ,x i) = 0 then there is nothing to prove. If

∏
i∈I a(x ,x i) ̸= 0, then by

the fact that a(x ,x i) are Bernoulli variables we get a(x ,x i) = 1 for all i ∈ I. As I ⊆ [n]\J ,
we have

RJ(x ) =
1

|J |+∑i/∈J a(x ,x i)
=

1

|I|+ |J |+∑i/∈I∪J a(x ,x i)
= RI∪J(x )

The second part of the lemma follows from modeling assumptions.

Plugging in Equation (37) into Equation (35), we get

f̂GNW(x ) =
n∑

i=1

yia(x ,x i)Ri(x ) (38)

Moreover, summing Equation (37) over i ∈ [n] gives

n∑
i=1

a(x ,x i)Ri(x ) =
n∑

i=1

a(x ,x i)R∅(x)

= d̂(x )R∅(x )

= I
[
d̂n(x ) > 0

]
= Z

we get

Z =

n∑
i=1

a(x ,x i)Ri(x ) (39)

Using Equations (38) and (39) we have

f̂GNW(x )− S(f,x )Z =
n∑

i=1

yia(x ,x i)Ri(x )− S(f,x )
n∑

i=1

a(x ,x i)Ri(x )

=
n∑

i=1

(yi − S(f,x ))a(x ,x i)Ri(x )

(40)

In Appendix A we show that the summands in the right hand side of Equation (40) are
uncorrelated and consequently we obtain the following expression for the quantity (34).
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Lemma 6 We have

E
[(

f̂GNW(x )− S(f,x )Z
)2]

=
n∑

i=1

E
[(
yi − S(f,x )

)2
a(x ,x i)R

2
i (x )

]
The proof of Lemma 6 may be found in the Appendix; it uses the decoupling trick (5) along

with the fact5 that E
[(
yi − S(f,x )

)
a(x ,x i)

]
= 0. Since

|S(f,x )| ≤ ||f ||∞ (41)

one can deduce from Assumption (1) that |S(f,x )| ≤ B. For i ∈ [n], we have

Eϵ

[
(yi − S(f,x ))2

]
=
[(
f(x i)− S(f,x )

)2]
+ Eϵ

[
ϵ2i

]
≤ 4B2 + σ2

(42)

Plugging in the bound (42) into Lemma 6, we get

E
[(

f̂GNW(x )− S(f,x )Z
)2]

≤ (4B2 + σ2)E

 n∑
i=1

a(x ,x i)R
2
i (x )


= (4B2 + σ2)E

 n∑
i=1

a(x ,x i)R
2
∅(x )


= (4B2 + σ2)E

[
1

d̂(x )
I
[
d̂(x ) > 0

]]
(43)

Applying Lemma 4.1 in (Györfi et al., 2002) gives that

E

[
1

d̂(x )
I
[
d̂(x ) > 0

]]
≤ 2

d(x )

Finally,

E
[(

f̂GNW(x )− S(f,x )Z
)2]

≤ 8B2 + 2σ2

d(x )
(44)

Plugging the bounds (41) and (44) into Equation (33), we get the desired result.

Theorem 4 is essentially tight, at least in the presence of additive noise, i.e. we have the
following lemma.

Lemma 7 Suppose that mini∈[n] E[ϵ2i ] ≥ σ2
0 > 0. Then

v(x ) ≥
σ2
0

(
1− e−d(x )

)2
d(x )

5. This fact is the reason why we work directly with the random design; verbatim analysis for the fixed
design does not satisfy this.
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The proof of Lemma 7 can be found in the appendix.
We remark that the Theorem 4 holds for Latent Position Models with general nonpara-

metric kernel functions k : Q×Q → [0, 1], as long as the condition d(x ) > 0 holds. Indeed,
the proof of Theorem 4 is independent of the shape of the form of k. However, S(f,x ) (11)
depends on f and on the kernel function k (2). When k(x i,x j) depends on the distance
||x i − x j || as in (3), S(f,x ) is a good approximant of f(x ), as we show in Sec. 2.2.

2.2 Bias and Risk of GNW

In Sec. 2.1 we considered a LPM graph with general kernel function k. As mentioned before
in (3), we will suppose that the kernel is radial, i.e.

k(x , z ) = αK

(
||x − z ||

hg

)
(45)

with 0 < α ≤ 1 and hg > 0. These two parameters are considered to be unknown and
fixed. There are two important questions that need to be addressed. First, under which
conditions on α and hg is S(f,x ) a good approximation of f(x )? In other words, how does
the bias proxy (27) depend on α and hg? Second, our bound for the variance proxy (26)
is in terms of the local degree d(x ). Therefore it is important to understand how the local
degree d(x ) depends on the parameters α and hg. We address these questions in this section.
Proofs for this Section can be found in the Appendix B.

In order to control the bias proxy (27) we will need to assume regularity conditions on
the regression function f , the kernel function K and on the density p.

Assumption 8 (Box assumption)
There exists M1,M2 > 0 s.t. for all t ∈ [0,∞)

1

2
I [t ≤ M1] ≤ K(t) ≤ I [t ≤ M2]

Assumption 9 (Regularity of the regression function)
There exist 0 < a ≤ 1 and L > 0 such that for all x , z ∈ Q

|f(x )− f(z )| ≤ L||x − z ||a

Assumption 10 (Regularity of the domain)
There exist r0, c0 > 0 such that for all x ∈ Q = supp (p), and all r ≤ r0,

m
(
Q ∩Br (x )

)
≥ c0m

(
Br (x )

)
Here m is the Lebesgue measure on Rd.

Finally, Assumptions 11 and 12 cover different type of distributions for the latent positions.

Assumption 11 (Density Assumption 1)
There exists p0 > 0 such that for all x ∈ Q

p(x ) ≥ p0
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Assumption 12 (Density Assumption 2)
There exist 0 < b ≤ 1 and S > 0 such that p ∈ Σ(b, S) and∫

p1/2(x )dx < ∞

Assumptions 8 and 9 are rather classical in the context of the NW estimator. The NW
estimator performs poorly in low density regions and near the boundary of the support
of the data distribution. The intuitive explanation for this behavior is that because there
are on average fewer observations in such a region, the variance of the estimator is greater.
Under Assumptions 10, 11 and 12, the problematic regions are not too large. Assumption 10
is the most technical one, but it it satisfied in many instances considered in the classical
regression setting. Clearly, Rd satisfies Assumption 10 with r0 = ∞, c0 = 1 and it is not
difficult to show that the Cube Qd = [−1, 1]d satisfies the regularity Assumption 10 with
r0 = 1, c0 = 1

2d
and so does every closed and convex subset6 of Rd (for some r0, c0 > 0).

Another broad class of sets which satisfy this property and are used in the regression context
in Rd are those that satisfy interior cone condition (Wendland, 2004). A set Q satisfies an
interior cone condition with cone C if for all points x ∈ Q, one can rotate and translate C to
a cone Cx with a vertex in x such that Cx ⊆ Q. A typical example of Assumption 11 is the
uniform distribution (over a convex body), whereas Assumption 12 covers non-compactly
supported, but smooth distributions such as the Gaussian.

Under Assumptions 8 and 9, the bias proxy (27) is uniformly bounded over Q by
Lemma 13.

Lemma 13 (Bias control lemma) Suppose that Assumptions 8 and 9 hold. Then

sup
x∈Q

|S(f,x )− f(x )| ≤ 2LMa
2 h

a
g

The problematic vertices for GNW are those whose latent positions fall in a low density
region or are near the boundary of the support Q. Our next lemma lower-bounds the
expected degree of a node, to control the risk:

Lemma 14 (Local degree bound)
Suppose that Assumption 8 and 10 hold. If M1hg < r0 and x ∈ Q is such that

p0(x ) := inf
z∈Q

||x−z ||≤M1hg

p(z ) > 0 (46)

Then
1

d(x )
≤ 2

c0vdM
d
1nαh

d
gp0(x )

where, we recall, vd is the volume of the d−dimensional unit ball.

This Lemma in combination with Theorem 4 and Lemma 13 gives a bound on the point-
wise risk (16). Having established bounds on the bias (27) and variance (26) proxies, we
are ready to provide a bound on the point-wise risk (17).

6. when compact, such sets are called convex bodies
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Theorem 15 (Pointwise risk bound)
Suppose that Assumptions 8, 9, 10 hold. Furthermore, suppose that x ∈ Q is s.t. p0(x ) > 0
where p0(x ) is given by (46). If M1hg ≤ r0 then

Rg

(
f̂GNW(x ), f(x )

)
≤ 4L2M2a

2 h2ag +
36B2 + 8σ2

c0vdM
d
1nαh

d
gp0(x )

In the next section we follow up by giving bounds on the global risk (18) in terms of the
parameters α and hg.

2.3 Integrated risk

Finally to bound the global risk (18) of GNW, we would like to integrate the inequality given
in Theorem 15. Unfortunately the right hand side of this inequality depends on p0(x ), a
quantity that depends non trivially on the behavior of p around the point x ∈ Q, so a direct
integration does not work. However, Assumption 11 allows us to conclude that p0(x ) ≥ p0
for all x ∈ Q and hence yields the following result.

Theorem 16 (Risk bound 1)
Suppose that Assumptions 2, 8, 9, 10 and 11 hold. If M1hg < r0, we have

Rg

(
f̂GNW, f

)
≤ C1h

2a
g +

C2

nαhdg

where C1 = 4L2M2a
2 , C2 =

36B2+8σ2

p0c0vdM
d
1
.

Theorem 16 matches the classical rate (21) with τ := hg. In this sense, GNW with length-
scale hg behaves like a classical NW estimator with fixed bandwidth τ := hg. In particular,
Assumptions 10 and 11 apply for latent positions with compactly supported distribution p,
that is also lower bounded by a positive constant, in some sense a relaxation of the uniform
distribution. Theorem 16 does not cover distributions supported on all of Rd, or any set of
infinite Lebesgue measure more generally. For example, the Gaussian distribution over Rd is
not covered by Assumption 11. Such density functions must achieve arbitrary small values
and hence it is not possible to control p0(x ) globally in the same way as it was done with
Assumption 11. However, under Assumption 12 we get the following result.

Theorem 17 (Risk bound 2)
Suppose that Assumptions 8, 9, 10 and 12 hold. If hg < min (r0/M1, 1) then

Rg

(
f̂GNW, f

)
≤ C1h

min (2a,b/2)
g +

C2

nαhd+b
g

where C1 = 4L2M2a
2 + (8B2 + 2σ2)S1/2M

b/2
1

∫
p1/2(x )dx and C2 =

36B2+8σ2

c0vdSM
d+b
1

.

Assumptions 10 and 12 extend the class of distributions of the latent points to Hölder
continuous density with non-compact support, with the caveat that the support still needs
to be geometrically regular. The cost of these assumptions is an increase both in the bias

18



Node Regression on Latent Position Models via local averaging

and the variance proxies. For example, when b = 1, As h2ag ≤ h
min (2a,1/2)
g and equality

holds only when a ≤ 1/4, i.e. the regression function f is fairly hard to learn. On the other
hand, 1

nαhd
g
≤ 1

nαhd+1
g

, and hence the variance term is always worse under Assumption 12.

The main idea behind the proof of Theorem 17 is to split the risk over a high density
region i.e. where the density is p(x ) ≥ 2Chbg, and its complement. Due to the integrability
condition in Assumption 12, and the fact that the point-wise risk is bounded by a constant,
the low density region can be handled. For the high-density region, the risk is controlled
by Lemma 15.

2.4 Discussion

The GNW estimator is computationally extremely cheap (with runtime O(n)) and it has the
same convergence rate7 as the (fixed-bandwidth) NW estimator. In order to find the range
of values hg for which the GNW risk converges for large LPMs, we conduct a simplified
asymptotic analysis of GNW. We suppose that the scaling factor α = 1 in (3). In order

to conclude that the risk Rg

(
f̂GNW, f

)
converges to 0, we need both terms in the upper

bound of Theorem 16, namely h2ag and 1/nhdg to go to 0. Note that this is equivalent to
having the expected local degree (10) d(x ) → ∞ and the local edge density (10) c(x ) → 0
at the same time. Moreover, elementary calculus shows that the ideal bias-variance tradeoff

is achieved for hg = τ⋆ := ca,dn
− 1

d+2a and the associated rate for the risk is Ca,dn
− 2a

d+2a ,
where ca,d and Ca,d also depend on the various parameters that appear in the constants C1

and C2 in Theorem 16. Similar analysis may be conducted for Theorem 17. In summary,
f̂GNW behaves reasonably well as soon as hg → 0 and nhdg → ∞, with the risk depending
on where this parameter hg happens to fall.

The problem with using the GNW estimator arises when the length-scale hg is either
too small or too large. When the length-scale hg is too small (relative to τ⋆), GNW averages
labels over a neighborhood that is too small, meaning it will have low bias but high variance.
We call this case the under-averaging regime (hg ≪ τ⋆). On the other hand, a large length-
scale hg (relative to τ⋆) will result in averaging on a window of size hg, larger than the
optimal window of size τ⋆. This leads to low variance but high bias, and we call this case
the over-averaging regime (hg ≫ τ⋆).

We reemphasize the fact that length-scale hg and the optimal bandwidth τ⋆ are not
user chosen parameters. The length-scale hg is inherent to the generative process of the
graph: it influences the size of neighborhoods in the latent space and the sparsity of the
graph. The optimal bandwidth τ⋆ depends primarily on the sample size n, the smoothness
of the regression function f , namely the Hölder constant and exponent L, a, as well as on
the variance of the additive noise σ2. The optimal bandwidth τ⋆ determines the size of the
window in the latent space which achieves optimal performance for the label y given by (13).
In the remainder of this paper we will focus on the following question: For what pairs of
values (hg, τ⋆) can we construct a node regression estimator that achieves the optimal risk
rate (21) with τ := τ⋆?

Theorem 16 states that GNW achieves this for hg = τ⋆, and less formally, that the risk
is nearly optimal when hg is in the vicinity of τ⋆. In the following section we consider the

7. up to a multiplicative constant
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Estimated Nadaraya Watson estimator, which, as we will see, achieves standard minimax
risk rates in certain under-averaging and over-averaging regimes.

3 Nadaraya-Watson on estimated positions (ENW)

In this section we are going to consider an estimator that works on a broader range of length-
scales, that still relies on a local averaging approach. In particular, the goal is to construct
node regression estimators that will outperform the GNW estimator in the narrow and
wide length-scale regimes, when hg ≪ τ⋆ and hg ≫ τ⋆, with the ultimate goal of achieving
optimal rate (21) for τ = τ⋆. We consider a LPM with kernel function (45) with α = 1.

As mentioned in the introduction, since the main drawback of GNW is that the latent
positions x i are unknown and the bandwidth τ cannot be adjusted, we suggest to combine
two classical approaches from the literature: first estimate the latent positions – or, more
precisely, estimate the distances from the regression node (n + 1) to all the others – then
use the standard Nadaraya-Watson estimator with these estimated distances, allowing the
user to freely tune the bandwidth as usual.

As there are many approaches for the first step in the literature, we suppose that the
user chooses some latent distance estimation algorithm A that takes as an input the ob-
served graph (potentially with some other hyper-parameters) and returns an estimate for
the distance between the latent positions of node (n+1) and all other nodes i in the graph.
The algorithm A needs to be deterministic, in the sense that the only random components
on which it acts are the adjacency matrix A and the observed label y , i.e. we do not cover
random algorithms which require additional randomness in their execution such as addi-
tional random walks used in DeepWalk (Perozzi et al., 2014) or Node2Vec (Grover and
Leskovec, 2016). By plugging these estimated distances in a NW estimator, we end up with
a prediction for the regression node. We call the resulting estimator the A-Estimated
Nadaraya-Watson (A-ENW).

The analysis of the performance of A-ENW may be broken down into two problems:
analyzing the precision of the distance estimation algorithm A, and analyzing the stability
of NW to using estimated distances instead of exact ones. The first error depends on the
choice of A and has been studied extensively in the literature. We will give several examples
in Section 3.2.

For the stability of NW, in Section 3.1 we provide a risk bound when the algorithm A
estimates the distances δ (12) with an additive error ∆. We show that in this case A-ENW
achieves (up to a multiplicative constant) the classical NW rate (21) as long as τ ≳ ∆.
This result is formally stated in Theorem 21. In particular, given a problem for which
the optimal bandwidth is τ⋆, A-ENW can achieve the optimal NW-rate (21) with τ := τ⋆
provided that τ⋆ ≳ ∆.

In Section 3.2 we give several examples of algorithms A in the literature and their
respective ∆. We find instances (hg, τ⋆), both in the under-averaging and the over-averaging
regime, for which there exist algorithms A such that A-ENW achieves the optimal NW-
rate (21) with τ := τ⋆.
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3.1 Risk bound on Estimated Nadaraya Watson

In this section, in addition to the observed labels y on the first n nodes (13) y = [y1, . . . , yn]
t

and the adjacency matrix A, we also assume that there exists an algorithm A that takes
the observed graph with adjacency matrix A as input and outputs a vector δ̃ = [δ̃1, . . . , δ̃n],
an estimation of the distances δ = [δ1, . . . , δn] where δi is the distance between the n+ 1th
and the ith latent variables (12). We remark that such an algorithm should be equivariant,
i.e. if we relabel the nodes [n] with some permutation π : [n] → [n], the algorithm A will
permute its outputs by that same permutation. We suppose that the latent positions Xn+1

are fixed; although our analysis can be easily extended to the random design case as well.
We will measure the quality of the estimator A by

∆ (A,Xn+1) := ||δ̃ − δ||∞ = max
i∈[n]

|δ̃i − δi| (47)

where δi is given by (12). Even though we state our results in terms of latent distance
estimation, we can easily adapt them to position estimation algorithms, as described in the
following remark.

Remark 18 (Position Estimation Algorithms) If B := {0, 1}(n+1)×(n+1) → Rd×(n+1)

is a position estimation algorithm with B(A) = [x̃ 1, . . . , x̃n, x̃n+1], where x̃ i is an estimate
of the latent position x i, then one can consider the induced distance estimation algorithm AB
given by δ̃i = ||x̃ i − x̃n+1||. The triangle inequality implies that

∆(AB,Xn+1) = max
i∈[n]

|δi − δ̃i| ≤ 2 max
i∈[n+1]

||x̃ i − x i|| (48)

Hence in the case of position estimation algorithms, one can replace the metric ∆(AB,Xn+1)
by D(B,Xn+1) := 2maxi∈[n+1] ||x̃ i − x i||. For position estimation algorithms B, we use the
slightly abusive notation and write B-ENW instead of AB-ENW.

We will analyze the performance of the Nadaraya-Watson estimator with estimated dis-
tances δ̃ in terms of the metric (47). In contrast to the Graphical Nadaraya-Watson esti-
mator, the distance estimation approach allows for a choice of a kernel function ϕ as well
as a bandwidth τ . Throughout this section, we will make the following two assumptions.

Assumption 19 The kernel function ϕ : [0,∞) → [0, 1] is non-negative, compactly sup-
ported and non-vanishing in a neighborhood of 0, i.e. there are M1,M2 > 0 such that

1

2
I [t ≤ M1] ≤ ϕ

(
t
)
≤ I [t ≤ M2]

Assumption 20 The positions Xn+1 and τ > 0 are such that the number of points in
Xn = [x 1, . . . ,xn] in the M1τ

2 window around xn+1 satisfies

M(τ) :=
n∑

i=1

I
(
δi ≤

M1τ

2

)
≥ k0nτ

d (49)

for some k0 > 0.
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Assumption 19 is the same as Assumption 8, the major difference being that ϕ is user
chosen whereas K is implicit in the definition of the LPM. In particular, one can choose
the constants M1,M2 as well. For example, the function ϕ0 : [0,∞) → [0, 1] given by
ϕ0(t) = I(t ≤ 1) with M1 = M2 = 1 is a valid choice for ENW averaging. Assumption 20
is also standard in the NW literature. Loosely speaking, it guarantees that the points
are sufficiently scattered across their support, relative to the bandwidth τ . For example,
in a random sample of i.i.d. points with distribution p satisfying Assumptions 10 and 11,
Assumption 20 fails to hold with probability O(e−nτd).

Our aim is to prove a guarantee on the A-Estimated Nadaraya Watson estimator with
estimated distances δ̃ = A(A) given by

f̂A
ENW,τ (xn+1) =


∑n

i=1 yiϕ
(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

) if
n∑

i=1

ϕ

(
δ̃i
τ

)
> 0

0 otherwise

(50)

Note that even though xn+1 appears in the notation of (50), the latent position xn+1 is
not fed into A-ENW. This is only a convention in order to stick close to the notation
of the classical ML regression literature. If the algorithm A is sufficiently accurate in the
estimation of the latent distances, we claim that the error in the subsequent NW procedure
will not diminish significantly the rate of A-ENW. A precise statement of this claim is given
in the following theorem.

Theorem 21 Suppose that Xn+1 and τ > 0 satisfy Assumption 20 and that the regression
function f satisfies the regularity Assumptions 1 and 9, i.e. it is bounded by B and Hölder
regular with exponent 0 < a ≤ 1. Additionally, suppose that

∆(A,Xn+1) ≤
M1τ

2

Then

Eϵ

(
|f̂A

ENW,τ (xn+1)− f(xn+1)|2
)
≤ C1τ

2a +
4σ2

k0nτd

where C1 = 2L2
[
(M1

2 +M2)
2a
]

Theorem 21 states that if the algorithm A has distance estimation error ∆(A,Xn+1) (47)
below M1τ

2 , A-ENW averaged over the additive noise (2) achieves the classical NW rate (21)
(up to a multiplicative constant). However, the algorithm A acts on the random matrix A
and hence even in the case when Xn+1 are treated as fixed, ∆(A,Xn+1) is a random variable
that depends on the edge variables U . When the algorithm A fails to estimate distances
within precision M1τ

2 , we do not expect that the subsequent NW averaging procedure will
yield interesting results.

We justify this claim by numerical evidence. Let us consider univariate positions x i ∈
[0, 1], and perturbations given by x i,∆ = x i+∆u i, where u i ∈ [−1, 1] are uniform variables
and ∆ = kτ⋆, k = 0, 1, 2. We compute smoothed values
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Figure 2: Bias Variance Tradeoff Curves for NW under perturbation. Sample size n = 500,
label yi = sin(4πx i) + ϵi with ϵi ∼ N (0, 1.5) and x i ∼ Unif[0, 1]

f̂i,∆ =

∑n
j=1 yjϕ

(
|x j,∆−x i,∆|

τ

)
∑n

j=1 ϕ
(
|x j,∆−x i,∆|

τ

) (51)

which can be interpreted as predictions for the value f(x i) based on a Nadaraya-Watson
estimator with design X∆ = [x 1,∆, . . . ,xn,∆], labels y = f(Xn) + ϵ and bandwidth τ . We
then compute the (smoothed) Mean Squared Error

MSEτ

(
f̂∆, f

)
=

1

n

n∑
i=1

(
f̂i,∆ − f(x i)

)2
and we plot it as a function of τ (see Figure 2). We see that for k = 2, i.e. when the
precision is 2τ⋆, the bias-variance tradeoff curve does not exhibit the same behavior as for
k = 1, which is closer to the bias-variance tradeoff curve with exact positions (k = 0).

Therefore, we opt to control the probability of the failure of the algorithm A defined as

pτ (A,Xn+1) = PU

(
∆
(
A (A) ,Xn+1

)
>

M1τ

2

)
(52)

The following result provides a bound on the pointwise risk (17), which we recall takes
expectation both over additive label noise and the random edges in the graph.

Theorem 22 (ENW risk rate (deterministic design)) Suppose that Xn and τ > 0
satisfy Assumption 20 and the regression function f satisfies Assumptions 1 and 9. Then

Rg

(
f̂A
ENW,τ (xn+1), f(xn+1)

)
≤ C0pτ (A,Xn+1) + C1τ

2a +
4σ2

k0nτd

where C0 = B2 + σ2, C1 = 2L2
[
(M1

2 +M2)
2a
]

23



Gjorgjevski, Keriven, Barthelmé, De Castro

From Theorem 22 it follows that if pτ (A,Xn+1) is smaller than the classical NW-
rate (21), A-ENW will achieve, up to a multiplicative constant, the same rate (21) in τ . In
particular, if this is true for the optimal bandwidth τ⋆, then A-Estimated Nadaraya Watson

can achieve the optimal non-parametric NW rate n− 2a
2a+d .

The LPM literature on position estimation (Arias-Castro et al., 2018; Dani et al., 2022;
Giraud et al., 2023) typically establish rate of convergence for ∆(A,Xn+1), i.e. there exist
several results which provide rates rn > 0, such that prn(A,Xn+1) is overwhelmingly small,
typically of order O(1/n) (much lower than the rate (21) for any τ > 0). Since pτ (A,Xn+1)
is decreasing function in τ , it follows that we can match the classical NW-rate (21) for
any τ ≳ rn.

Several results (Arias-Castro et al., 2018), (Dani et al., 2022) indicate that the sparsity
of the graph as dictated by the length-scale hg plays a key role in establishing the rate rn.
To the best of our knowledge, theoretical understanding of the relationship between the
length-scale hg and the rate rn in the general compactly supported kernel LPM setting
is incomplete. As a consequence we cannot characterize completely the pairs of values
(hg, τ⋆) for which optimal rates (22) are achievable. In the next section we consider two
approaches for the under-averaging and over-averaging regimes respectively, and point out
several instances of LPMs for which we can get optimal NW performance by using A-ENW.

3.2 Distance and Position estimation algorithms

In this section we have a glance at the existing literature on distance and position estimation
algorithms and discuss some implications for the node regression problem. There are several
estimators in the context of LPMs, but the theoretical analysis remains limited. We will
go through a few examples, focusing on consequences for the node regression estimator A-
ENW. Given a LPM with kernel of the shape (3), the length-scale hg will play an important
role in the probability of failure (52). Recall that in the classical regression setting, for label
y = f(Xn) + ϵ with f satisfying 9, and ϵ satisfying 2, the rate (21) achieves a minimal

value C⋆n
− 2a

2a+d for τ⋆ = c⋆n
− 1

2a+d , where c⋆, C⋆ > 0 depend on L and σ2.

3.2.1 The Shortest Path Algorithm

The Shortest Path Algorithm Asp is the simplest and cheapest approach to distance esti-
mation. The idea behind it is that the shortest path distance in the graph between nodes i
and j should approximate (up to a scaling factor) the distance of the latent positions x i

and x j . This algorithm is the subject of study of (Arias-Castro et al., 2018). In this work
it is shown that for any distance estimator d̂ based on the adjacency matrix A, there
will be some configuration of points Xn+1 such that for a random geometric graph with
length-scale hg, at least half of the quantities |δi− δ̂i| (12) are of order Ω(hg). In particular,
∆(A,Xn+1) is of order Ω(hg) and hence, using our results (Theorem 22), this particular
approach could yield optimal rates only in the under-averaging regime hg ≪ τ⋆. In order to
explore the implications for the downstream task of node regression, we will use the more
general result Theorem 3 of (Arias-Castro et al., 2018). In our notation, they show if the
latent positions Xn+1 are uniformly spread out on a convex body Q, i.e.
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Λ(Xn) := sup
x∈Q

min
i∈[n]

||x i − x || ≤ ϵ (53)

and the kernel function K (3) is compactly supported and satisfies K(t) ≥ C0(1− t)A for
some C0 > 0, A ≥ 0, then there exists C2 > 0 (depending only on A and C0) such that

PU

∆(Asp,Xn+1) > C2

hg +

(
ϵ

hg

) 1
1+A


 ≤ 1

n
(54)

Building on their result, we get the following corollary. For the sake of simplicity we omit
some constants in the analysis (in particular σ2 and B), which amounts to asymptotic study
with large n, where hg is allowed to depend on n.

Corollary 23 Suppose that d = 1, K is supported on [0, 1] with K(t) ≥ C0(1− t)A for
some C0 > 0, 0 ≤ A < 1, and Xn+1 are i.i.d. with density p that satisfies Assumptions 10
and 11. Furthermore, suppose that the additive noise ϵ satisfies Assumption 2 and the
regression function f satisfies Assumption 9 with a > 1+A

2 . Finally, suppose that A is an
adjacency matrix of a LPM random graph with link function 3 s.t.

log(n)n− 2a−A
1+2a ≲ hg ≲ n− 1

1+2a .

Then, with high probability over Xn+1,

inf
τ>0

Rg

(
f̂A
ENW,τ (xn+1), f(xn+1)

)
≤ C⋆n

− 2a
2a+1

The time complexity of the shortest path algorithm is O
(
n log(n)nhdg

)
, in the growing

degree regime nhdg = Ω(1) and O
(
n log(n)

)
in the bounded degree regime nhdg = Θ(1).

Generalization to the Random Geometric Graphs in dimension d ≥ 2 Note that
for the special case of random geometric graph, pτ (A,Xn+1) ∈ {0, 1}, since there is no
edge randomness U . The approach of (Dani et al., 2022) consists in refining the shortest
path distances by taking into account the number of common neighbors of the nodes. They
propose a distance estimation algorithm, and building on that algorithm, they construct a
position recovery algorithm Brgg. In our notation, settingQ = [0, 1]d to be the d-dimensional
cube with latent positions following a uniform distribution on Q, and fixing hg = n−r, with
0 < r < 1/d, they obtain the following bound (with high probability over the sampled
points Xn)

D
(
Brgg,Xn+1

)
≤ Cd

(nhdg)
− 2

d+1 if 1 < nhdg < n
d+1
2d√

log(n)n− 1
d if n

d+1
2d ≤ nhdg < n

(55)

Note that in the over-averaging regime, for nhdg sufficiently large, in particular for nhdg ≥
n

d+1
2d , we have the rate rn = log(n)n− 1

d , which does not depend on the length-scale hg,
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whereas for nhdg < n
d+1
2d , we have the rate rn = (nhdg)

− 2
d+1 , which depends on the length-

scale hg. In particular it shows convergence of the algorithm even for sparse graphs8.
However, in order to obtain nonparametric rates using this algorithm, we need to be in
a certain density regime. More precisely, based on the bound (55), we have the following
result.

Corollary 24 Suppose that d ≥ 2 and that A is adjacency matrix of a Random Geometric

Graph. If nhdg ≳ n
d+1

2(d+2a) then with high probability over the samples Xn+1, we have

inf
τ>0

Rg

(
f̂A
ENW,τ (xn+1), f(xn+1)

)
≤ C⋆n

− 2a
2a+d

The algorithm Brgg runs in O(nω log(n)), where ω < 2.373 is the matrix multiplication
constant (Alman and Vassilevska Williams, 2020).

3.2.2 Localize and Refine: Optimal recovery on the Sphere

Another instance in which optimal recovery is possible is provided by (Giraud et al., 2023).
This work concerns position recovery in the large length-scale regime hg ≥ c0 > 0 on the
sphere S1 ⊆ R2. Our model slightly differs from theirs, as we work with data supported
on convex bodies in Rd, which excludes surfaces like the sphere, although our results easily
generalize to the case of smooth manifolds. They propose an algorithm titled Localize and
Refine BLaR for position recovery on the sphere with

D(BLaR,Xn+1) ≤ C

√
log(n)

n
(56)

Furthermore, they show that this rate is minimax optimal in their setting. Corollary 4.3 in
their paper provides a specific link function K s.t.

pτ (BLaR,X) ≤ 9

n2

whenever τ ≥ C

√
log(n)

n . In particular, when τ⋆ ≳
√

log(n)
n , BLaR-ENW achieves optimal

non-parametric rates. This happens for 1
1+2a < 1

2 , or equivalently for a > 1/2. Thus, in the

over-averaging regime
hg

τ⋆
≫ 1, there are algorithms B such that B-ENW achieves optimal

nonparametric rates for sufficiently regular functions (Hölder exponent a > 1/2). This is
somewhat surprising, as such graphs are extremely dense, with every degree having order
greater than c0n. The time complexity of this algorithm is polynomial in the number of
nodes n.

4 Numerical Experiments

We study empirically two position recovery algorithms based on the ideas of (Arias-Castro
et al., 2018) and (Giraud et al., 2023), that are intended to treat the under-averaging and
over-averaging regime, respectively (see Figure 5). We restrict our attention to the one

8. In LPMs with compactly supported kernel functions, the degree scales like nhd
g
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dimensional case, i.e, it is assumed that the latent positions are univariate, uniform i.i.d.
variables on Q = [0, 1]. Throughout this section, the Kernel Function K (3) is taken to be
the gaussian K(t) = e−t2 and α = 1.

The first algorithm Bsp is based on the shortest path algorithm, which yields an ap-
proximation for the distances (12). We convert these distances into position estimates by
using classical Multi Dimensional Scaling (Torgerson, 1952), abbreviated as cMDS. Our
implementation computes the graph distances using the Floyd-Warshwall algorithm FW,
which computes all graph distances in time complexity O(n3). For disconnected graphs, this
algorithm will correctly calculate the graph distance of nodes i and j in different connected
components to be infinite. However, since we perform cMDS on the graph distances, we
require that all graph distances are finite. Indeed, one can apply cMDS on each connected
component, providing embeddings for different components which are not comparable with
one another. Instead, we opt to implement position recovery algorithms only for connected
graphs. Algorithm Bsp is expected to outperform GNW in the narrow length-scale regime
hg

τ⋆
= o(1). The shortest path Bsp algorithm is given as follows.

Input: Adjacency matrix A
Compute FW(A);
Return cMDS(FW(A));
Output: Positions X̂ ∈ Rn×1

Algorithm 1: Shortest Path Position Recovery Algorithm Bsp

The second algorithm Bspectral is more empirical in nature. Recall that in the over-
averaging regime we have hg ≫ τ⋆. The main idea is to “shrink the length scale”, i.e. to
produce a new adjacency matrix Aq that indicates if two points are within distance τq,
where τq ≪ hg. In order to achieve this goal, we will denoise the adjacency matrix A in the

hope to get a more accurate estimate K̂ of K. Keeping in mind that K̂i,j is an estimate of
Ki,j (58) where K (3) is a decreasing function, we can construct Aq by

[
Aq

]
i,j

= I
[
K̂i,j > q

]
(57)

Once Aq is constructed, we run the shortest-path algorithm Bsp (1) on Aq.

We now explain the construction of the denoised matrix K̂. This construction is based on
empirical observations, and theoretical analysis is out of the scope of this paper. Empirically,
we observe that the eigenvalue distribution of the adjacency matrix A admits a Wigner-like
semicircular law (Anderson et al., 2009). Indeed, A = K+E where

[K]i,j = K

(
||x i − x j ||

hg

)
(58)

and E is a random matrix with centered and independent entries (conditionally on the
latent positions). The spectrum of A is formed from a bulk of eigenvalues coming from E
and only a few eigenvalues of K are separated from this bulk (See Figure 3). Moreover, the
eigenvectors of the adjacency matrix A associated with these eigenvalues separated from
the bulk tend to be a very good approximation for the corresponding eigenvectors of the
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kernel matrix K, whereas as soon as an eigenvalue of A enters in the bulk, its associated
eigenvector is overwhelmed with noise (See Figure 4).
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Figure 3: Illustration for a LPM with sample size n = 500 and length-scale hg = 0.1.
Figure 3a shows a scatter plot of descending eigenvalues of K and A. Interestingly, the
first few eigenvalues of A are very close to the corresponding ordered eigenvalues of K.
Figure 3b shows a histogram of Eigenvalues of A. The top several eigenvalues of A are well
separated from the rest, which fall in the semicircular bulk.

Let A =
∑n

i=1 σiv iv
t
i and K =

∑n
i=1 λiu iu

t
i be the spectral decomposition of A

and K, respectively, where the sequences (λi) and (σi) are decreasing. For PSD matrices K
our heuristic observation (See Figures 3 and 4) suggests that the low-rank matrix K̂ =∑r

i=1 σiv iv
t
i is a good approximation of K, where r is the number of eigenvalues that are

“out of the bulk”. While there are many methods to estimate the bulk, here we resort to
a simple symmetrization trick : due to the symmetry of the bulk and the fact that K is
psd, the most negative eigenvalue should be a good indication of the the size of the bulk.
More precisely, we keep the eigenvalues σi and their corresponding eigenvectors whenever
σi > −σn, i.e. r is the index such that σr > −σn ≥ σr+1, where σn is the smallest (most
negative) eigenvalue of A. If K was not p.s.d., one could for instance consider the spacings
of the eigenvalues in order to select the threshold for the spectrum. The algorithm Bspectral

is described in Algorithm 2.

Input: Adjacency matrix A, threshold parameter q, eigenvalue tolerance ρ0
Compute eigenvalue threshold: r = #{1 ≤ i ≤ n : σi > −(1 + ρ0)σn};
Compute low rank matrix K̂ =

∑r
i=1 σiv iv

t
i;

Construct new adjacency matrix Aq with [Aq]i,j = I
[
K̂i,j ≥ q

]
;

Run Bsp on Ar,q;
Output: Estimated Positions X̂ ∈ Rn×1

Algorithm 2: Spectral Position Recovery Algorithm Bspectral
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Figure 4: Scatter plots of (Xn,u j) and (Xn, v j). Figures 4a and 4b show a scatter plots
of the 11th eigenvector of the matrices K and A respectively. This is the index of the last
eigenvalue that separates from the bulk. Figures 4c and 4d demonstrate the same scatter
plot, for the 12th eigenvector of the matrices K and A, respectively. This is the index of
the first eigenvalue that belongs in the bulk.

4.1 Bias-Variance trade-off curves

We compute the Bias-Variance trade-off curves for GNW and ENW for a wide range of
length-scales hg. Given parameters n ∈ N, m > 0 and σ2 > 0, we consider the model

yi = sin(2mπx i) + ϵi (59)

where Xn = [x 1, . . . ,xn] are i.i.d. uniform univariate variables on [0, 1] and ϵi are i.i.d.
gaussian variables with variance σ2. As m increases, so does the number of oscillations of
the sine, and therefore the optimal bandwidth τ⋆ needs to shrink to compensate for the
irregularity of the label y .

For a given set of parameters n,m, σ2, we approximate τ⋆ for the label y given by (59)
by cross validation, i.e. we compute τCV. Then we consider the grid G of NUMPTS ∈ N
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Figure 5: Empirical error of Bsp and Bspectral as a function of the length-scale hg of the
LPM.

regularly spaced points in a window WτCV around τCV of two orders of magnitude, i.e.
WτCV = [0.1τCV, 10τCV]. The neighborhood of the leftmost endpoint of this interval could
be considered as the narrow length-scale regime, whereas the neighborhood of the rightmost
endpoint could be considered as the wide length-scale regime. For each point p in the grid G,
we generate a LPM with length-scale hg = p, on which we run GNW and ENW with the
algorithms 1 and 2. We report the mean squared error for each algorithm and for each
point p. This computation is repeated NUMMC ∈ N times to reduce the variance due to
random edges. Results are displayed in Figure 6.

We observe that when hg is close to τCV, the MSE error of GNW is generally lower than
that of ENW, although for certain parameters (See Figure 6a), Bsp-ENW and Bspectral-
ENW are competitive even in this scenario. In the large length-scale regime Bspectral-
ENW outperforms the other algorithms by a significant margin, however Bsp-ENW also
shows significant improvement over GNW. For the narrow length-scale regime, we generally
observe that Bsp-ENW is the dominant algorithm, provided that the label is sufficiently
regular so that τCV is above the connectivity threshold of the LPM.

5 Conclusion

We have shown that in a LPM with kernel function (3), GNW matches (up to multiplicative
constant) the classical NW rate (21). In particular, GNW is effective even in the extremely
narrow length-scale regime, hg ≪ τ⋆, as soon as hg → 0 and nhdg → ∞ - the same as-
sumptions needed on τ for asymptotic convergence of NW (19). Next, in Theorem 21, we
have shown that the Nadaraya-Watson estimator is stable with respect to perturbation of
the design points, provided that these perturbations are not too large. Using this result,
we examined several papers from the literature on position recovery and we discussed the
implications of their results for the node regression problem, with a particular focus on
optimal nonparametric rates. In order to construct an estimator that achieves optimal non-
parametric rates for a-Hölder continuous regression function f , it is sufficient to construct

a position estimation algorithm A such that pτ⋆(A,Xn+1) ≤ Cn− 2a
d+2a , where τ⋆ ∼ n− 1

d+2a .
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Figure 6: “Bias-Variance” tradeoff curves for Bsp-ENW, Bspectral-ENW and GNW, based
on the length-scale hg. Parameter setup: n = 500, NUMMC = 20, NUMPTS = 50. The
frequency m and the label noise σ2 vary as specified in the caption of the sub-figures.

This last question has not been treated in full generality in the literature, but rather it
seems that it needs to be treated on a case-by-case basis: different algorithms work in dif-
ferent settings. We have the intuition that the results of position estimation of (Dani et al.,
2022) based on the local, number of common neighbors approach should be able to extend
the optimality in d > 1 in the under averaging regime. More detailed characterization of
the possibility of obtaining standard rates (22) along with negative results in a minimax
sense is left for a future work.

Empirically, we observe that if the ratio hg/τ⋆ is Θ(1) then GNW performs nearly opti-
mally - indeed, in this case the risk GNW reaches the optimal NW-rate (22). Additionally,

ENW is to be preferred in the wide length-scale regime
hg

τ⋆
= ω(1). For sparse graphs, the

problem is not as clear. Existing results (55) imply convergence of position estimation in
any regime of sparsity, however it seems that GNW is simply faster in this particular case.
Due to its computational complexity (O(n)) it should be preferred for extremely sparse
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graphs, specifically outside of the univariate case (d > 1). Another case in which GNW
might be a good choice is in the case where fast algorithm runtime is emphasized over the
statistical quality of the result. Indeed, the computational cost of position estimation is
often at least Ω(n2), so that there is a tradeoff between runtime of the algorithm and its
statistical performance.

Appendix: Proofs

A GNW additional results

Recall that in the analysis of GNW, unless explicitly stated otherwise, expectations are taken
with respect to Xn, U and ϵ In this section we provide details to support the theoretical
results of Section 2. In particular, we prove Proposition 3, Lemma 6 and Lemma 7. En
route, we will compute the expectation of GNW explicitly. Being a quotient of two random

variables, the exact value of E
[
f̂GNW(x )

]
may seem difficult to compute. We are able to

carry out this computation due to the decoupling trick, Lemma 5.

Lemma 25 Recall that Ri(x ) =
1

1+
∑

j ̸=i a(x ,x j)
. For all i ∈ [n] we have

E
[
Ri(x )

]
=

1− (1− d(x )
n )

n

d(x )

Proof Note that Ri(x ), i ∈ [n] are identically distributed. Therefore, for i ∈ [n],

E
[
Ri(x )

]
= E

[
R1(x )

]
Recall Equation (39):

n∑
i=1

a(x ,x i)Ri(x ) = Z

Taking expectation and using the fact that Ri(x ) and a(x ,x i) are independent, we get

E

 n∑
i=1

a(x ,x i)Ri(x )

 =

n∑
i=1

E
[
a(x ,x i)Ri(x )

]
=

n∑
i=1

E
[
a(x ,x i)

]
E
[
Ri(x )

]
= nc(x )E

[
R1(x )

]
(60)

On the other hand,

E [Z] = P

 n∑
i=1

a(x ,x i) > 0

 = 1− P

 n∑
i=1

a(x ,x i) = 0

 = 1−
(
1− c(x )

)n
(61)

The result follows by combining Equations (39), (60) and (61).
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Proposition 26 (Expectation of GNW)

EXn,ϵ,U

[
f̂GNW(x )

]
= S(f,x )

(
1−

(
1− c(x )

)n)
where c(x ) and S(f,x ) are given by (10) and (11).

Proof of Proposition 26 Recall the linearized expression for f̂GNW (38) i.e. we have

f̂GNW(x ) =
n∑

i=1

yia(x ,x i)Ri(x )

Taking expectation and using Lemma 25, we get

E
[
f̂GNW(x )

]
=

n∑
i=1

E
[
yia(x ,x i)Ri(x )

]
=

n∑
i=1

E
[
yia(x ,x i)

]
E
[
Ri(x )

]
= nE[y1a(x ,x 1)]E

[
R1(x )

]
=

n(1− (1− c(x ))n)

nc(x )

∫
f(z )k(x , z )p(z )dz

= S(f,x )(1− (1− c(x ))n)

Finally, the explicit computation of E[f̂GNW] enables us to prove Proposition 3.
Proof of Proposition 3 In view of Proposition 26, we have

b(x )− Bias
[
f̂GNW(x )

]
= S(f,x )− E

[
f̂GNW(x )

]
= S(f,x )(1− d(x )

n
)
n

(62)

Next, we have
v(x) = E[f̂2

GNW(x )]− 2S(f,x )E[f̂GNW(x )] + S2(f,x )

Again, by using Proposition 26, we get

v(x )−Var(f̂GNW(x )) =
(
E[f̂GNW(x )]

)2
− 2S(f,x )E[f̂GNW(x )] + S2(f,x )

=

(
S(f,x )− E

[
f̂GNW(x )

])2

= S2(f,x )

(
1− d(x )

n

)2n

(63)

The claim follows from Equations (62) and(63) and the basic inequality 1− t ≤ exp(−t).

Next, we prove Lemma 6.
Proof of Lemma 6 We begin with a small lemma that also simplifies the notation for
the actual calculation.
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Lemma 27 Suppose that g : Rd+1 → R is a measurable function such that for all i ∈ [n],
E[g2(x i, ϵi)] < ∞. For i ∈ [n] set Fi = g(x i, ϵi). Then for all pairs of distinct indices
1 ≤ i, j ≤ n we have

E
[
FiFja(x ,x i)a(x ,x j)Ri(x )Rj(x )

]
= E

[
Fia(x ,x i)

]
E
[
Fja(x ,x j)

]
E
[
R2

{i,j}(x )
]

Proof Using the decoupling trick 5 we have

FiFja(x ,x i)a(x ,x j)Ri(x )Rj(x ) = FiFja(x ,x i)a(x ,x j)R{i,j}(x )
2

and moreover R{i,j}(x ) is independent from (x i, ϵi, a(x ,x i)) and (x j , ϵj , a(x ,x j)). Next,
(x i, ϵi, a(x ,x i)) and (x j , ϵj , a(x ,x j)) are also independent by modeling assumptions9. As
independent variables are uncorrelated, the conclusion follows.

Set g(x i, ϵi) = yi − S(f,x ). Using Equation (40), we have

E
[(

f̂GNW(x )− S(f,x )Z
)2]

= E


 n∑

i=1

(yi − S(f,x ))a(x ,x i)Ri(x )

2


=
n∑

i=1

E
[(
g(x i, ϵi)a(x ,x i)Ri(x )

)2]
+
∑
i ̸=j

E
[
g(x i, ϵi)g(x j , ϵj)a(x ,x i)a(x ,x j)Ri(x )Rj(x )

]
(64)

For i ̸= j, applying Lemma 27 with g : Rd+1 → R given by g(·, ⋆) = (f(·) + ⋆) − S(f,x )
along with the fact that E[g(x i, ϵi)a(x ,x i)] = 0 gives

E
[
g(x i, ϵi)g(x j , ϵj)a(x ,x i)a(x ,x j)Ri(x )Rj(x )

]
= 0 (65)

Finally,

n∑
i=1

E
[(
g(x i, ϵi)a(x ,x i)Ri(x )

)2]
=

n∑
i=1

E
[
(yi − S(f,x ))2a(x ,x i)R

2
i (x )

]

Finally, we conclude the variance analysis of GNW by a proof of Lemma 7.

Proof of Lemma 7 By Equation (32), Lemma 26, Lemma 6, as well as equation (42) and
the basic inequality 1− t ≤ e−t valid for all t ≥ 0, we have

9. conditioning on xn+1 = x , i.e. treating the latent position of node (n+ 1) as a deterministic quantity is
crucial in this part of the proof
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v(x ) ≥ E
[(

f̂GNW(x )− S(f,x )Z
)2]

=

n∑
i=1

EU

[
Eϵ[
(
yi − S(f,x i)

)2
]a(x ,x i)Ri(x )

]
≥ σ2

0d(x )E
[
R2

1(x )
]

≥ σ2
0d(x )

(
E
[
R1(x )

])2
= σ2

0d(x )


(
1− (1− d(x )

n )
)

d(x )


2

≥ σ2
0

(
1− e−d(x )

)2
d(x )

B Bias and Risk of GNW

Proof of Lemma 13 Our first claim is that under our assumptions, For x ∈ Q, we have

c(x ) =
∫
K
(
||x−z ||

hg

)
p(z )dz > 0 and hence the operator S(f,x ) (11) is non trivial. Indeed,

suppose that Assumption 8 holds. We will show that for every x ∈ Q, c(x ) > 0 where Q is
the support of the distribution p. Suppose that c(x ) = 0. Using Assumption 8 we get

α

∫
I
[
||x − z || ≤ M1hg

]
p(z )dz ≤ 2α

∫
I
[
||x − z || ≤ M1hg

]
K

(
||x − z ||

hg

)
p(z )dz

≤ 2α

∫
K

(
||x − z ||

hg

)
p(z )dz

= 2c(x )

= 0
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As α > 0, x /∈ supp(p) = Q, and hence our claim follows form the contrapositive. Hence
for x ∈ Q, we have

|S(f,x )− f(x )| = |
∫
f(z )K

(
||x−z ||

hg

)
p(z )dz∫

K
(
||x−z ||

hg

)
p(z )dz

− f(x )|

= |
∫
f(z )K

(
||x−z ||

hg

)
p(z )dz∫

K
(
||x−z ||

hg

)
p(z )dz

−
∫
f(x )K

(
||x−z ||

hg

)
p(z )dz∫

K
(
||x−z ||

hg

)
p(z )dz

|

= |
∫
Q[f(z )− f(x )]K

(
||x−z ||

hg

)
p(z )dz∫

QK
(
||x−z ||

hg

)
p(z )dz

|

≤ L

∫
Q ||z − x ||αK

(
||x−z ||

hg

)
p(z )dz∫

QK
(
||x−z ||

hg

)
p(z )dz

≤ 2LMα
2 h

α
g

where we used Assumption 9 in the first and Assumption 8 in the second inequality.

Proof of Lemma 14 By Assumption 8 and the assumption that Q satisfies 10 with
parameters (r0, c0)− we have

c(x )

α
=

∫
K

(
||x − z ||

hg

)
p(z )dz

≥ 1

2

∫
I
[
||x − z || ≤ M1hg

]
p(z )dz

≥ p0(x )

2

∫
I
[
||x − z || ≤ M1hg

]
I [z ∈ Q] dz

=
p0(x )

2
m(Q ∩BM1hg(x ))

≥ p0(x )c0
2

m(BM1hg(x ))

= c0vdM
d
1h

d
gp0(x )/2 > 0

The conclusion follows d(x ) = nc(x ).

Proof of Theorem 15 and Theorem 16 We use the bias and variance proxies to bound
the risk via the following inequality

Rg(f̂GNW(x ), f(x )) ≤ 2(v(x ) + b2(x )) (66)

On one hand, from Lemma 13 we see that under Assumptions 8 and 9, we have

|b(x )| ≤ 2LMa
2 h

a
g
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On the other hand, combining the bound in 4 along with Lemma 14, and taking into account
assumptions 8, 10 and Equation (46) we arrive at the following

v(x ) ≤ 18B2 + 4σ2

c0vdM
d
1nαh

d
gp0(x )

The conclusion for Theorem 15 follows form Equation (66). Under Assumption 11, Equa-
tion (46) holds with p0(x ) ≡ p0. The conclusion for Theorem 16 follows immediately from
integrating the bound in Theorem 15.

Before we proceed with the proof of Theorem 17, we need to show that the variance of
GNW can not blow up. The following lemma will be useful for ENW analysis as well.

Lemma 28 Suppose that ϵi satisfying Assumption 2 and 0 ≤ wi ≤ 1 are real numbers such
that

∑n
i=1wi > 0. Then

Eϵ

(∑n
i=1 ϵiwi∑n
i=1wi

)2
 ≤ σ2min{ 1∑n

i=1wi
, 1} (67)

Proof Note that

Eϵ

(∑n
i=1 ϵiwi∑n
i=1wi

)2
 ≤ σ2

∑n
i=1w

2
i(∑n

i=1wi

)2 (68)

Using wi ≤ 1, we get the first inequality. The second inequality easily follows from the
observation that 0 ≤ wi∑n

i=1 wi
≤ 1. Namely setting vi = wi∑n

i=1 wi
, we have vi ≥ 0 and∑n

i=1 vi = 1, and hence vi ≤ 1, for all i ∈ [n]. Now∑n
i=1w

2
i

(
∑n

i=1wi)
2 =

n∑
i=1

v2i ≤
n∑

i=1

vi = 1

Concluding the proof.

Proof of Theorem 17 Using Lemma 28, we get

Rg

(
f̂GNW(x ), f(x )

)
≤ 2min{b2(x ) + v(x ), 4B2 + σ2}

The idea is to split the integral in the global risk (18) in two parts, the first where the
density is sufficiently high i.e. p(x ) ≥ 2SM b

1h
b
g, where we use the bounds from Theorem 15

and the second, where the density is low and on which we use the bound 8B2 + 2σ2. From
Assumption 12 we have

inf
z∈Q

||x−z ||≤M1hg

p(z ) ≥ p(x )− SM b
1h

b
g

and hence, when p(x ) ≥ 2SM b
1h

b
g, we have

inf
z∈Q

||x−z ||≤M1hg

p(z ) ≥ SM b
1h

b
g
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Therefore, for x such that p(x ) ≥ 2SM b
1h

b
g, we have that Theorem 15 is satisfied with

p0(x ) = SM1h
b
g. We conclude as follows.

Rg

(
f̂GNW, f

)
=

∫
Rg

(
f̂GNW(x ), f(x )

)
p(x )dx

≤ 2

∫ (
v(x ) + b2(x )

)
I
[
p(x ) ≥ 2SM b

1h
b
g

]
p(x )dx

+ (8B2 + 2σ2)

∫
I
[
p(x ) ≤ 2SM b

1h
b
g

]
p(x )dx

≤ 4L2M2a
2 h2ag +

36B2 + 8σ2

c0vdSM
d+b
1 nαhd+b

g

+ (8B2 + 2σ2)S1/2M
b/2
1 hb/2g

∫
p1/2(x )dx

C Estimated Nadaraya-Watson

Proof of Theorem 21 Using Assumption 19, we have

n∑
i=1

ϕ(δ̃i/τ) ≥
1

2

n∑
i=1

I(δ̃i ≤ M1τ) (69)

Next, using the assumption that ∆(A,Xn+1) ≤ M1τ
2 , for all i ∈ [n] we have

δ̃i
τ

=
δi
τ
+

δ̃i − δi
τ

≤ δi
τ
+

M1

2
(70)

Hence if δi/τ ≤ M1/2 then δ̃i/τ ≤ M1/2+M1/2 = M1. Consequently, using equation (69),
we get that

n∑
i=1

ϕ(δ̃i/τ) ≥
1

2
M(τ) > 0 (71)

In particular, under the assumptions of Theorem 21, we do not need to worry about the
degenerate case

∑n
i=1 ϕ(δ̃i/τ) = 0, in which we assign value 0 by default to the estimator.

We have
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f̂A
ENW,τ (xn+1) =

∑n
i=1 yiϕ

(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

)
=

∑n
i=1 f(x i)ϕ

(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

) +

∑n
i=1 ϵiϕ

(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

)
= f(xn+1) +

∑n
i=1(f(x i)− f(xn+1))ϕ

(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

) (72)

+

∑n
i=1 ϵiϕ

(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

) (73)

We take care of the two terms separately. If ϕ(δ̃i/τ) > 0, then from Assumption 19 we get
δ̃i ≤ M2τ , so that equation (70) implies

δai ϕ(δ̃i/τ) ≤
(
δ̃i +

M1τ

2

)a

ϕ(δ̃i/τ) ≤ (M2 +M1/2)
aτaϕ(δ̃i/τ) (74)

Finally, equation (74) yields the following bound on (72)∣∣∣∣∣∣∣
∑n

i=1(f(x i)− f(xn+1))ϕ
(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

)
∣∣∣∣∣∣∣ ≤ L

∑n
i=1 δ

a
i ϕ
(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

)
≤ L(M2 +M1/2)

aτa (75)

In order to bound the expression (73), we apply Lemma 28 with wi = ϕ(δ̃i/τ), yielding

Eϵ



∑n

i=1 ϵiϕ
(
δ̃i
τ

)
∑n

i=1 ϕ
(
δ̃i
τ

)


2
 ≤ σ2∑n

i=1 ϕ(δ̃i/τ)
≤ 2σ2

M(τ)
(76)

where we have used (71) in the last inequality. We get the claimed result by combining
equations (75) and (76) with the basic inequality (a+ b)2 ≤ 2(a2 + b2).

Proof of Theorem 22 Our strategy is to analyze two cases separately: when the position
recovery algorithm approximates the latent distances within precision M1τ/2 and when it
fails to do so. We introduce the notation

SA = {∆(A(A),Xn+1) ≤
M1τ

2
} (77)

for the event that indicates success of the algorithm A, and Sc
A for its complement. We

have
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EU ,ϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2]
= EU ,ϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I(SA)

]
+ EU ,ϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I(Sc

A)

]
When the position recovery algorithm A estimates the latent distances δ with precision
M1τ
2 , then the conditions of Theorem 21 are satisfied. Hence we have

EU ,ϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I [SA]

]
= EU

[
Eϵ

(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I(SA)

]
≤
(
C1τ

2a +
12σ2

M(τ)

)
EU
[
I(SA)

]
≤ C1τ

2a +
12σ2

M(τ)
(78)

Next, we need to analyze what happens when the position recovery algorithm A fails. The
idea will be to average over the additive noise of the label first, ϵ. In this case, we want to

show that Eϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)]2
remains bounded. If

∑n
i=1 ϕ(δ̃i/τ) = 0, then

by definition f̂A
ENW,τ (xn+1) = 0 and

Eϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2]
≤ max

x∈Q
|f(x )|2 ≤ B2

Otherwise, we have
∑n

i=1 ϕ(δ̃i/τ) > 0 and Lemma 28 yields

Eϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2]
≤ B2 + σ2

Finally,

EU ,ϵ

[(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I(Sc

A)

]
= EU

[
Eϵ

(
f̂A
ENW,τ (xn+1)− f(xn+1)

)2
I(Sc

A)

]
≤
(
B2 + σ2

)
EU
[
I(Sc

A)
]

=
(
B2 + σ2

)
pτ (A,X) (79)

Combining Equations (78) and (79) we get the claimed result.

Proof of Corollary 23 We will investigate for which parameters hg, a and d the result (80)
yields standard nonparametric rates for Asp-ENW. An i.i.d. sample Xn with distribution p

satisfying Assumptions 10 and 11 will satisfy ϵ = ( log(n)n )
1/d

with overwhelming probability10

10. This can be shown by a covering number argument.
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over Xn. Since the probability pτ (A,Xn+1) (52) is decreasing in τ , we get that for

τ ≥ C2

hg +

(
ϵ

hg

) 1
1+A

 (80)

we have pτ (Asp,Xn+1) ≤ 1
n . Specifically, if we want to achieve NW optimality for τ⋆ =

c⋆n
− 1

d+2a , we need τ⋆ to satisfy inequality (53). This yields hg ≲ τ⋆ and ( ϵ
hg
)

1
1+A ≲ τ⋆,

which further limits the interval of admissible length-scales hg:

ϵ

τ1+A
⋆

≲ hg ≲ τ⋆

In order for this interval to be non-empty we need ϵ ≲ τ2+A
⋆ . Hence, we need to have

log(n)

n
≲ n− d(2+A)

d+2a

Keeping in mind that we are constrained to 0 < a ≤ 1, this yields

d(2 +A) < d+ 2a

which is only possible for d = 1 and A > 1/2. Conversely, it is easy to check that when
d = 1 and a > (1 + A)/2, and hg is as in the assumption, τ⋆ satisfies Equation (80), which
concludes the theorem.

Proof of Corollary 24 After some simple calculations, it is easy to see that for the
specified values hg, we have

D
(
Brgg,Xn+1

)
≤ M1τ⋆

2
= c⋆n

− 1
2a+d

and hence pτ⋆(Brgg,Xn+1) = 0 (with high probability over the drawn points Xn+1) i.e.
Brgg-ENW achieves optimal rates for (hg, τ⋆).
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