
Gaussian Mixture Model with unknown diagonal covariances via

continuous sparse regularization

Romane Giard (1 ), Yohann De Castro (1 ,3 ) and Clément Marteau (2 )

1Centrale Lyon, CNRS UMR 5208, Institut Camille Jordan, Écully, France.
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Abstract

This paper addresses the statistical estimation of Gaussian Mixture Models (GMMs) with unknown di-
agonal covariances from independent and identically distributed samples. We employ the Beurling-LASSO
(BLASSO), a convex optimization framework that promotes sparsity in the space of measures, to simulta-
neously estimate the number of components and their parameters.

Our main contribution extends the BLASSOmethodology to multivariate GMMs with component-specific
unknown diagonal covariance matrices—a significantly more flexible setting than previous approaches re-
quiring known and identical covariances. We establish non-asymptotic recovery guarantees with nearly
parametric convergence rates for component means, diagonal covariances, and weights, as well as for density
prediction.

A key theoretical contribution is the identification of an explicit separation condition on mixture com-
ponents that enables the construction of non-degenerate dual certificates—essential tools for establishing
statistical guarantees for the BLASSO. Our analysis leverages the Fisher-Rao geometry of the statistical
model and introduces a novel semi-distance adapted to our framework, providing new insights into the
interplay between component separation, parameter space geometry, and achievable statistical recovery.

Corresponding author: Romane Giard
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1 Introduction

Gaussian Mixture Models (GMMs) are a cornerstone of statistical modeling, offering a flexible and powerful
framework for representing complex data distributions. They find widespread application in diverse fields,
including clustering and density estimation [McLachlan and Peel, 2000; Bouveyron et al., 2019], image processing
[Houdard et al., 2018], bioinformatics and economics [Fruhwirth-Schnatter et al., 2019, Section 8.4]. Despite
their ubiquity, the estimation of GMMs, particularly when the number of components and their covariance
structures are unknown, presents significant statistical and computational challenges.

The predominant method for GMM estimation is the Expectation-Maximization (EM) algorithm, which
iteratively maximizes the log-likelihood. While the EM algorithm guarantees a non-decreasing likelihood and
converges to a stationary point under some conditions [McLachlan and Krishnan, 1997; Wu, 1983; Balakrishnan
et al., 2017], it faces significant practical challenges. The log-likelihood function is non-convex and multi-modal,
making the algorithm sensitive to initialization and prone to converging to local maxima rather than the global
optimum. Crucially, it requires the number of mixture components to be specified in advance. We aim to
overcome these limitations.

This paper introduces a novel approach to the estimation of multivariate GMMs with unknown diagonal
covariances, leveraging the Beurling-LASSO (BLASSO) methodology [De Castro and Gamboa, 2012; Candès
and Fernandez-Granda, 2014; Duval and Peyré, 2015; Boyer et al., 2017; Poon, 2019; De Castro et al., 2021a].
The BLASSO offers a convex optimization framework in the space of measures. It promotes sparsity, thereby
offering a principled way to simultaneously estimating the number of components, their respective weights,
means, and diagonal covariance matrices. It has not yet been applied to settings where each mixture component
is allowed to have its own covariance structure. This extension makes it possible to handle significantly more
relevant models. For instance, in clustering applications, assuming identical covariances across components
yields Voronoi partitions (linear decision boundaries), as in k-means. In contrast, allowing distinct covariance
matrices leads to boundaries defined by quadratic equations [Murphy, 2012, Section 4.2].
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A pivotal contribution of our research is the identification of a separation condition for the mixture compo-
nents. This condition is instrumental in the construction of so-called non-degenerate dual certificates [Candès
and Fernandez-Granda, 2014; Duval and Peyré, 2015], which play a key role in establishing estimation guaran-
tees. Our analysis is grounded in the Fisher-Rao geometry of the statistical model, providing theoretical insights
into the intricate relationships between component separation, the underlying geometry of the parameter space,
and the achievable statistical recovery.

1.1 Continuous sparse regression for Gaussian Mixture Models

We denote by N (t, C) a multivariate Gaussian distribution in dimension d ∈ N∗, with mean t ∈ Rd and
covariance matrix C ∈ Sd++, where Sd++ denotes the space of positive-definite symmetric matrices of size d× d.
Given u = (u1, . . . , ud) ∈ (R∗

+)
d a vector with positive entries, we denote by diag((u1)

2, . . . , (ud)
2) the d × d

diagonal matrix with diagonal entries u2k, where each uk is interpreted as a marginal standard deviation. The
density of N

(
t, diag((u1)

2, . . . , (ud)
2)
)
is denoted by φ(t,u).

In this paper, we observe a n-sample X1, . . . , Xn ∈ Rd drawn from a Gaussian Mixture distribution with
diagonal covariances, defined by:

Xi
i.i.d.∼

s∑
j=1

a0jφ(t0j ,u
0
j )

=: f0 with

s∑
j=1

a0j = 1 and a0j > 0 (1)

where t0j ∈ Rd, u0j = (u0j,k)k=1,...,d ∈ (R∗
+)

d. Our goal is to estimate the number of components s (also called

the sparsity index), the weights a0j and the location parameters (t0j , u
0
j ) of each mixture component, indexed by

j ∈ {1, . . . , s}, from the observations X1, . . . , Xn.

Remark 1.1. As a matter of fact, the Gaussian Mixture Model with unknown number of components, weights,
means and covariance matrices:{ p∑

j=1

ajN (tj , Cj) : p ≥ 1 , aj > 0 , tj ∈ Rd , Cj ∈ Sd++ , ∀i ̸= j , (tj , Cj) ̸= (ti, Ci) ,

p∑
j=1

aj = 1

}
is identifiable, i.e., if two distributions of this model are equal, then they have the same number of components,
and the same components (up to a permutation) with the same associated weights. We refer to [Teicher, 1961]
for the proof in dimension d = 1, and [Yakowitz and Spragins, 1968] for the generalization in dimension d ≥ 1.
Under mild assumptions, an even stronger result holds for continuous mixtures of Gaussian distributions, defined
by a density on the space of mean and covariance matrix [Bruni and Koch, 1985].

Our estimation strategy relies on the Beurling-LASSO (BLASSO). This framework, introduced in [De Castro
and Gamboa, 2012; Candès and Fernandez-Granda, 2014], has been successfully applied to various statistical
estimation problems, particularly in the context of sparse signal recovery [Duval and Peyré, 2015] and compressed
sensing [Poon et al., 2023]. The BLASSO approach is characterized by its ability to promote sparsity in the
space of measures, enabling the recovery of discrete measures from continuous data. This framework has been
extended to various settings, including the estimation of Gaussian Mixture Models with known covariances
[De Castro et al., 2021a; Poon et al., 2023]. Algorithmic implementations are discussed in [Chizat, 2022] and
[De Castro et al., 2023]. One key modeling idea of this approach is to lift the parameter space onto the space
of measures according to the embedding

(aj , tj , uj)
p
j=1 7→ µ =

p∑
j=1

ajδ(tj ,uj) ,

where (tj , uj)
p
j=1 are referred to as the particles of µ. Any discrete probability measure on Rd × (0,+∞)d with

finite support, of size p for any p ≥ 1, describes a set of parameters. We stress that the parameter p, the
number of components, is free and not prescribed. The law of the n-sample (Xi)

n
i=1 (see (1)) is unambiguously

described by the target parameters (a0j , t
0
j , u

0
j )

s
j=1 (by identifiability of the model, see Remark 1.1), and hence

unambiguously represented by the so-called target measure µ0 :=
∑s

j=1 a0jδ(t0j ,u0
j )
.

Our estimator will be defined as a solution of a minimization problem over the space of measures, constructed
from the observations X1, . . . , Xn. It is designed to estimate the target measure µ0. In particular, we want our
estimator to put a mass close to a0j around the particle (t0j , u

0
j ). We will consider a convex loss of the form

Fn,τ (µ) + κR(µ) (2)

where Fn,τ (µ) is a data fidelity term, R(µ) is a regularization term enforcing sparsity, and κ > 0 a tuning
parameter. The data fidelity term compares a predicted density encoded by µ with an empirical approximation
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of the target density. This approximation is obtained from the empirical distribution of (Xi)
n
i=1 by convolution

with a Gaussian kernel of covariance τ2Idd, depending on a smoothing parameter τ . This approach is standard
in kernel density estimation [Tsybakov, 2008], but the main difference here is that τ will not be necessarily
chosen to match some nonparametric rate. Its calibration will sometimes answer to an alternative purpose. The
regularization term R(µ) is the total variation (TV) norm, analog of the ℓ1-norm for measures, and aims to
concentrate the mass of our estimator in a few regions. We refer to Section 2 and (Pκ) for a complete description
of the BLASSO procedure.

1.2 Contributions

Our primary contribution is the extension of the BLASSO framework to estimate GMMs with unknown diagonal
covariances. This setting introduces a key challenge: the associated kernel (see Section 5) is not translation-
invariant, departing from many standard BLASSO applications. We address this by:

• Introducing a reparametrization of the measures to work with a normalized kernel—an object essential for
the theoretical analysis of the BLASSO, describing the correlation between 2 location parameters (t, u)
and (t′, u′).

• Establishing recovery guarantees through the construction of non-degenerate dual certificates. This in-
volves proving a modified version of the local positive curvature assumption (LPC) from [Poon et al., 2023,
Assumption 1] for our specific non translation-invariant kernel.

• Using a semi-distance naturally aligned with the kernel-induced geometry. This allows us to formulate
more tractable conditions for the certificate construction, relaxing the reliance on the Fisher-Rao distance
used in related works.

• Establishing conditions on the separation between the components of the mixture (i.e., the particles of µ0)
with respect to the semi-distance. These conditions depend on bounds on the variance, the sparsity s, the
dimension d, and the smoothing parameter τ . Higher sparsity levels or looser bounds on the variances
necessitate a wider minimal separation between the components of µ0. See (17) for a precise condition.

We also provide novel prediction guarantees for the target density, achieving nearly parametric rates of conver-
gence in different regularization regimes.

Informal results on error bounds We define µ0
ω as a reparametrized version of the target measure µ0,

µ0
ω =

s∑
j=1

ω0
j δ(t0j ,u0

j )
with ω0

j =W (x0j ) a
0
j ,

where W is a positive function that will be specified later. According to the procedure displayed in Section 2,
we estimate µ0

ω rather than µ0. Our estimator is given by the argument minimum of a function JW of the form
(2) over nonnegative measures with support restricted to a compact set X ⊂ Rd × [umin,+∞)d (see (Pκ) for a
formalized version). Here, umin denotes a lower bound on the diagonal elements of the covariance matrix.

Most of our results remain valid for approximate solutions, that is for any measure µ satisfying JW (µ) ≤
JW (µ0

ω), and not only the exact argument minimum solution of JW . Accordingly, we will use the notation µ⋆
n,ω

when an exact solution is required, and µ̂n,ω when an approximate solution suffices.
We evaluate the estimator by comparing its mass against the mass of µ0

ω within “near regions” Xnear
j (re)

centered on the true parameters (t0j , u
0
j ), and in the complementary “far region” within X . Near regions

correspond to balls of radius re for a semi-distance d (given by (11) below). Figure 1 illustrates this partitioning.
The near region Xnear

j (re) depends only on its radius re, x
0
j , the dimension d, and the smoothing parameter τ .

Our estimator satisfies the following properties, given in expected value over X1, . . . , Xn.

Theorem 1.1 (Recovery guarantees for the estimation of µ0
ω, informal result). Assume that the particles (t0j , u

0
j )

of µ0 are sufficiently separated, where the minimal separation constraint only depends on the dimension d,
the sparsity index s, bounds on the variance and choice of a smoothing parameter τ ≤ umin. Choosing as

regularization parameter κ =
√
2

(2π)d/4τd/2
√
n
, for any re such that 0 < re ≤ r with r a fixed constant depending

on d, it holds that, omitting the dependence on d,

E
[
|µ0

ω(Xnear
j (re))− µ̂n,ω(Xnear

j (re))|
]
≲

s

r2e
√
nτd/2

∀ j = 1, . . . , s (3)

and

E
[∣∣∣µ̂n,ω

(
X \

⋃
j

Xnear
j (r)

)∣∣∣] ≲ s√
nτd/2

.
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Figure 1: Schematic representation for Gaussian mixture models in dimension d = 1. Both parameters u
(standard deviation) and t (mean) are in dimension 1, resulting in a 2-dimensional plot in location space (t, u).
The discs represent the near regions, shown schematically: these regions correspond to balls defined with respect
to a semi-distance, not the Euclidean distance. The hatched area corresponds to the far region.

We refer to Theorems 3.1 and 5.1, Proposition 3.1 with Lemma 5.4 for precise statements and related discussions.
Our estimator allows us to locate the particles of the reparametrized target measure on fixed regions with a
parametric convergence rate. The radius re can be chosen as desired (sufficiently small), leading to degraded
bounds (the rate depends on r−2

e ). We give in Corollary 3.1 a variation of the previous result, for a direct
estimator of µ0—and with decreasing size of regions.

Remark 1.2. Note that in the above result, κ does not depend on s (unknown in practice). We call it the

s-agnostic choice. Making the s-dependent choice κ =
√
2

(2π)d/4τd/2
√
sn
, we obtain a rate of

√
s

r2e
√
nτd/2 for the

bound (3) (better dependence on s). See Remark 3.6.

We provide in the same time recovery guarantees for the prediction of the target density f0. We achieve
an almost parametric rate (up to a logarithmic factor) for the prediction of the target density, in two distinct
regimes: under small regularization (Proposition 4.1) and with larger regularization (Theorem 4.1) when the
assumption of Theorem 1.1 is verified. We present an informal version of these results.

Theorem 1.2 (Recovery guarantees for the prediction of f0, informal results). Let τ =
√
2umin√
lnn

. We construct

an estimator ĥn of f0 from µ̂n,ω. We consider two regimes.

• Assume that the particles (t0j , u
0
j ) of µ

0 are sufficiently separated. Choosing κ =
√
2(lnn)d/4

(2π)d/4(2u2
min)

d/4
√
n
, omit-

ting the dependence on d and on bounds on the variance,

E
[∥∥∥ĥn − f0

∥∥∥2
L2(Rd)

]
≲
s(lnn)d/2

n
.

• Without separation assumptions on (t0j , u
0
j )j, choosing κ = 4(lnn)d/2

(2π)d/2(2u2
min)

d/2n
, omitting the dependence on d

and on bounds on the variance,

E
[∥∥∥ĥn − f0

∥∥∥2
L2(Rd)

]
≲

(lnn)d/2

n
.

The regularization parameter κ is allowed to depend on n. Its value has some importance on the performances
of the procedure. It is calibrated according to the objective to be achieved: estimation, prediction or both. Under
some conditions on µ0, large regularization provides good estimation and prediction. Small regularization allows
the BLASSO to focus on minimizing the data fidelity term, yielding good prediction without any separation
condition on the particles of µ0. For theoretical purposes, we will also briefly discuss an s-dependent choice

of κ, which leads to improved bounds in the large regularization regime (the bound is of order (lnn)d/2

n for s
reasonably small, see Remark 4.4 below).

We finally derive an alternative result for µ⋆
n,ω, an exact solution to (Pκ), under some specific conditions.

We provide below an informal result, formalized in Corollary 6.1.
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Theorem 1.3 (Sparsity of the estimator for a large sample size, informal result). Let 0 < τ ≤ umin (fixed).
Assume that the particles of µ0 are sufficiently separated, where the minimal separation constraint only depends

on d, s, τ and bounds on the variance. Choosing κ = α
√
lnn

(2π)d/4τd/2
√
n
for any α > 0, there exists n0 ∈ N depending

on µ0,X , τ, α, such that if the sample size n verifies n ≥ n0, then µ⋆
n,ω is s-sparse with probability greater

than 1 − CΓn
− γ2

0α2

C2
Γ , with CΓ a universal positive constant and γ0 depending on µ0,X , τ . Moreover, writing

µ⋆
n,ω =

∑s
j=1 ω

⋆
j δx⋆

j
, omitting constants depending on µ0,X , τ we have for all j = 1, . . . , s

|ω0
j − ω⋆

j | ≲ α

√
lnn

n
and d ((t⋆j , u

⋆
j ), (t

0
j , u

0
j ))

2 ≲ α

√
lnn

n
, (4)

where d (•, •) is the semi-distance between location parameters defined in (11) below.

The result displayed here provides a different flavor on the BLASSO performances. First, this bound holds
provided the sample size is large enough (and under separation conditions that are slightly stronger than those
required in Theorem 1.1). In such case, we first establish that the measure µ⋆

n,ω has, with high probability,
exactly the same sparsity index s than the target µ0. Moreover, the bound (4) provides theoretical guarantees on
the estimation of the mixture parameters themselves instead of a control on far and near regions (Theorem 1.1).

Outline Section 2 introduces the statistical framework and the BLASSO estimators µ̂n,ω, µ
⋆
n,ω used for re-

covering Gaussian Mixture Models. In Section 3, we establish recovery guarantees for the estimation of the
target measure, relying on the existence of non-degenerate dual certificates. Section 4 focuses on prediction
guarantees for the density f0, providing rates of convergence under different regularization regimes. In Sec-
tion 5, we construct non-degenerate dual certificates by analyzing the kernel properties and deriving sufficient
conditions on µ0. Finally, Section 6 demonstrates that, for sufficiently large sample sizes and under sufficient
separation between components, the estimator µ⋆

n,ω is, with high probability, a discrete measure. Section 7 pro-
poses a concluding discussion including possible extensions, algorithmic issues and open problems. The main
results are summarized in Tables 1 and 2 with corresponding assumptions, choices of smoothing parameter and
regularization. Table 3 summarizes notation used throughout the paper. All proofs and technical results are
gathered in the appendix at the end of the paper. To facilitate verification, we also provide a notebook (the
associated Zenodo repository can be found at [Giard, 2025]) implementing our calculations using a symbolic
computation library.

2 Statistical modeling

Our approach operates in the space of Radon measures, targeting the recovery of a sparse (i.e. discrete) measure.
Each particle of this discrete measure encodes the parameters of a Gaussian component, and its associated mass
corresponds to the component’s proportion in the mixture. In this section, we introduce the necessary notation,
describe the statistical model, and present the BLASSO estimator.

2.1 Radon measures

We first start with some definitions allowing for a rigorous introduction of the BLASSO principle.
For A ⊂ Rp locally compact, we denote C(A) the set of all continuous functions from A to R and C0(A) the

set of continuous functions that vanish at infinity, i.e.

C0(A) :=
{
f ∈ C(A) : ∀ ε > 0 , ∃C compact s.t. |f | ≤ ε on A \ C

}
.

When A is compact, C0(A) = C(A).

Definition 2.1 (Radon measure on A ⊂ Rp). Let A ⊂ Rp be locally compact. The space of (real-valued)
Radon measures M(A) is defined as the dual of (C0(A), ∥•∥∞). Its dual norm is the total variation norm:

∥µ∥TV = sup
η∈C0(A)
∥η∥∞≤1

∫
A

η(x)dµ(x).

We denote M(A)+ the set of nonnegative measures: µ ∈ M(A)+ if for all η ∈ C0(A) such that η ≥ 0,∫
A
η dµ ≥ 0. A discrete mixture measure, or a sparse measure, is a measure that can be expressed as a finite

weighted sum of Dirac measures:

µ =

s∑
j=1

ajδxj
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where s ≥ 1, a1, . . . , as ∈ R, x1, . . . , xs ∈ A. Remark that ∥µ∥TV =
∑s

j=1 |aj | when the (xj)j are distinct.
Other details about the functional framework can be found in Appendix A.

2.2 Model and estimator

Model Our aim is to recover the target measure measure encoding the Gaussian Mixture distribution:

µ0 =

s∑
j=1

a0jδx0
j

where a01, . . . a
0
s > 0 ,

s∑
j=1

a0j = 1 .

We assume that the location parameters (x01, . . . , x
0
s) are distinct points, each of the form x0j = (t0j , u

0
j ) with

t0j = (t0j,k)
d
k=1 ∈ Rd and u0j = (u0j,k)

d
k=1 ∈ [umin,+∞)d where umin is some positive lower bound on (u0j,k)k. The

parameters t0j and u0j represent respectively the mean and square root of the diagonal covariance of a Gaussian

component with weight a0j .

We denote φ the standard Gaussian density in R, and σ := F [φ] = e−
•2

2 its associate Fourier transform. We
can rewrite f0 = Φµ0 where Φ : M(Rd × [umin,+∞)d) −→ L2(Rd) is the linear operator defined by

Φµ : z ∈ Rd 7→
∫
Rd×[umin,+∞)d

d∏
k=1

1

uk
φ

(
zk − tk
uk

)
dµ(t, u) ∀µ ∈ M(Rd × [umin,+∞)d) .

Our aim is to recover µ0 from a n-sample X1, . . . , Xn
i.i.d.∼ f0 (see (1)), considering that the weights {a0j}j ,

the location parameters {x0j}j and the sparsity index s are unknown. The empirical density associated with our
sample X1, . . . , Xn is defined as

f̂n :=
1

n

n∑
i=1

δXi
.

This empirical measure is smoothed, hence allowing for a comparison with any prediction Φµ. We will use a
Gaussian convolution with smoothing parameter τ > 0, introducing

λ : z ∈ Rd 7→ e−
∥z∥22
2τ2

(2πτ2)d/2
and Λ := F [λ] = e−

τ2∥•∥22
2 .

Then, we set
L ◦ f̂n = λ ∗ f̂n and L ◦ f = λ ∗ f ∀f ∈ L2(Rd) .

The term L◦ f̂n is related to Kernel Density Estimation (KDE, [Tsybakov, 2008]). The choice of τ is important
if we want to estimate f0 in addition to µ0, and will be discussed in Section 4. Our setting differs in this respect
from super-resolution [Candès and Fernandez-Granda, 2014], where the analogous parameter λc is imposed by
the experimental conditions (namely, the frequency cut-off in that paper).

Hilbert space for the data fidelity term The Hilbert space L in which we compare the observation and
the prediction is the RKHS associated with λ. We define it using Mercer’s theorem:

L :=

{
f : Rd → R : f ∈ L2(Rd) s.t. ∥f∥2L =

∫
Rd

|F [f ] (ξ)|2

F [λ] (ξ)
dξ < +∞

}
,

with dot product

∀f, g ∈ L, ⟨f, g⟩L =
1

(2π)d

∫
Rd

F [f ] (ξ)F [g] (ξ)

F [λ] (ξ)
dξ . (5)

Problem We will search the target measure over the space of nonnegative Radon measures M(X )+ where X
is a compact set of Rd × [umin,+∞)d. We will restrict the possible values of the covariance even further later.

The BLASSO problem constructed in [De Castro et al., 2021a] can be generalized to our setting. We may
consider the following optimization problem:

argmin
µ∈M(X )+

J(µ) where J(µ) :=
1

2

∥∥∥L ◦ f̂n − L ◦ Φµ
∥∥∥2
L
+ κ ∥µ∥TV , κ > 0 . (P̄)

The data fidelity term 1
2

∥∥∥L ◦ f̂n − L ◦ Φµ
∥∥∥2
L
compares smooth versions of the empirical density to any candidate

for the predicted density function Φµ. The regularization κ ∥µ∥TV promotes the sparsity of the solution. The
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choice of κ will be discussed in Section 3: a balance must be found between the data fidelity term and the
regularization term.

However, we do not work with the loss J defined by (P̄). Indeed, the model we consider is more complex
than that of [De Castro et al., 2021a]. Specifically, the addition of diagonal covariances in the parametrization
of µ renders the problem (P̄) unsuitable for the use of standard proof techniques from the BLASSO literature
[Poon, 2019]. In fact, a key object is the associated kernel K̄ describing the correlation between 2 features, i.e.

K̄(x, x′) := ⟨L ◦ Φδx, L ◦ Φδ′x⟩L
for x, x′ ∈ X . This kernel is not normalized, namely K̄(x, x) is not constant (it depends on u), which causes
issues in the investigation of recovery guarantees for a solution of (P̄).

Reparametrization To address this, we reparametrize the problem to work with a normalized kernel. This
is achieved by introducing a positive weighting function W (x). First notice that if W : x ∈ X 7→W (x) ∈ R∗

+ is
continuous, then as X is compact, 1

W is continuous and bounded on X . Hence we can reparametrize the weights
of a measure by 1

W . We will work with

W (x) :=

d∏
k=1

(2π)−1/4(2u2k + τ2)−1/4 ∀x = ((t1, . . . , td), (u1, . . . , ud)) ∈ Rd × [umin,+∞)d . (6)

This function allows us to renormalize the kernel (see Section 5). The BLASSO problem we consider from now
on is therefore

min
µ∈M(X )+

JW (µ) where JW (µ) :=
1

2

∥∥∥L ◦ f̂n − L ◦ Φ
( µ
W

)∥∥∥2
L
+ κ ∥µ∥TV , (Pκ)

with κ > 0 and where we define, for all µ ∈ M(Rd × [umin,+∞)d), µ
W as the measure such that

∀η ∈ C0(Rd × [umin,+∞)d) ,

∫
Rd×[umin,+∞)d

η d
( µ
W

)
=

∫
Rd×[umin,+∞)d

1

W (x)
η(x) dµ(x) .

We can show that the optimization problem (Pκ) has a solution (see the appendix, Proposition B.1).

Estimator According to the problem (Pκ), we consider an estimator µ⋆
n,ω defined as

µ⋆
n,ω ∈ argmin

µ∈M(X )+
JW (µ) , (7)

Most of our results also hold for an approximate solution, and we will use the notation µ̂n,ω for our estimator
when it suffices that

µ̂n,ω ∈
{
µ ∈ M(X )+ : JW (µ) ≤ JW (µ0

ω)
}
, (8)

where µ0
ω is the weighted measure defined as

µ0
ω =

s∑
j=1

ω0
j δx0

j
with ω0

j =W (x0j )a
0
j ∀j ∈ {1, . . . , s}. (9)

Remark that µ⋆
n,ω satisfies the relaxed condition (8). This flexibility allows us to obtain the guarantees presented

in Sections 3 and 4 without requiring the exact minimization of JW—this is computationally advantageous.
While algorithmic details are beyond the scope of this paper, they will be briefly discussed in Section 7 (see also
Chizat, 2022; De Castro et al., 2023). In contrast to other sections, the results of Section 6 specifically require
an exact solution µ⋆

n,ω.

Remark 2.1. Historically, the BLASSO method has been applied to recover a sparse target measure that is not
necessarily a probability measure. As µ0 is a probability measure in our setting, one may instead consider the
constrained problem

argmin
µ∈M(X )+, ∥µ∥TV=1

1

2

∥∥∥L ◦ f̂n − L ◦ Φµ
∥∥∥2
L
. (PC)

Such an approach deserves some comments. First, the unconstrained programs (Pκ) and (P̄) belong to a family
of convex potentials studied in optimization on the space of measures. A line of work, e.g . [Chizat, 2022; De
Castro et al., 2023], shows convergence of various gradient descent strategies (particle, Wasserstein gradient
flows, stochastic gradient), while such results do not exist for the constrained program (PC) to the best of our
knowledge. Second, for the program that we deal with (see (Pκ)), the reparametrized target µ0

ω does not verify∥∥µ0
ω

∥∥
TV

= 1, and enforcing the constraint
∥∥∥ µ̂n,ω

W

∥∥∥
TV

= 1 is an obstacle to establishing guarantees.
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3 Estimation guarantees

In this section, we give guarantees for the recovery of µ0
ω and µ0 using the estimator µ̂n,ω introduced in (8). We

provide bounds on the difference in mass assigned by the estimator and the target measure over relevant regions
of the space. Our guarantees hold under the existence of so-called non-degenerate dual certificates, which are
the key objects for analyzing the properties of the BLASSO estimator [Candès and Fernandez-Granda, 2014;
Duval and Peyré, 2015; De Castro et al., 2021a; Poon et al., 2023]. In a general context, they are functions
interpolating the signs of the particles of the sparse target measure, with some prescribed smoothness and shape
constraints. We investigate the construction of such objects in Section 5.

3.1 Non-degenerate dual certificates

In this section, we define non-degenerate certificates and introduce their properties, closely related to the
optimization problem at hand. These certificates are linked to the feature map, which is defined as the linear
operator

Ψ : M(Rd × [umin,+∞)d) → L , µ 7→ L ◦ Φ µ

W
.

Remark that the loss function of (Pκ) can be rewritten as JW : µ ∈ M(X )+ 7→ 1
2

∥∥∥L ◦ f̂n −Ψµ
∥∥∥2
L
+ κ ∥µ∥TV.

The adjoint operator of Ψ restricted to M(X ) verifies

⟨Ψµ, p⟩L = ⟨Ψ∗p, µ⟩C(X ),M(X ) =

∫
Ψ∗p dµ ∀ p ∈ L (10)

for all µ ∈ M(X ). In particular, for all x ∈ X , [Ψ∗p] (x) = ⟨p,Ψδx⟩L.

Dual certificates are continuous functions of the form Ψ∗p for some p ∈ L. Our estimation guarantees are
based on controls of these certificates on regions defined by µ0 and some appropriate distance. In [De Castro
et al., 2021a] the Euclidean distance is used. The latter is however not adapted to the geometry of our problem,
as we deal with unknown covariances. In particular, the associated kernel is not translation-invariant, see
Section 5. [Poon et al., 2023] work alternatively with the Fisher-Rao distance, which is however impractical to
use in our context. In fact, interactions between the kernel and the Fisher-Rao appear to be quite intricate to
manage. A key aspect of our contribution is to introduce greater flexibility in the control of certificates. We
relax the assumptions from [Poon et al., 2023] which are challenging to verify in our context, by expressing
controls using a specific distance on regions defined by a different semi-distance. More specifically, we use the
semi-distance d defined by

d (x, x′)2 =

d∑
k=1

 (tk − t′k)
2

u′k
2 + u2k + τ2

+ ln

 u′k
2
+ u2k + τ2√

2u2k + τ2
√

2u′k
2 + τ2

 ∀x, x′ ∈ Rd × [umin,+∞)d . (11)

This semi-distance is symmetric, nonnegative, verifies d (x, x′) = 0 ⇐⇒ x = x′ for all x, x′ ∈ Rd× [umin,+∞)d,
but the triangle inequality does not hold. The connection between the semi-distance d and the optimization
problem (Pκ) will be made precise in Section 5.

Controls of the certificates also depend on some distance dg on X , left unspecified in this section. We will
see in Section 5 that the Fisher-Rao distance is well-suited for this problem. To establish the existence of
non-degenerate dual certificates, we ensure compatibility between the semi-distance and dg (see Section 5). Up
to the semi-distance d , the elements displayed in this section are quite generic in the BLASSO literature and
have been discussed in various contexts [Duval and Peyré, 2015; De Castro et al., 2021a; Poon, 2019].

First, we introduce the so-called far and near regions.

Definition 3.1 (Near and far regions). For r > 0, we define the near regions associated with each particle x0j ,
j ∈ {1, . . . , s} as

Xnear
j (r) := {x ∈ X : d (x, x0j ) ≤ r}

and the far region

X far(r) := X \ Xnear(r) where Xnear(r) :=
⋃
j

Xnear
j (r) .

The jth near region identifies the points in X that are close to x0j , the jth particle of µ0. To ensure accurate
recovery, we require the existence of a (global) dual certificate η that satisfies non-degeneracy conditions. These
conditions are adapted below from [Poon et al., 2023, Definition 2], with modifications to account for the
definition of near and far regions, all based on the semi-distance d rather than the Fisher-Rao distance.
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Definition 3.2 (Global non-degenerate certificate). Let ε0, ε2, r ∈ R∗
+. A function η ∈ Im(Ψ∗) is a (ε0, ε2, r)-

non-degenerate certificate associated with the measure µ0 if

1. η(x0j ) = 1 for all j = 1, . . . , s,

2. |η(x)| ≤ 1− ε0 for all x ∈ X far(r),

3. η(x) ≤ 1− ε2dg(x, x
0
j )

2 for all x ∈ Xnear
j (r), j ∈ {1, . . . , s}.

A global non-degenerate certificate is thus a function whose regularity is prescribed (it must be in Im(Ψ∗)),
which interpolates (item 1 of Definition 3.2) and localizes (items 2 and 3) the particles of the target µ0.

We will make use of additional non-degenerate certificates, localizing the jth particle of µ0.

Definition 3.3 (Local non-degenerate certificates). Let ε̃0, ε̃2, r ∈ R∗
+. For j ∈ {1, . . . , s}, ηj ∈ Im(Ψ∗) is a

(ε̃0, ε̃2, r)-non-degenerate certificate for the jth near region if

1. ηj(x
0
j ) = 1 and ηj(x

0
i ) = 0 for all i ∈ {1, . . . , s} such that i ̸= j,

2. |ηj(x)| ≤ 1− ε̃0 for all x ∈ X far(r),

3. |1− ηj(x)| ≤ ε̃2dg(x, x
0
j )

2 for all x ∈ Xnear
j (r),

4. |ηj(x)| ≤ ε̃2dg(x, x
0
i )

2 for all x ∈ Xnear
i (r), for all i ∈ {1, . . . , s} such that i ̸= j.

Note that the near and far regions along with Ψ∗ depend on the parameter τ appearing in λ. The distance dg
will also depend on it. For the estimation of µ0, the choice of τ is related via (x01, . . . , x

0
s) to the possibility of

constructing non-degenerate certificates (see Section 5), and influences the convergence rate (see Theorem 3.1).
For the estimation of the density f0, this choice is more critical: we suggest possible values for τ in Section 4.

3.2 Error bounds

We extend here the results of [De Castro et al., 2021a] to our setting, where both means and covariances of
the mixture model are unknown. Providing estimation guarantees requires to bound the error we made by
approximating L ◦ f0 from our random observations (see Lemma 3.1). We give results taken in expected value

over X1, . . . , Xn
i.i.d.∼ f0.

Lemma 3.1 (Control of the noise. [De Castro et al., 2021b, Lemma 3]). We define the so-called noise term Γn

as
Γn := L ◦ f̂n − L ◦ Φµ0 . (12)

We have

E
[
∥Γn∥2L

]
≤

4
∫
Rd Λ

(2π)dn
=

4

(2π)d/2τdn
=: ρ2n .

Moreover, universal constants CΓ, C̃Γ > 0 exist such that

E
[
∥Γn∥4L

]
≤ C̃Γρ

4
n

and

∀ρ > 0 , ∥Γn∥2L ≤ ρ
C2

Γ

∫
R Λ

n(2π)d
= ρ

C2
Γ

nτd(2π)d/2
with probability greater than 1− CΓe

−ρ .

The proof is given in Appendix C. The constants CΓ, C̃Γ in the previous lemma can be made explicit (see
[Houdré and Reynaud-Bouret, 2003, Theorem 3.1]).

The control of any estimator µ̂n,ω satisfying (8) also involves the non-degenerate dual certificates introduced
in Definitions 3.2 and 3.3 above. Our recovery guarantees are based on the following assumption.

Assumption 1. There exists η = Ψ∗p a global (ε0, ε2, r)-non-degenerate certificate associated with µ0, and local
(ε̃0, ε̃2, r)-non-degenerate certificates ηj = Ψ∗pj (j ∈ {1, . . . , s}) for each near region. Moreover, there exists

cp > 0 such that ∥p∥2L ≤ cps and ∥pj∥2L ≤ cp for j = 1, . . . , s.
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The dependence on s for ∥p∥2L is quite natural (related to our construction of certificates, see Proposition I.1
in the appendix) and already appears in the literature, c.f . [Poon, 2019]. In Section 5, we show that As-
sumption 1 holds under some conditions on X and µ0 by explicitly constructing certificates. In particular, we
consider X ⊂ Rd × [umin, umax]

d and we impose a minimal separation between the particles of µ0 depending
on s, umin, umax, d, τ . We provide fixed values for r, εi, ε̃i, cp, depending only on the dimension d. For a precise
statement, see Theorem 5.1 below.

Now, we have all the ingredients to provide our first results concerning the performances of our estimator.
We present a control of the mass of µ̂n,ω on the near and far regions (Definition 3.1) in the next theorem, whose
proof is displayed in Appendix D.

Theorem 3.1 (Estimation error). Assume that Assumption 1 holds. Setting κ = ρn√
cp

in (Pκ), we have the

following controls on µ̂n,ω.

1. Control over the mass of the estimator on the far region:

E
[
µ̂n,ω(X far(r))

]
≤

√
cp

2ε0
ρn(1 +

√
s)2 .

2. Accuracy of the mass reconstruction: for any j ∈ {1, . . . , s},

E
[∣∣ω0

j − µ̂n,ω(Xnear
j (r))

∣∣] ≤ 2
√
cpρn(1 +

√
s) + max

{
1− ε̃0
ε0

,
ε̃2
ε2

} √
cp

2
ρn(1 +

√
s)2 .

3. Stability of the mass:

−2
√
cpsρn

(
1 +

√
s
)
≤ E

[
∥µ̂n,ω∥TV

]
−
∥∥µ0

ω

∥∥
TV

≤
√
cp

2
ρn .

We present below several remarks on this result and its proof.

Remark 3.1 (A Bregman divergence approach). The non-degenerate certificates from Assumption 1 allow us to
derive recovery guarantees from the control of the so-called Bregman divergence, defined for η ∈ C(X ) by

Dη(µ̂n,ω, µ
0
ω) = ∥µ̂n,ω∥TV −

∥∥µ0
ω

∥∥
TV

−
∫
X
η d
(
µ̂n,ω − µ0

ω

)
. (13)

In particular, if η is a global non-degenerate certificate, we get
∫
X η dµ

0
ω =

∥∥µ0
ω

∥∥
TV

. In such a case, the Bregman

divergence is nonnegative: Dη(µ̂n,ω, µ
0
ω) =

∫
X (1 − η) dµ̂n,ω ≥ 0. The proof of Theorem 3.1 is based on lower

and upper bounds on the Bregman divergence with η from Assumption 1. First, using that η = Ψ∗p with the
Cauchy-Schwarz inequality, we get∣∣∣∣∫

X
η d(µ̂n,ω − µ0

ω)

∣∣∣∣ = |
〈
p, L ◦ Φ(µ̂n,ω − µ0

ω)
〉
L | ≤ ∥p∥L

∥∥L ◦ Φ(µ̂n,ω − µ0
ω)
∥∥
L .

We control this quantity by using the inequality JW (µ̂n,ω) ≤ JW (µ0
ω) (recall (8)), along with the control on the

noise term established in Lemma 3.1. This leads to the following upper bound on the Bregman divergence:

E
[
Dη

(
µ̂n,ω, µ

0
ω

)]
≤

√
cp

2
ρn(1 +

√
s)2 .

In the same time, since η satisfies Definition 3.2, we get

Dη

(
µ̂n,ω, µ

0
ω

)
=

∫
(1− η) dµ̂n,ω ≥ ε0µ̂n,ω(X far(r)) + ε2

s∑
j=1

∫
Xnear

j (r)

dg(x, x
0
j )

2 dµ̂n,ω(x)

from which we deduce the control of the estimator on the far region. The local dual certificates enable us to
retrieve the control on the near regions, using again the lower bound on the Bregman divergence.

Remark 3.2 (Choice of κ, dependence on s). The regularization parameter κ is chosen as ρn√
cp

in Theorem 3.1.

In particular, it does not depend on the sparsity index s of µ0, unknown in practice—we call this choice s-
agnostic. As a result, the user does not require prior knowledge of the target measure to select the regularization
parameter: the proposed value can be directly used to solve the BLASSO numerically. The s-dependent choice
κ = ρn√

scp
results in better rates for the estimation (i.e., for the bounds presented in Theorem 3.1)—linear on

√
s

rather than on s (see Equation (33) in Appendix). In all cases, the estimation error depends on s; recovering
a mixture with a larger number of components incurs a higher estimation cost. To conclude this discussion,
we stress that these possible choices for κ are proposed according to theoretical considerations. For practical
applications, this regularization parameter can be calibrated via cross-validation.
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Remark 3.3 (Soft-thresholding effect). It is known that the LASSO estimator has a soft-thresholding effect,
e.g . [Friedman et al., 2007]. It suggests that the ℓ1-regularization is biased in the sense that each of the s
weight components is under-estimated by an additive factor proportional to the regularization term κ. Having s
components, we expect this bias to be of the order of sκ. Our result in (3) (Theorem 3.1) is aligned with this
comment since ∣∣∣E [∥µ̂n,ω∥TV

]
−
∥∥µ0

ω

∥∥
TV

∣∣∣ = O(sκ) ,

up to a constant that may depend on cp.

Remark 3.4 (Choice of τ). Although this section focuses on the estimation of µ0, an additional objective that
can be pursued in parallel is the estimation of the associated density f0—a task we refer to as prediction.
This prediction objective influences the choice of the smoothing parameter. As we will see in Section 4, when
X ⊂ Rd × [umin,+∞)d the choice τ =

√
2 umin√

lnn
results in almost parametric convergence rates for both the

estimation of f0 (Theorem 4.1) and the estimation of µ0
ω. In fact, under Assumption 1, Theorem 3.1 entails

that with τ =
√
2 umin√

lnn
, setting κ = ρn√

cp
, keeping only the dependence on n and s we have

E
[∣∣ω0

j − µ̂n,ω(Xnear
j (r))

∣∣] ≲ s(lnn)d/4√
n

∀ j = 1, . . . , s .

If we do not need to predict the density f0, we can alternatively take 0 < τ ≤ umin fixed. This leads to a rate
of s√

n
for the estimation. Note that Assumption 1 is more difficult to check when τ is large, c.f . Theorem 5.1.

Also note that the near and far regions depend on τ through the semi-distance d .

3.3 Effective near regions

Theorem 3.1 describes the performances of the BLASSO estimator in our setting. It provides control over the
proximity between µ̂n,ω and µ0

ω on associated far and near regions. However, our initial target is µ0 instead

of µ0
ω. Using Theorem 3.1 and (9), we can easily give a bound for E

[∣∣∣a0j − µ̂n,ω

W (x0
j )
(Xnear

j (r))
∣∣∣], but we cannot

access W (x0j ) without knowledge of µ
0. In this context, a fair estimator of µ0 is the renormalized measure

µ̂n,ω

W .

Providing recovery guarantees for
µ̂n,ω

W requires to control W on the near regions.

Another restrictive aspect of Theorem 3.1 is that we consider controls on regions with a fixed radius r (which
is directly related to the dual certificate). We would like to locate the mass of µ̂n,ω more precisely.

However, we can overcome these initial limitations by providing controls of the estimator on

Xnear
j (re) := {x ∈ X : d (x, x0j ) ≤ re} (14)

for re ≤ r. Such regions are called effective near regions, and have been introduced by [De Castro et al., 2025].
To extend controls on Xnear

j (r) to controls on Xnear
j (re), the choice of dg plays an important role. It should be

indeed compatible with our semi-distance d in a sense which is made precise in Proposition 3.1 below.

Proposition 3.1. Let r > 0. Assume that Assumption 1 holds. Assume that there exists ε̃3 > 0 such that for
all 0 < re ≤ r, for all j ∈ {1 . . . , s}, we have

dg(x
0
j , x)

2 ≥ r2e
ε̃3

∀x ∈ Xnear
j (r) \ Xnear

j (re) . (15)

Then, for κ = ρn√
cp

and for any 0 < re ≤ r,

E
[
|ω0

j − µ̂n,ω(Xnear
j (re))|

]
≤ 2

√
cpρn(1 +

√
s) + max

{
1− ε̃0
ε0

,
1

ε2

(
ε̃3
r2e

+ ε̃2

)}
ρn

√
cp

2
(1 +

√
s)2 . (16)

The proof is similar to that of Theorem 3.1, and is presented in Appendix F.1.

We check the assumption (15) in Lemma H.5 (in Appendix), for dg chosen as the Fisher-Rao distance. For
the specific choice of r which is made in Lemma 5.4 (depending on d) it can be shown that ε̃3 can be chosen
as a constant not depending on d. Note that, as we decrease the size of near region re towards zero, the bound
(16) grows as sρn

r2e
, omitting the dependence on cp, ε0, ε2, ε̃0, ε̃2 and ε̃3.

Remark 3.5. We can make choices for re that depend on n in Proposition 3.1. We give the associated bound
for E

[
|ω0

j − µ̂n,ω(Xnear
j (re))|

]
(see (16)), that holds under the assumptions of Proposition 3.1 and with n large

enough such that re ≤ r. We only keep the dependence on n, τ and s. Let α > 0.
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• For re = (lnn)−α,

E
[
|ω0

j − µ̂n,ω(Xnear
j ((lnn)−α))|

]
≲
s(lnn)2α√
nτd/2

.

• For re = n−α, α < 1
4 ,

E
[
|ω0

j − µ̂n,ω(Xnear
j (n−α))|

]
≲

s

n
1
2−2α τd/2

.

These choices provide an overview of possible convergence rates, and show the trade-off between localization
and control of the mass.

The above proposition provides, as Theorem 3.1, guarantees on the estimation on µ0
ω rather than on µ0.

However, by combining Proposition 3.1 and a control of the function W on the effective regions, we can derive
guarantees for the estimation of µ0 by µ̂n :=

µ̂n,ω

W , as displayed in the following corollary.

Corollary 3.1. We work under the same assumption as Proposition 3.1. We choose κ = ρn√
cp

and re = n−1/6.

Assume that 0 < re ≤ r. Omitting the dependence on d, cp, εi, ε̃i, r we have

E
[∣∣∣∣a0j − µ̂n,ω

W
(Xnear

j (n−1/6))

∣∣∣∣] ≲ (sτ−d/2W (x0j )
−1 + a0j

)
n−1/6 .

The proof can be found in Appendix F.2. The difficulty that appears here is that providing control on
µ̂n,ω

W
requires local control of the function W , which slightly deteriorates the bound for the estimation of the weights
(a0j )

s
j=1. The rate n−1/6 provides the best compromise for the size of the effective near regions re when dealing

with this upper bound.

Remark 3.6. Making the s-dependent choice of regularization κ = ρn√
cps

, a modified version of Proposition 3.1

yields, keeping only the dependence on re, τ, s, n,

E
[∣∣ω0

j − µ̂n,ω(Xnear
j (re))

∣∣] ≲ √
s

τd/2
√
nr2e

,

c.f . (38) in Appendix. With this choice of κ, the result of Corollary 3.1 becomes

E
[∣∣∣∣a0j − µ̂n,ω

W
(Xnear

j (n−1/6))

∣∣∣∣] ≲ (√sτ−d/2W (x0j )
−1 + a0j

)
n−1/6 ,

see (42) in Appendix.

Remark that all the results given in this section are controls in expected value. Controls with high probability
could also be given, using Lemma 3.1. Also note that the target µ0 is fixed (does not vary with n).

4 Prediction

In Section 3, we provided controls for the estimator µ̂n,ω. In this section, we look at the prediction Φµ̂n = Φ
µ̂n,ω

W
made by the BLASSO of the target density Φµ0 = f0, and we derive bounds for the so-called prediction error∥∥Φ(µ̂n − µ0)

∥∥2
L2 . This is a question that has been quite overlooked in the BLASSO literature. We can however

mention [Butucea et al., 2024] where the prediction error is investigated in a different context and for a slightly
different problem.

We establish in this section almost parametric rates for the bound on the prediction error, in two distinct
regimes characterized by the value of the regularization parameter κ. With small regularization, no assumptions
on µ0 are needed (Section 4.1). With stronger regularization, we show in Section 4.2 that the BLASSO achieves
a good prediction when dual certificates exist (namely when Assumption 1 holds).

4.1 Prediction under small regularization

We can achieve good prediction results with small regularization, using control of the low frequencies of the
estimated density (using Lemma 3.1) and of its high frequencies, resulting from an appropriate choice of τ . These
controls require an upper bound on the variance. We hence assume from now on that X ⊂ Rd × [umin, umax]

d.

Proposition 4.1 (Prediction error under small regularization). Assume that X ⊂ Rd× [umin, umax]
d. Choosing

τ =
√
2umin√
lnn

and κ = ρ2n, keeping only the dependence on n we have

E
[∥∥Φ(µ̂n − µ0)

∥∥2
L2

]
≲

(lnn)d/2

n
.
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We do not make any assumption on the existence of dual certificates in the above proposition. The proof is
given in Appendix G.1. This result shows that in the small regularization regime corresponding to κ = ρ2n, we
obtain a quasi-parametric rate (up to a log factor) for the estimation of the density f0.

Remark 4.1 (Choice of τ , bounds on the variances). Keeping τ fixed does not lead to a good prediction rate:
to control the high frequencies of the predicted density with Lemma G.1 in Appendix, we need to lower bound
the variances of X with a parameter not depending on n, while τ must decrease as n grows. In Proposition 4.1,

we also use an upper bound on the variances in X to control E
[
∥µ̂n∥2TV

]
.

Remark 4.2 (Comparison with Kernel Density Estimation). Note that L ◦ f̂n is itself a kernel density estimator
of the density (see [Tsybakov, 2008]). However, the resulting rate of convergence deteriorates very quickly
with the dimension: it can be shown that with X ⊂ Rd × [umin,+∞)d, setting τ = 1

√
lnnn

1
4+d

, omitting the

dependence on d we have

E
[∥∥∥L ◦ f̂n − Φµ0

∥∥∥2
L2

]
≲

(lnn)d/2

n
4

d+4ud+4
min

.

The proof is in Appendix G.2. This bound can be explained by the fact that the Gaussian kernel is not appropri-
ate for the estimation of so-called super-smooth target densities. Nevertheless, as displayed in Proposition 4.1,
an almost parametric rate is obtained for Φµ̂n, which is based on a regularized version of L ◦ f̂n.

Choice of regularization Proposition 4.1 does not take advantage on the fact that µ0 is a discrete measure.
This is not surprising, as the considered regularization is very small. The choice κ = ρ2n is not suited for
the estimation of the target measure µ0 (see Section 3). In fact, the result displayed in Proposition 4.1 does
not take into account the trade-off we would like to have between making a good prediction and guaranteeing
a good estimation of the target measure µ0. In particular, choosing κ = ρ2n, we have no control over the
proximity between

∥∥µ0
ω

∥∥
TV

and ∥µ̂n,ω∥TV as n grows: we only know that E
[
∥µ̂n,ω∥TV

]
≤
∥∥µ0

ω

∥∥
TV

+ 1
2 (as

κE
[
∥µ̂n,ω∥TV

]
≤ ρ2

n

2 + κ
∥∥µ0

ω

∥∥
TV

), which is enough to control the high frequencies of Φµ̂n. For an estimation
purpose, we need more regularization (i.e. a larger κ). This is exactly what has been done in Theorem 3.1
where κ = ρn√

cp
.

Remark 4.3. This property of the BLASSO estimator, i.e. obtaining a good prediction rate under small regu-
larization, highlights a strong difference from the LASSO framework. In the LASSO setting [Tibshirani, 1996;
Tibshirani, 2023], regularization plays a greater role in controlling the prediction error: to get a parametric
rate, we need to use bounds on the estimation error.

4.2 Prediction under large regularization

Provided that non-degenerate dual certificates exist, one can obtain appropriate bounds for both estimation
and prediction, with κ chosen as in Theorem 3.1. The following theorem presents the prediction bound in this
regime.

Theorem 4.1. Assume that X ⊂ Rd× [umin, umax]
d. Let τ2 =

2u2
min

lnn . If Assumption 1 holds, choosing κ = ρn√
cp
,

keeping only the dependence on s and n we have

E
[∥∥Φµ̂n − Φµ0

∥∥2
L2(Rd)

]
≲
s(lnn)d/2

n
.

The proof is given in Appendix G.3. The upper bound on the prediction error displayed here is slightly larger
than in Proposition 4.1. In particular, this bound depends linearly on the sparsity index s. We refer for instance
to [Butucea et al., 2024] for a similar bound in a different context. We recall that this specific choice for κ
allows us to control the estimation performances of the estimator (see Theorem 3.1).

Remark 4.4. Similarly to the estimation task (see Remark 3.2), a choice of regularization depending on s leads

to a better rate. With κ = ρ√
cps

, we get E
[∥∥Φµ̂n − Φµ0

∥∥2
L2(Rd)

]
≲ (lnn)d/2

n for s = O(n(lnn)d/2). We refer to

Equation (45) in Appendix G.3.

5 Dual certificates

The proofs of Theorem 3.1 and Proposition 3.1 rely on the existence of non-degenerate dual certificates associated
with µ0 (Assumption 1). In this section, we explain how to construct such objects and the assumptions needed.
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Connection with previous works In the general framework of BLASSO, the objective is to recover a sparse
target measure from the observed signal. A key analytical tool in this setting is the dual certificate—a smooth
function associated with the underlying feature map of the problem at hand. These certificates identify the
locations of the target particles by interpolating the signs of the target measure.

Dual certificates can be traced back to super-resolution [Candès and Fernandez-Granda, 2014] and minimal
extrapolation [De Castro and Gamboa, 2012]. They are related to the dual solutions of the BLASSO when the
observation is noiseless, c.f . [Duval and Peyré, 2015] (in our framework, the noiseless observation corresponds

to E
[
L ◦ f̂n

]
= L ◦ f0). Our particular construction of dual certificates is inspired from the BLASSO literature

(e.g ., “vanishing derivatives pre-certificate” in [Duval and Peyré, 2015], “limit certificate” in [Poon et al., 2023]).
Although our setting differs—we observe a sample drawn from some mixture distribution—the construction of
the dual certificates follows the same principles: they depend solely on the target measure µ0 and the feature
map Ψ, and not on the observed data nor the regularization. Let us mention that other constructions exist for
translation invariant kernels (e.g ., pivot certificates in [De Castro et al., 2021a; De Castro et al., 2025]).

The existence of certificates requires assumptions on µ0, mainly on the separation between its particles. In
[Poon et al., 2023], precise conditions are proposed, based on controls on the kernel. In this section, we adapt
and check these assumptions.

Contributions Our main contribution is the construction of dual certificates for a BLASSO problem involving
a kernel that is not translation invariant.

In Section 2, we have adapted the data fitting term to obtain a normalized kernel, and introduced reparametrized
measures (see (Pκ)). It is however challenging to check that Knorm satisfies the Local Positive Curvature as-
sumption [Poon et al., 2023, Assumption 1] with the Fisher-Rao distance. We therefore consider regions for
controls defined instead by the semi-distance d introduced in (11). Even so, controls of the certificates are ex-
pressed with the Fisher-Rao distance, since they are carried out using Taylor expansions along the Fisher-Rao
geodesics.

A technical contribution is the derivation of bounds and local controls for the Riemannian derivatives of the
normalized Gaussian kernel. Additionally, we establish the compatibility between the Fisher–Rao metric and
the semi-distance. It is essential to control the Fisher–Rao geodesics within the balls with respect to d in order
to make use of the local bounds on the kernel. Combining these elements, we derive sufficient conditions on the
target µ0 that guarantee the existence of non-degenerate dual certificates. The next subsections are dedicated
to the proof of the following theorem.

Theorem 5.1 (Main result: existence of certificates under a minimal separation). Assume that X is a compact
set of Rd × [umin, umax]

d. Let s ≥ 2, 0 < τ ≤ umin and {x0j}sj=1 ⊂ X . We set dg as the Fisher-Rao distance
(associated with the metric g defined by (20)). If

min
i ̸=j

d (x0i , x
0
j ) ≥ max


√
u2max +

0.30252

d (2u2max + τ2)

umin

(
∆+

0.3025√
d

)
, 2
umax

umin
∆

+

√
d ln

(
u2max

u2min

)
(17)

where ∆ = 2
√
11.9 + 3 ln(d+ 6.62) + ln(s− 1), then Assumption 1 holds with r = 0.3025√

d
, (ε0, ε2) =

(
0.03911

d , 0.06158
)
,

(ε̃0, ε̃2) =
(

0.03911
d ,

√
4d2+10d

2 + 0.004106
)
and cp = 2.

This result stems from Theorems 5.2 and 5.3 below. The calculation of the parameters is detailed in [Giard,
2025, Section VII.3].

Theorem 5.1 ensures the existence of non-degenerate dual certificates when the particles {x0j}sj=1 are suf-
ficiently separated. This separation, involving both means and covariances of the Gaussian components, is
expressed via the semi-distance d , rather than the Fisher-Rao distance.

Note also that we give explicit constants, but a less constructive approach could be considered, based on the
continuity of Knorm and its derivatives.

5.1 Geometrical framework

Kernel Building on the work of [Duval and Peyré, 2015] and [Poon et al., 2023], we consider dual certificates
of the form

ηα,β =

s∑
j=1

αjKnorm(x
0
j , •) +

s∑
j=1

βT
j ∇1Knorm(x

0
j , •) (18)
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where αj ∈ R, βj ∈ R2d for all j ∈ {1, . . . , s}, and Knorm is the real-valued kernel defined, for all x, x′ ∈
Rd × [umin,+∞)d, by

Knorm(x, x
′) = ⟨Ψδx,Ψδx′⟩L =

d∏
k=1

(2u2k + τ2)1/4(2u′k
2
+ τ2)1/4

e
− (tk−t′k)2

2(u2
k
+u′

k
2+τ2)

(u2k + u′k
2 + τ2)1/2

. (19)

The kernel Knorm is normalized according to the definition of W (involved in Ψ). It is indeed easy to check that
Knorm(x, x) = 1 for all x ∈ Rd × [umin,+∞)d.

The gradient of Knorm with respect to its first variable is written as ∇1Knorm (∇2Knorm denotes the gradient
with respect to the second variable).

Remark 5.1 (Smoothness of the feature map). Note that Knorm is C∞ on (Rd × [umin,+∞)d)2. By iteratively
applying [Christmann and Steinwart, 2008, Lemma 4.34], it comes that

(x 7→ Ψδx) ∈ C∞(Rd × [umin,+∞)d,L)

and that ⟨∂1Ψδx, ∂2Ψδx′⟩L = ∂1∂2Knorm(x, x
′), where ∂1 (resp. ∂2) denotes here any derivative w.r.t. to x

(resp. x′).

The next lemma shows the relevance of constructing η of the form (18): such functions belong to Im(Ψ∗).

Lemma 5.1. Let α ∈ Rs, β ∈ R2d×s. The function ηα,β introduced in (18) verifies, for all x ∈ Rd×[umin,+∞)d,

ηα,β(x) = ⟨pα,β ,Ψδx⟩L with pα,β =

s∑
j=1

αjΨδx0
j
+

s∑
j=1

βj∇x

(
Ψδx0

j

)
∈ L .

Furthermore, ηα,β ∈ C∞(Rd × [umin,+∞)d) and in particular, ηα,β |X ∈ Im(Ψ∗).

The proof is an immediate consequence of Remark 5.1 and of the definition of Knorm in (19).
The construction of a non-degenerate (global) dual certificate follows several steps: first we construct a

function η of the form (18), choosing αj , βj such that η(x0j ) = 1 and ∇η(x0j ) = 0. This amounts to solve some
linear system (see (63) in Appendix). Then we use Taylor expansions on geodesics associated with the distance
dg to control η on the near and far regions, in the spirit of [Poon et al., 2023]. The Fisher-Rao distance appears
to be well suited for this purpose.

Fisher-Rao metric We work in a Riemannian geometry framework, and we use the Fisher-Rao metric
induced by Knorm (c.f . [Poon et al., 2023, Lemma 1]), defined for x ∈ Rd × [umin,+∞)d by

gx := ∇1∇2Knorm(x, x) = diag

(
1

2u21 + τ2
, . . . ,

1

2u2d + τ2
,

2u21
(2u21 + τ2)2

, . . . ,
2u2d

(2u2d + τ2)2

)
. (20)

We will use the associated norm, defined by

∥v∥x =
√
vT gxv ∀ v ∈ R2d , x ∈ Rd × [umin,+∞)d .

Details about this metric are provided in Appendix H, together with a description of the associated geodesics. We
recall that a geodesic for the metric g between x, x′ ∈ Rd× [umin,+∞)d is a piecewise continuously differentiable

function γ : [0, 1] → Rd × [umin,+∞)d such that γ(0) = x, γ(1) = x′, minimizing the quantity
∫ 1

0
∥γ̇(y)∥γ(y) dy.

In dimension d = 1, our Fisher-Rao geodesics share the same paths as those of the Poincaré half-plane model
(c.f . Lemma H.2 in Appendix): they are portions of straight lines parallel to {t = 0} and semicircles whose origin

is on {u = 0}. The notation dg refers to the associated distance. It is defined by dg(x, x
′) =

∫ 1

0
∥γ̇(y)∥γ(y) dy

with γ the geodesic between x, x′. This Fisher-Rao distance is not practical to define near and far regions since
it is not directly linked to the correlation between 2 features calculated with the kernel. This motivates the use
of another distance on X to express the recovery results: we use the semi-distance defined by

d (x, x′) =
√
−2 ln(Knorm(x, x′)) , (21)

whose expression is given by (11).
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Riemannian derivatives Following the work of [Poon et al., 2023], we will show that the dual certificates
we construct are non-degenenerate (see Definitions 3.2 and 3.3) by controlling the Riemannian derivatives of
Knorm. For details about this framework, see [Poon et al., 2023, p.263].

Riemannian derivatives involve the Christoffel symbols associated with g. We will use the notation Γtk ,Γuk ,
and refer to (46) in Appendix H.1 for a precise definition.

Definition 5.1. Let ψ ∈ C2(Rd × [umin,+∞]d). Let x, x′ ∈ Rd × [umin,+∞]d.
Riemannian Hessian: we define

Hgψ(x) = ∇2ψ(x)−
d∑

k=1

Γtk∂tkψ(x)−
d∑

k=1

Γuk∂uk
ψ(x) .

Covariant derivatives: Let v, v′ ∈ R2d. We define

D0[ψ](x) = ψ(x) , D1[ψ](x)[v] = vT∇ψ(x) , D2[ψ](x)[v, v
′] = vTHgψ(x)v′ .

Operator norms: For j ∈ {0, 1, 2}, we define the operator norm

∥Dj [ψ](x)∥x := sup
V=[v1,...,vj ]∈(R2d)j

∀l=1,...,j , ∥vl∥x≤1

Dj [ψ](x)[V ] .

Kernel derivatives and associated operators: Let i, j ∈ {0, 1, 2}. We define the covariant derivative of the kernel
of order i with respect to the first variable x and of order j with respect to the second variable x′ by

[Q]K(ij)
norm(x, x

′)[V ] = ⟨Di[Ψ](x)[Q], Dj [Ψ](x′)[V ]⟩L ∀Q ∈ (R2d)i , V ∈ (R2d)j .

The associated operator norm is∥∥∥K(ij)
norm(x, x

′)
∥∥∥
x,x′

:= sup
Q=[Q1,...,Qi]∈(R2d)i , V=[V1,...,Vj ]∈(R2d)j

∀l ∥Ql∥x , ∥Vl∥x≤1

[Q]K(ij)
norm(x, x

′)[V ] .

Simplified expressions are given in Appendix (Lemma J.1).

5.2 Construction of dual certificates

In what follows, we give some results allowing us to adapt and check the hypothesis of [Poon et al., 2023,
Theorem 2], which shows that the (global) non-degenerate certificate exists under some conditions on the
kernel. The corresponding proof can be adapted (see for instance [Poon et al., 2023, Section 6.7]) to show the
existence of additional certificates for the near regions, under the same conditions.

Local positive curvature assumption The following definition allows us to adapt [Poon et al., 2023,
Assumption 1] to our framework. In particular, we require some smoothness and structural properties for the
kernel that enable the construction of dual certificates, as stated below.

Definition 5.2 (Kernel of local positive curvature with parameters s, ∆, r, ε̄0 and ε̄2). Let K be a real-valued
normalized kernel of positive type, in C3((Rd × [umin,+∞)d)2). It is said to satisfy the local positive curvature
assumption (LPC) if the following holds:

1. For all i, j ∈ 0, 1, 2 with i+ j ≤ 3,

sup
x,x′∈Rd×[umin,+∞)d

∥∥∥K(ij)(x, x′)
∥∥∥
x,x′

≤ Bij < +∞ .

For i = 0, 1, 2, we denote Bi := 1 +B0i +B1i.

2. There exists r > 0 such that K has strictly positive curvature constants ε̄0 and ε̄2 with

K(x, x′) ≤ 1− ε̄0 , ∀x, x′ ∈ Rd × [umin,+∞)d s.t. d (x, x′) ≥ r ,

−K(02)(x, x′)[v, v] ≥ ε̄2∥v∥2x′ , ∀v ∈ R2d , ∀x, x′ ∈ Rd × [umin,+∞)d s.t. d (x, x′) < r .

3. There exist s ≥ 2, ∆(s) > 0 such that for all {xl}sl=1 ∈ S∆(s),

s∑
l=2

∥∥∥K(ij)(x1, xl)
∥∥∥
x1,xl

≤ 1

64
min

(
ε̄0(r)

B0
,
ε̄2(r)

B2

)
∀ (i, j) ∈ {0, 1} × {0, 1, 2} ,

where S∆ :=
{
{xl}sl=1 ⊂ Rd × [umin,+∞)d : minm ̸=l d (xm, xl) ≥ ∆

}
.
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Such kernel is said to verify the LPC with parameters s, ∆(s), r, ε̄0(r) and ε̄2(r).

Remark 5.2. This definition differs on some points from [Poon et al., 2023, Assumption 1]. First, since we solve
(Pκ) for nonnegative measures, we do not have to control the negative part of the certificates, and thus do not

require r < B
−1/2
02 . Moreover, we use controls on regions defined by the semi-distance d instead of dg. We

need to provide bounds on the kernel on Rd × [umin,+∞)d and not X , because a Fisher-Rao geodesic between
2 points of X could be outside X . The use of a semi-distance, which better describes the correlation between
2 features (as expressed by the kernel), also leads to difficulties. We need to ensure that d is compatible with
the Fisher-Rao distance. This is detailed in the paragraph below.

Compatibility between the Fisher-Rao metric and the semi-distance For x ∈ Rd × [umin,+∞)d and
R > 0, we denote

Bd (x,R) := {x′ ∈ Rd × [umin,+∞)d : d (x, x′) ≤ R}

and
B̊d (x,R) := {x′ ∈ Rd × [umin,+∞)d : d (x, x′) < R} .

For A ⊂ Rd × [umin,+∞)d, we define the set containing all points from geodesics connecting 2 points of A,

G(A) := {γ(y) : γ is a Fisher-Rao geodesic , y ∈ [0, 1] , γ(0), γ(1) ∈ A} .

Lemma 5.2 (Fisher-Rao geodesics remain within balls w.r.t. the semi-distance). Let r > 0 and x0 ∈ Rd ×
[umin,+∞)d. Then

G (Bd (x0, r)) ⊂ Bd (x0, r) .

The proof is detailed in Appendix H.3.1. This lemma allows us to use the controls we have on the balls Bd (x
0
j , r)

on the paths of the geodesics between 2 points in a ball. It entails that d and dg are in some sense compatible.
To control the certificates, we also require that certain balls (with respect to the semi-distance) around the

particles be disjoint. We restrict the possible values for the variances to establish this property: we need upper
and lower bounds to establish a “pseudo-quasi triangle inequality” for d (see Appendix H.3.2).

Lemma 5.3 (Separation of the balls w.r.t. the semi-distance). Let r,∆ > 0. Assume that X ⊂ Rd ×
[umin, umax]

d. If

min
i ̸=j

d (x0i , x
0
j ) ≥ max

{√
u2max + r2(2u2max + τ2)

umin
(∆ + r) , 2

umax

umin
∆

}
+

√
d ln

(
u2max

u2min

)
=: ∆τ ,

then the balls B̊d (x
0
j ,∆) ∩ X are disjoint, and for all j ̸= i, G(Bd (x

0
j , r) ∩ X ) does not intersect B̊d (x

0
i ,∆).

The proof is given in Appendix H.3.2. We stress that this lemma leads to the separation condition in Theorem
5.1. It is crucial to manage the kernel on the far and near regions according to the local positive curvature
assumption.

Non-degeneration of certificates under a minimal separation Using the compatibility between the
semi-distance and the Fisher-Rao metric, and controls on Knorm, we can show the existence of non-degenerate
certificates under some condition on the minimal separation between the particles of µ0. This is what the
following theorem entails.

Theorem 5.2. Assume that X ⊂ Rd × [umin, umax]
d and that Knorm satisfies the LPC (Definition 5.2) with

parameters s,∆, r, ε̄0, ε̄2.
If {x0j}sj=1 ⊂ X satisfies mini ̸=j d (x0i , x

0
j ) ≥ ∆τ (defined in Lemma 5.3), then there exists a

(
ε0 = 7

8 ε̄0, ε2 = 15
32 ε̄2, r

)
-

global non-degenerate certificate η of the form (18).
Under the same assumptions, for all j = 1, . . . , s there exists a certificate ηj for the jth near region of the

form (18), of parameters
(
ε̃0 = 7

8 ε̄0, ε̃2 = B02+ε̄2/16
2 , r

)
.

Moreover, η|X = Ψ∗p and ηj |X = Ψ∗pj where ∥p∥L ≤
√
2s and ∥pj∥L ≤

√
2.

The proof is based on an adaptation of [Poon et al., 2023, Theorem 2], and is given in Appendix I.
It remains to prove that Knorm satisfies the LPC—this is the purpose of the following theorem, whose proof

is provided in Appendix J. We give general bounds for Knorm in dimension d ≥ 1, and we provide a tighter
constant for ∆(s) in the case d = 1.
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Theorem 5.3. Let s ≥ 2, d ≥ 1. Assume that X ⊂ Rd× [umin, umax]
d and that τ ≤ umin. Then Knorm satisfies

the LPC with parameters s, r = 0.3025√
d

, ε̄2(r) = 0.13139, ε̄0(r) =
0.0894

2d , and

∆(s) = 2
√
11.9 + 3 ln(d+ 6.62) + ln(s− 1) .

Moreover, we can take B02 =
√
4d2 + 10d (item 1 of Definition 5.2).

Remark 5.3. When d = 1, the minimal separation consition can be improved: Knorm satisfies the LPC with the
same parameters r, ε̄0, ε̄2 as in Theorem 5.3, with ∆(s) = 2

√
13.88 + ln(s− 1) (Appendix J).

Remark 5.4. Note that the assumption on the separation between particles given in Theorem 5.2 depends on
τ through the semi-distance. We write d = dτ to emphasize this dependency. At first sight, the separation

condition thus appears to depend on n when choosing τ2 =
2u2

min

lnn . However, as τ ∈ R+ 7→ dτ (x, x′) is decreasing
and τ ∈ R+ 7→ ∆τ is increasing, if {x0j}sj=1 satisfies mini ̸=j dτ1(x

0
i , x

0
j ) ≥ ∆τ1 for some τ1 > 0, then it also satisfies

mini ̸=j dτ2(x
0
i , x

0
j ) ≥ ∆τ2 for 0 < τ2 ≤ τ1. This motivates the introduction of the following assumption:

min
x0
i ̸=x0

j

dτmax(x
0
i , x

0
j ) ≥ ∆τmax and ∀j = 1, . . . , s , x0j ∈ X ⊂ Rd × [umin, umax]

d , τmax ≤ umin . (22)

The recovery guarantees are not expressed using this assumption, but it is useful when thinking about the
convergence of the solution towards µ0

ω as n → ∞. The target is fixed, but for a good prediction τ must
decrease with the number of observations. The constraint (22) provides in this context a condition on µ0 that
does not depend on n.

Controls on the effective near regions Theorem 5.3 sets the size of near regions we consider for the
certificates. We can lower-bound the Fisher-Rao distance with the semi-distance on these regions, allowing us
to extend the control of the estimator to near regions of smaller size (Proposition 3.1). This result is key to

provide recovery guarantees for the proximity of µ0 and the renormalized estimator
µ̂n,ω

W (c.f . Corollary 3.1).
Its proof can be found in Appendix H.4.

Lemma 5.4. Assume that x, x0 ∈ Rd × [umin,+∞)d. If re ≤ d (x, x0) ≤ r = 0.3025√
d

, then dg(x, x0)
2 ≥ r2e

ε̃3
with

ε̃3 = 2.84.

6 Sparsity of the solution under large sample sizes

The certificates constructed in Section 5.2 satisfy the requirements of Assumption 1. Handling such certificates
allows us to obtain the non-asymptotic recovery guarantees presented in Section 3. These results are stated in
terms of control of the mass in the far and near regions. Nevertheless, they say nothing about the sparsity of
the estimator.

In this section, we present results of a different nature. Our estimator is here an exact solution µ⋆
n,ω, verifying

(7). Following [Duval and Peyré, 2015], we show that for large sample sizes and with high probability, µ⋆
n,ω is

sparse and has exactly 1 particle in each near region. We stress that in the following, 0 < τ ≤ umin is fixed
(does not decrease as n→ ∞).

Non Degenerate Source Condition We present here the key tool of our analysis, based again on non-
degenerate dual certificates (Definition 3.2), with additional properties. We show the existence of a global non-
degenerate certificate ηNDSC verifying ηNDSC > −1. It is said to satisfy the Non Degenerate Source Condition
(NDSC).

Lemma 6.1 (Non-degeneration of ηNDSC). Let s ≥ 2 and assume that X ⊂ Rd × [umin, umax]
d. There exist

rNDSC > 0 depending only on d, and ∆NDSC > 0 depending only on umin, umax, d, s, τ such that if {x0j}sj=1 satisfies

minx0
i ̸=x0

j
d (x0i , x

0
j ) ≥ ∆NDSC, then there exists a (ε0,NDSC, ε2,NDSC, rNDSC)-non-degenerate certificate of the form

(18) (of parameters only depending on d), that we denote by ηNDSC, verifying

|ηNDSC| ≤ 1 , |ηNDSC(x)| = 1 ⇐⇒ x ∈ {x0j}j , ∇2ηNDSC(x
0
j ) ≺ 0 ∀ j = 1, . . . , s . (NDSC)

It is said to satisfy the Non Degenerate Source Condition (NDSC).
Under the same assumptions, for all j = 1, . . . , s there exists a certificate ηj,NDSC for the jth near region of

the form (18), of parameters (ε̃0,NDSC, ε̃2,NDSC, rNDSC) only depending on d.
Moreover, ηNDSC|X = Ψ∗pNDSC and ηj,NDSC|X = Ψ∗pj,NDSC where ∥pNDSC∥L ≤

√
2s and ∥pj,NDSC∥L ≤

√
2.
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The proof is in Appendix K.1. We construct ηNDSC in the same way as in Theorem 5.2. The main difference with
Theorem 5.1 is the condition ηNDSC > −1, which is verified under a stronger separation condition on {x0j}sj=1.

The certificate ηNDSC from Lemma 6.1 is—as the global dual certificate constructed in Theorem 5.1—the
vanishing derivative pre-certificate of [Duval and Peyré, 2015, Section 4]. We can then show (see Lemma K.2
in Appendix) that ηNDSC corresponds to the minimal norm certificate [Duval and Peyré, 2015, Proposition 7]:
we have ηNDSC|X = Ψ∗p0,0 where

p0,0 := argmin
p∈L

{
∥p∥L : Ψ∗p ∈ ∂

∥∥µ0
∥∥
TV

}
, (p0,0)

with ∂ ∥•∥TV denoting the subdifferential of the TV-norm. This certificate allows us to control the sparsity
index of µ⋆

n,ω for large sample sizes, leading to the following theorem.

Theorem 6.1. Under the assumptions of Lemma 6.1, there exists κ0 > 0 and γ0 > 0 (depending on X , τ
and µ0) such that for all κ ≤ κ0 and if ∥Γn∥L ≤ γ0κ, then µ⋆

n,ω is s-sparse and has exactly 1 particle in each
Xnear

j (rNDSC).

The proof can be found in Appendix K.2.
This result should be seen in conjunction with Lemma 3.1. The latter indicates that the assumption

∥Γn∥L ≤ γ0κ0 is verified with high probability for n large enough. We detail this in the following corol-
lary.

Corollary 6.1. Let cκ > 0. Assume that the conditions given in Lemma 6.1 hold. Let n ≥ c2κ
κ2
0(2π)

d/2τd and

κ = cκ
(2π)d/4τd/2

√
n
. With probability greater than 1− CΓe

−
(

γ0cκ
CΓ

)2

,

µ⋆
n,ω =

s∑
j=1

ω⋆
j δx⋆

j
with ω⋆

j > 0 , x⋆j ∈ Xnear
j (rNDSC) ∀ j = 1, . . . , s .

Moreover,

|ω0
j − ω⋆

j | ≤ c0
cκ√
n

(23)

where c0 > 0 depends on X , τ and µ0. In addition, if cκ is chosen as cκ,n = o
n→+∞

(
√
n), there exists n0 ∈ N

depending on (cκ,n)n,X , τ, µ0 such that for all n ≥ n0,

d (x⋆j , x
0
j )

2 ≤ c̃0
cκ,n√
n

with probability at least 1− CΓe
−
(

γ0cκ,n
CΓ

)2

, where c̃0 depends on X , τ and µ0.

The proof is given in Appendix K.3. The result is established for a generic value of cκ, but different specific
choices can be considered. For instance, choosing cκ,n = α

√
lnn with α > 0, there exists n0,α ∈ N depending

on X , τ, µ0, α such that for all n ≥ n0,α and with probability at least 1−CΓn
− γ2

0α2

C2
Γ , µ⋆

n,ω =
∑s

j=1 ω
⋆
j δx⋆

j
where

for all j = 1, . . . , s,

|ω0
j − ω⋆

j | ≤ c0α

√
lnn√
n

and d (x⋆j , x
0
j )

2 ≤ c̃0α

√
lnn√
n

. (24)

Compared to Theorem 3.1, Inequality (24) yields more classical results in parametric estimation. We indeed
obtain parametric rates of convergence (up to a logarithmic factor) for the estimation of both weight and
location parameters. Moreover, the estimator has a sparsity index exactly matching that of the target measure
µ0. These bounds hold under slightly more restrictive conditions and for sufficiently large sample sizes. We also
stress that these results are obtained under a specific tuning of the parameters κ and τ , which differs from that
used in the previous sections.

7 Discussion and open problems

In this paper, we have described some theoretical properties of the BLASSO in the framework of Gaussian
mixtures. In particular, we have considered the case where each underlying component has an unknown diagonal
covariance. At this stage, further improvements and extensions are still possible and are discussed below.
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Algorithmic considerations Recall that Theorems 3.1 and 4.1 apply with any µ̂n,ω that verifies JW (µ̂n,ω) ≤
JW (µ0

ω): our estimator is not necessarily the solution of (Pκ). So we can restrict (Pκ) to any subset of M(X )+

containing µ0
ω.

This remark is interesting from an algorithmic point of view. We do not know how to solve (Pκ) numerically
on the entire measure space M(X )+, due to the absence of a parametrization of this space. In Hardy, 2023,
a version of the BLASSO over the space of K-sparse measures (discrete measures with less than K particles)
is considered. This problem, although not convex, is closer to a realistic algorithmic framework, as we can
parametrize the space of K-sparse measures. If K ≥ s, µ0

ω belongs to this space.
Several algorithms have been proposed to solve the BLASSO on sparse measures, such as the sliding Frank-

Wolfe algorithm [Denoyelle et al., 2019] or the Conic Particle Gradient Descent (CPGD, see [Chizat, 2022]).
Adapting the latter to our framework could form the core of a future work.

Non-diagonal covariance matrices In this contribution, we are only dealing with the case where the
covariances of the mixture are diagonal. Note that we can easily extend our model and results to the case where
all covariances share the same (known) orientation, i.e. we can diagonalize them in the same basis. However, we
are not yet able to process general covariances with varying or unknown orientations. Indeed, the Fisher-Rao
metric seems impractical to work with, mainly because it might be tricky to prove the compatibility between
the associated distance and the semi-distance, and obtain the desired controls on the kernel. A possible outcome
could be to consider an alternative metric.

Minimal separation condition Our results are established under a separation condition for the mixture
components. In [De Castro et al., 2021a], the separation between the particles can go to zero as n grows,
because a translation-invariant kernel is used. Such kernels have been investigated in [De Castro et al., 2025]
and this analysis enables the construction of certificates based on a “pivot” kernel, whose decay can increase
when dealing with closer particles. This is not the case here: our kernel is not practical to build a pivot, and

its decay does not allow us to consider ∆ → 0 (for (t, u) ̸= (t′, u′) ∈ R × [umin,+∞), e
− (t−t′)2

2(u2+u′2+τ2) cannot be
as close to 0 as wanted by changing τ). Moreover, the use of the semi-distance d imposes a larger minimal
separation.

Statistical learning of Gaussian Mixtures Gaussian mixtures have been at the core of several investiga-
tions and it is not possible to provide a complete state of the art in a single paragraph. Different tasks can
be considered, ranging from clustering [Chen and Zhang, 2024], testing [Donoho and Jin, 2004] or estimating
the component parameters. For the latter, different settings and related assumptions have been considered.
Estimating the mixture parameters is an hard task [Anandkumar et al., 2012; Doss et al., 2023], even in the
case where the component covariances are known. Our approach, based on convex optimization on the space
of measures, leads to specific bounds related to the mass of the estimator on far and near regions. A complete
comparison with alternative approaches may require additional investigations that are outside the scope of this
paper.

Technical side notes We have used the semi-distance d to define the near and far regions, and the Fisher-Rao
metric to control the certificates with Taylor expansions. These are somewhat arbitrary or improvable choices.
The semi-distance d seems appropriate to control the kernel, because it measures precisely how 2 points are
spaced for the kernel. But the downside is that it does not satisfy the triangle inequality. As a consequence, we
need to take ∆τ much larger than ∆. The Fisher-Rao metric allows us to retrieve quite easily global bounds
for the kernel (i.e. evaluations of the bounds Bij , see item 1 of Definition 5.2), but we could have used the
Euclidean metric—although it leads to controls that depend on bounds on the variance.

Summary of the main results

The target measure is µ0 =
∑s

j=1 a
0
jδ(t0j ,u0

j )
∈ M(X ). We assume in the following that X is a compact set of

Rd × [umin, umax]
d, and that n ≥ 2, s ≥ 2, 0 < τ ≤ umin. The results displayed in the following table require

more assumptions, that we explicit here. Keep in mind that d depends on τ .

Assumption 2.

min
i ̸=j

d (x0i , x
0
j ) ≥ max


√
u2max +

0.30252

d (2u2max + τ2)

umin

(
∆+

0.3025√
d

)
, 2
umax

umin
∆

+

√
d ln

(
u2max

u2min

)

where ∆ = 2
√

11.9 + 3 ln(d+ 6.62) + ln(s− 1).

20



Assumption 3.
min
i ̸=j

d (x0i , x
0
j ) ≥ ∆NDSC

(see Lemma 6.1—∆NDSC depends on s, τ, d, umin, umax).

Some constants are omitted in the bounds, this is expressed using ≲c when the dependence on c is not taken
into account.

Table 1: Recovery guarantees, κ not depending on s

Parameters Asm. Bounds

Estimation
(Prop. 3.1,
Thm. 5.1,
Lem. 5.4,
Cor. 3.1)

κ =
√
2

(2πτ2)d/4
√
n

2

For 0 < re ≤ 0.3025√
d

,

E
[∣∣µ̂n,ω(X near

j (re))− µ0
ω(X near

j (re))
∣∣] ≲d

s
r2e

√
nτd/2

For n−1/6 ≤ 0.3025√
d

,

E
[∣∣∣a0j − µ̂n,ω

W (X near
j (n−1/6))

∣∣∣] ≲d

(
s

τd/2W (x0
j )

+ a0j

)
n−1/6

Sparsity
(Cor. 6.1)

cκ,n > 0,
cκ,n = o(

√
n)

κ =
cκ,n

(2πτ2)d/4
√
n

3

For n ≥ n0 (depends on µ0,X , τ, (cκ,n)n),

with prob. ≥ 1− CΓe
−
(

γ0cκ,n
CΓ

)2

:
µ⋆
n,ω =

∑s
j=1 ω

⋆
j δx⋆

j
and

d (x⋆j , x
0
j )

2 ≲µ0,X ,τ
cκ,n√

n
, |ω0

j − ω⋆
j | ≲µ0,X ,τ

cκ,n√
n

Prediction
with small
regulariza-
tion (Prop. 4.1)

τ =
√
2umin√
lnn

κ = 4(lnn)d/2

(4πumin2 )d/2n

none E
[
∥Φ µ̂n,ω

W − Φµ0∥2L2

]
≲d,umin,umax

(lnn)d/2

n

Prediction
with a good
estimator
(Thm. 4.1)

τ =
√
2umin√
lnn

κ =
√
2(lnn)d/2

(4πumin2)d/4
√
n

2 E
[
∥Φ µ̂n,ω

W − Φµ0∥2L2

]
≲d,umin,umax

s(lnn)d/2

n

Table 2: Recovery guarantees, κ depending on s

Parameters Asm. Bounds

Estimation,
v2 (Rk. 3.6,
Thm. 5.1,
Lem. 5.4)

κ =
√
2

(2πτ2)d/4
√
sn

2

For 0 < re ≤ 0.3025√
d

,

E
[∣∣µ̂n,ω(X near

j (re))− µ0
ω(X near

j (re))
∣∣] ≲d

√
s

r2e
√
nτd/2

For n−1/6 ≤ 0.3025√
d

,

E
[∣∣∣a0j − µ̂n,ω

W (X near
j (n−1/6))

∣∣∣] ≲d

( √
s

τd/2W (x0
j )

+ a0j

)
n−1/6

Prediction
with a good
estimator,
v2 (Rk. 4.4)

τ =
√
2umin√
lnn

κ =
√
2

(2πτ2)d/4
√
sn

2
If s = O(n(lnn)d/2),

E
[
∥Φ µ̂n,ω

W − Φµ0∥2L2

]
≲d,umin,umax

(lnn)d/2

n
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Notation

Table 3: Table of notations

Global notation

X compact of Rd × [umin,+∞)d with umin, umax > 0

M(X )+ nonnegative Radon measures on X
W reparametrization function. For x = ((t1, . . . , td), (u1, . . . , ud)) ∈ Rd × [umin,+∞)d,

W (x) =
∏d

k=1(2π)
−1/4(2u2k + τ2)−1/4

µ0, µ0
ω resp. the target probability measure

∑s
j=1 a

0
jδx0

j
where x0j = (t0j , u

0
j ) ∈ X ; its

reparametrized version Wµ0 =
∑s

j=1 ω
0
j δx0

j

φ, σ, Φ resp. the function z ∈ R 7→ e−
z2

2√
2π

; its Fourier transform; the operator

µ 7→

(
z ∈ Rd 7→

∫
Rd×[umin,+∞)d

d∏
k=1

1

uk
φ

(
zk − tk
uk

)
dµ(t, u)

)
X1, . . . , Xn i.i.d. observations in Rd, drawn from f0 = Φµ0

E expected value w.r.t. X1, . . . , Xn

f̂n empirical density 1
n

∑n
i=1 δXi

κ regularization constant

µ̂n,ω, µ̂n, µ
⋆
n,ω resp. a measure of M(X )+ such that JW (µ̂n,ω) ≤ JW (µ0

ω) (see (Pκ)); the measure
µ̂n,ω

W ; an exact solution of (Pκ)

Γn, ρ
2
n resp. the noise L ◦ f̂n − L ◦ f0; a bound on E

[
∥Γn∥2L

]
equal to 4

(2π)d/2τdn

Kernel, differential geometry

τ , λ, Λ, L resp. the smoothing parameter τ ; the function z ∈ Rd 7→ e
−

∥z∥22
2τ2

(2πτ2)d/2
; its Fourier trans-

form; the operator f 7→ λ ∗ f
L RKHS associated with λ (scalar product given by (5))

Ψ,Knorm resp. the feature map µ ∈ M(Rd × [umin,+∞)d) 7→ L ◦ Φ µ
W ; the normalized kernel

(x, x′) ∈ Rd × [umin,+∞)d 7→ ⟨Ψδx,Ψδx′⟩L
d semi-distance (x, x′) 7→

√
−2 ln(Knorm(x, x′)) (expression given by (11))

Xnear
j (r),X far(r) resp. the jth near region of radius r, {x ∈ X : d (x, x0j ) ≤ r}; the far region

X \
⋃s

j=1 Xnear
j (r)

η dual certificate for µ0, of the form Ψ∗p with p ∈ L

Dη(µ̂n,ω, µ
0
ω) Bregman divergence ∥µ̂n,ω∥TV −

∥∥µ0
ω

∥∥
TV

−
∫
X η d

(
µ̂n,ω − µ0

ω

)
g, dg resp. the Fisher-Rao metric (see (20)); the associated distance

γ, γ̃ geodesic for the Fisher-Rao metric (parametrized on [0, 1] and by arc-length respec-
tively)
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Appendix

A Functional framework

The BLASSO operates on the space of Radon measures. In this section, we provide definitions of the operators
on measures used throughout the paper.

Let A ⊂ Rd. In the following, L∞(A) is the set of bounded functions from A to R; L1(A) (resp. L2(A))
the set of functions whose absolute value (resp. square) have a finite integral. The notions of convolution and
Fourier transform can be extended to measures.

Definition A.1 (Convolution g ∗ µ). Let A ⊂ Rp. The convolution between g ∈ L∞(A) and µ ∈ M(A) is
defined by

g ∗ µ :=

∫
A

g(• − x)dµ(x) .

Definition A.2 (Fourier transform over L1(A) and M(A)). Let A ⊂ Rp. We use the Fourier transform defined
for g ∈ L1(A) by

F [g] (ξ) :=

∫
A

e−i⟨ξ,x⟩g(x) dx .

We also use its extension to M(A):

F [µ] (ξ) :=

∫
A

e−i⟨ξ,x⟩ dµ(x) ∀µ ∈ M(A) .

The standard properties of convolution and Fourier transform apply, such as F [g ∗ µ] = F [g]F [µ] for all
g ∈ L1(A) ∩ L∞(A) and all µ ∈ M(A) (see, for example, [Rudin, 1991, Part 2]).

B Existence of a solution to the BLASSO

Proposition B.1. The problem (Pκ) has a solution.

Proof. JW is lower semi-continuous on M(X )+ for the weak* convergence: The TV norm is lower semi-continuous

for the weak* convergence. It then suffices to show that µ 7→ L ◦Φ µ
W is weak* to weak continuous. Let µj

∗
⇀ µ

in M(X ). We want to show that for f ∈ L,〈
L ◦ Φµj

W
, f
〉
L
→

〈
L ◦ Φ

µ

W
, f
〉
L
.

Using [Christmann and Steinwart, 2008, Lemma 4.29], as

Knorm : (x, x′) ∈ (Rd × [umin,+∞)d)2 7→
〈
L ◦ Φ δx

W
,L ◦ Φδx

′

W

〉
L

is continuous (see (19)), we have (
x 7→ L ◦ Φ δx

W

)
∈ C(X ,L) .

Hence (
x 7→

〈
L ◦ Φ δx

W
, f

〉
L

)
∈ C(X ) .

As M(X ) = C(X )∗, it comes∫ 〈
L ◦ Φ δx

W
, f

〉
L
dµj(x) →

∫ 〈
L ◦ Φ δx

W
, f

〉
L
dµ(x) ,
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which concludes this part of the proof.
Conclusion: The result follows noticing that JW (µ) −→

∥µ∥TV→∞
∞: we can restrict the problem to a closed

ball of M(X )+. By the Banach–Alaoglu theorem, this ball is weakly* compact (a ball of M(X ) is weakly*
compact, and M(X )+ is a weakly* closed subspace of M(X )). We deduce the existence of a minimizer of JW
on M(X )+.

C Proof of Lemma 3.1

Expected value of ∥Γn∥2L: Note that, according to the definition of Γn,

Γn =
1

n

n∑
i=1

(
L ◦ δXi

− L ◦ f0
)
.

For all h ∈ L, for all i ∈ {1, . . . , n}, we have E [⟨L ◦ δXi
, h⟩L] =

〈
L ◦ f0, h

〉
L. This entails that E [⟨Γn, h⟩L] = 0.

Defining
Zi := L ◦ δXi

− L ◦ f0

(where we recall that f0 = Φµ0), observe that Z1, . . . , Zn are i.i.d. Since for all i ∈ {1, . . . , n},

∥Zi∥2L =
1

(2π)d

∫
Rd

Λ|F
[
δXi − f0

]
|2 ≤

4
∫
Rd Λ

(2π)d
,

we have

∥Γn∥2L =
1

n2

n∑
i=1

∥Zi∥2L +
1

n2

∑
i ̸=j

⟨Zi, Zj⟩L ,

≤
4
∫
Rd Λ

(2π)dn
+

1

n2

∑
i ̸=j

⟨Zi, Zj⟩L .

We deduce that E
[
∥Γn∥2L

]
≤ 4

∫
Rd Λ

(2π)dn
using that E[Zi] = 0 for all i ∈ {1, . . . , n}.

Control in probability: The control in probability of ∥Γn∥2L comes from [De Castro et al., 2021b, Lemma 3], and
stems from results on U-processes (see [Arcones and Giné, 1993, Proposition 2.3]). In particular, we have

∀ρ > 0 , P
(
∥Γn∥2L > ρ

C2
Γ

nτd(2π)d/2

)
≤ CΓe

−ρ , (25)

for some positive constant CΓ > 0.
Expected value of ∥Γn∥4L: Using (25), it comes that

E
[
∥Γn∥4L

]
=

∫ ∞

0

P
(
∥Γn∥4L > x

)
dx ,

=

∫ ∞

0

P
(
∥Γn∥2L >

√
x
)
dx ,

≤
∫ ∞

0

CΓe
−
√
x

nτd(2π)d/2

C2
Γ dx ,

so

E
[
∥Γn∥4L

]
≤ CΓ

C4
Γ

n2τ2d(2π)2d

∫ ∞

0

e−
√
x dx =

2C5
Γ

n2τ2d(2π)2d
.

This proves the desired result.

D Proof of Theorem 3.1

The following proof is standard when dealing with the BLASSO procedure. Its main arguments can be found in
[De Castro et al., 2021a]; we adapt their proof to our setting. It is based on bounds on the Bregman divergence

introduced in (13). With W defined by (6), we denote in the following µ̂n =
µ̂n,ω

W . We also recall from (9) that
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µ0 =
µ0
ω

W .
Upper bound on the Bregman divergence: Since JW (µ̂n,ω) ≤ JW (µ0

ω), we get∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥2
L
+ 2κ ∥µ̂n,ω∥TV ≤

∥∥∥L ◦ f̂n − L ◦ Φµ0
∥∥∥2
L
+ 2κ

∥∥µ0
ω

∥∥
TV

(26)

which can be rewritten as∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥2
L
+ 2κDη

(
µ̂n,ω, µ

0
ω

)
+ 2κ

∫
X
η d(µ̂n,ω − µ0

ω) ≤ ∥Γn∥2L , (27)

for any dual certificate η satisfying the requirements of Assumption 1. As η = Ψ∗p, recalling (10) we have∫
X
η d(µ̂n,ω − µ0

ω) =
〈
p, L ◦ Φ(µ̂n − µ0)

〉
L .

So using Cauchy-Schwarz inequality, (27) leads to∥∥∥Lf̂n − L ◦ Φµ̂n

∥∥∥2
L
+ 2κDη

(
µ̂n,ω, µ

0
ω

)
− 2κ ∥p∥L

∥∥L ◦ Φµ0 − L ◦ Φµ̂n

∥∥
L ≤ ∥Γn∥2L .

The triangle inequality ∥∥L ◦ Φµ0 − L ◦ Φµ̂n

∥∥
L ≤ ∥Γn∥L +

∥∥∥Lf̂n − L ◦ Φµ̂n

∥∥∥
L

then leads to (∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥
L
− κ ∥p∥L

)2
+ 2κDη

(
µ̂n,ω, µ

0
ω

)
≤ (∥Γn∥L + κ ∥p∥L)

2
.

As the Bregman divergence is positive, we deduce from the previous inequality that

Dη

(
µ̂n,ω, µ

0
ω

)
≤

∥Γn∥2L
2κ

+
κ

2
∥p∥2L + ∥Γn∥L ∥p∥L and

∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥
L
≤ ∥Γn∥L + 2κ ∥p∥L . (28)

The bound in expected value on the Bregman divergence follows by applying Lemma 3.1 and using ∥p∥L ≤ √
cps.

We have

E
[
Dη

(
µ̂n,ω, µ

0
ω

)]
≤ ρ2n

2κ
+ κ

cp
2
s+ ρn

√
cps . (29)

Taking κ = ρn√
cp

gives

E
[
Dη

(
µ̂n,ω, µ

0
ω

)]
≤

√
cp

2
ρn(1 +

√
s)2 . (30)

Lower bound on the Bregman divergence: We use the controls of the non-degenerate certificate η on the near
and far regions. Since µ̂n,ω is nonnegative, according to Definition 3.2 we have

Dη

(
µ̂n,ω, µ

0
ω

)
=

∫
(1− η) dµ̂n,ω ≥ ε0µ̂n,ω(X far(r)) + ε2

s∑
j=1

∫
Xnear

j (r)

dg(x, x
0
j )

2 dµ̂n,ω(x) . (31)

Combining (30) and (31), we deduce the bound for the far region (item 1 of Theorem 3.1). To control the mass
of the estimator on the jth near region, we make use of the local non-degenerate certificate ηj (Definition 3.3).
We have, for all j = 1, . . . , s,

|ω0
j − µ̂n,ω(Xnear

j (r))| =

∣∣∣∣∣ω0
j −

∫
ηj dµ̂n,ω +

∫
ηj dµ̂n,ω −

∫
Xnear

j (r)

dµ̂n,ω

∣∣∣∣∣ ,
≤
∣∣∣∣∫ ηj d(µ

0
ω − µ̂n,ω)

∣∣∣∣+ ∫
Xnear(r)\Xnear

j (r)

|ηj |dµ̂n,ω +

∫
Xnear

j (r)

|1− ηj |dµ̂n,ω

+

∫
Xfar(r)

|ηj |dµ̂n,ω ,

≤ |
〈
pj , L ◦ Φµ0 − L ◦ Φµ̂n

〉
L |+ ε̃2

s∑
l=1

∫
Xnear

l (r)

dg(x, x
0
l )

2 dµ̂n,ω(x)

+ (1− ε̃0)µ̂n,ω(X far(r)) ,

(32)

≤ ∥pj∥L (2 ∥Γn∥L + 2κ ∥p∥L) + max

{
1− ε̃0
ε0

,
ε̃2
ε2

}
Dη

(
µ̂n,ω, µ

0
ω

)
,
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where for the last inequality, we have used (31), and

|
〈
pj , L ◦ Φµ0 − L ◦ Φµ̂n

〉
L | ≤ ∥pj∥L

(
∥Γn∥L +

∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥
L

)
≤ ∥pj∥L (2 ∥Γn∥L + 2κ ∥p∥L)

together with (28). As ∥pj∥L ≤ √
cp, ∥p∥L ≤ √

cps and κ = ρn√
cp
, we finally have

|ω0
j − µ̂n,ω(Xnear

j (r))| ≤ 2
√
cp(∥Γn∥L + ρn

√
s) + max

{
1− ε̃0
ε0

,
ε̃2
ε2

}
Dη

(
µ̂n,ω, µ

0
ω

)
.

The result in expected value follows from E [∥Γn∥L] ≤ ρn (Lemma 3.1 used with Jensen’s inequality) and (30).
For the stability of the mass (item 3), we use a similar but simpler reasoning. As η ≤ 1 and µ̂n,ω is

nonnegative, we have ∥∥µ0
ω

∥∥
TV

− ∥µ̂n,ω∥TV =

∫
η (dµ0

ω − dµ̂n,ω) +

∫
(η − 1) dµ̂n,ω ,

≤
∫
η (dµ0

ω − dµ̂n,ω) ,

=
〈
p, L ◦ Φµ0 − L ◦ Φµ̂n

〉
L ,

≤ ∥p∥L (2 ∥Γn∥L + 2κ ∥p∥L) .

Using (26), we also have ∥µ̂n,ω∥TV ≤
∥∥µ0

ω

∥∥
TV

+ 1
2κ ∥Γn∥2L. We can conclude by taking the expectation in these

inequalities and using Lemma 3.1.
With an s-dependent choice of regularization: Choosing κ = ρn√

cps
, (29) gives E

[
Dη(µ̂n,ω, µ

0
ω)
]
≤ 2ρn

√
cps. It

comes that

E
[
|ω0

j − µ̂n,ω(Xnear
j (r))|

]
≤ 2

√
cpρn(1 +

√
s) + max

{
1− ε̃0
ε0

,
ε̃2
ε2

}
2ρn

√
cps . (33)

E Basic inequalities

The following lemma gives inequalities useful when dealing with the semi-distance d . We will use them in
various proofs.

Lemma E.1 (Basic inequalities). Let a, b ∈ R∗
+, c ≥ 1. Then

a2 + b2

2ab
≤ c ⇐⇒ a ∈

[
b(c−

√
c2 − 1), b(c+

√
c2 − 1)

]
(34)

and
a2 + b2

2ab
≤ c =⇒ |a2 − b2|

a2 + b2
≤
√
c2 − 1 (35)

along with
a2 + b2

2ab
≤ c =⇒ 2a2

a2 + b2
≤ c+

√
c2 − 1 . (36)

Proof. Let a, b ∈ R∗
+ and c ≥ 1.

Proof of (34): We have

a2 + b2

2ab
≤ c ⇐⇒ a2 + b2 − 2cab ≤ 0 .

As 4c2b2 − 4b2 = 4b2(c2 − 1) ≥ 0, the roots of this polynomial in a are

2cb± 2b
√
c2 − 1

2
= b(c±

√
c2 − 1)

from which we deduce (34).
Proof of (35): Using (34) and 2ab ≤ a2 + b2, we get

|a2 − b2|
a2 + b2

≤ |a− b||a+ b|
2ab

,

≤ min{a, b}(1 + c+
√
c2 − 1)max{a, b}(1− (c−

√
c2 − 1))

2ab
,

=
(1 + c+

√
c2 − 1)(1 +

√
c2 − 1− c)

2
,

=
√
c2 − 1 .

28



Proof of (36): Using again (34) with 2ab ≤ a2 + b2, we have

2a2

a2 + b2
≤ 2ab(c+

√
c2 − 1)

2ab
,

≤ c+
√
c2 − 1 .

F Proofs related to the control of the estimator on the effective near
regions

F.1 Proof of Proposition 3.1

The proof is similar to that of Theorem 3.1 in Section D. Let j ∈ {1, . . . , s} and ηj a corresponding local
non-degenerate dual certificate satisfying the requirements of Assumption 1. According to Definition 3.3, for
all x ∈ Xnear

j (r), we have |ηj | ≤ 1 + ε̃2dg(x, x
0
j )

2. We deduce that

|ω0
j − µ̂n,ω(Xnear

j (re))| =

∣∣∣∣∣ω0
j −

∫
ηj dµ̂n,ω +

∫
ηj dµ̂n,ω −

∫
Xnear

j (re)

dµ̂n,ω

∣∣∣∣∣ ,
≤
∣∣∣∣∫ ηj d(µ

0
ω − µ̂n,ω)

∣∣∣∣+ ∫
Xnear(r)\Xnear

j (r)

|ηj |dµ̂n,ω +

∫
Xnear

j (r)\Xnear
j (re)

|ηj |dµ̂n,ω

+

∫
Xnear

j (re)

|1− ηj |dµ̂n,ω +

∫
Xfar(r)

|ηj |dµ̂n,ω ,

≤ ∥pj∥L (2 ∥Γn∥L + 2κ ∥p∥L) + ε̃2
∑
l ̸=j

∫
Xnear

l (r)

dg(x, x
0
l )

2 dµ̂n,ω + (1− ε̃0)µ̂n,ω(X far(r))

+ ε̃2

∫
Xnear

j (re)

dg(x, x
0
j )

2 dµ̂n,ω +

∫
Xnear

j (r)\Xnear
j (re)

(1 + ε̃2dg(x, x
0
j )

2) dµ̂n,ω .

From (15) we get 1 ≤ ε̃3
r2e
dg(x

0
j , x)

2 for all x ∈ Xnear
j (r) \ Xnear

j (re), so 1 + ε̃2dg(x
0
j , x)

2 ≤
(

ε̃3
r2e

+ ε̃2

)
dg(x

0
j , x)

2.

Using again (31), we deduce that

|ω0
j − µ̂n,ω(Xnear

j (re))| ≤ ∥pj∥L (2 ∥Γn∥L + 2κ ∥p∥L) + max

{
1− ε̃0
ε0

,
1

ε2

(
ε̃3
r2e

+ ε̃2

)}
Dη(µ̂n,ω, µ

0
ω) . (37)

We can conclude the proof using the controls on E [∥Γn∥L], ∥pj∥L, ∥p∥L, E
[
Dη(µ̂n,ω, µ

0
ω)
]
stemming from our

assumptions along with Lemma 3.1 and (30). Choosing κ = ρn√
cp
,

|ω0
j − µ̂n,ω(Xnear

j (re))| ≤ 2
√
cpρn(1 +

√
s) + max

{
1− ε̃0
ε0

,
1

ε2

(
ε̃3
r2e

+ ε̃2

)} √
cp

2
ρn(1 +

√
s)2 .

With an s-dependent choice of regularization: Choosing κ = ρn√
cps

, using (37) and the control of E
[
Dη(µ̂n,ω, µ

0
ω)
]

stemming from (29) we get

E
[
|ω0

j − µ̂n,ω(Xnear
j (re))|

]
≤ 4

√
cpρn +max

{
1− ε̃0
ε0

,
1

ε2

(
ε̃3
r2e

+ ε̃2

)}
2ρn

√
cps ,

≲

√
s

τd/2
√
nr2e

(38)

keeping only the dependence on s, τ, re, n.

F.2 Proof of Corollary 3.1

Let 0 < re ≤ r. We first prove that∣∣∣∣ µ̂n,ω

W
(Xnear

j (re))− a0j

∣∣∣∣ ≤ (1 +H(r)re)W (x0j )
−1
∣∣ω0

j − µ̂n,ω(Xnear
j (re))

∣∣+ a0jH(r)re (39)

where

H(r) =
(er

2

+
√
e2r2 − 1)d/2 − 1

r
. (40)
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We use the triangle inequality∣∣∣∣a0j − µ̂n,ω

W
(Xnear

j (re))

∣∣∣∣ ≤
∣∣∣∣∣a0j − µ̂n,ω(Xnear

j (re))

W (x0j )

∣∣∣∣∣︸ ︷︷ ︸
=:A

+

∣∣∣∣∣ µ̂n,ω(Xnear
j (re))

W (x0j )
− µ̂n,ω

W
(Xnear

j (re))

∣∣∣∣∣︸ ︷︷ ︸
=:B

.

Control of B: We recall the definitions of effective near regions (14) and of W (see (6)). We have

µ̂n,ω

W
(Xnear

j (re)) =

∫
Xnear

j (re)

W (x0j )

W (x)
d
µ̂n,ω

W (x0j )
(x)

so∣∣∣∣∣ µ̂n,ω

W
(Xnear

j (re))−
µ̂n,ω(Xnear

j (re))

W (x0j )

∣∣∣∣∣ ≤ max

{
sup

x∈Xnear
j (re)

W (x0j )

W (x)
− 1 , 1− inf

x∈Xnear
j (re)

W (x0j )

W (x)

}
×
µ̂n,ω(Xnear

j (re))

W (x0j )
.

For x ∈ Xnear
j (re), as

∏d
k=1

(u0
j,k)

2+u2
k+τ2

√
2(u0

j,k)
2+τ2

√
2u2

k+τ2
≤ er

2
e and as each term of this product is greater than 1, we

have
(u0

j,k)
2+u2

k+τ2

√
2(u0

j,k)
2+τ2

√
2u2

k+τ2
≤ er

2
e for all k = 1, . . . , d. Using (34), this implies

√
u2k +

τ2

2
∈

[√
(u0j,k)

2 +
τ2

2
(er

2
e −

√
e2r

2
e − 1),

√
(u0j,k)

2 +
τ2

2
(er

2
e +

√
e2r

2
e − 1)

]
∀ k = 1, . . . , d ,

from which we deduce that

max

{
sup

x∈Xnear
j (re)

W (x0j )

W (x)
− 1 , 1− inf

x∈Xnear
j (re)

W (x0j )

W (x)

}
≤ max

{
(er

2
e +

√
e2r

2
e − 1)d/2 − 1 , 1− (er

2
e −

√
e2r

2
e − 1)d/2

}
,

= (er
2
e +

√
e2r

2
e − 1)d/2 − 1

where we used that (er
2
e +

√
e2r

2
e − 1)d/2 ≥ 1 to establish that

1− (er
2
e −

√
e2r

2
e − 1)d/2 = 1− (er

2
e +

√
e2r

2
e − 1)−d/2 ≤ (er

2
e +

√
e2r

2
e − 1)d/2 − 1 .

Hence ∣∣∣∣∣ µ̂n,ω

W
(Xnear

j (re))−
µ̂n,ω(Xnear

j (re))

W (x0j )

∣∣∣∣∣ ≤ ((er2e +√e2r2e − 1)d/2 − 1
) µ̂n,ω(Xnear

j (re))

W (x0j )
. (41)

Control of A and proof of (39): As∣∣∣∣∣a0j − µ̂n,ω(Xnear
j (re))

W (x0j )

∣∣∣∣∣ =W (x0j )
−1
∣∣ω0

j − µ̂n,ω(Xnear
j (re))

∣∣ ,
from (41) we get∣∣∣∣ µ̂n,ω

W
(Xnear

j (re))− a0j

∣∣∣∣ ≤ (er
2
e +
√
e2r

2
e − 1)d/2W (x0j )

−1|ω0
j − µ̂n,ω(Xnear

j (re))|+a0j
(
(er

2
e +

√
e2r

2
e − 1)d/2 − 1

)
.

We conclude the proof of (39) by noticing that h : re ∈ R+ 7→ (er
2
e +

√
e2r

2
e − 1)d/2 is convex (for all d ∈ N∗),

hence for re ≤ r we have

(er
2
e +

√
e2r

2
e − 1)d/2 ≤ h(0) +

h(r)− h(0)

r
re = 1 +

h(r)− 1

r
re .

Conclusion: Taking re = n−α with α > 0, (39) gives

E
[∣∣∣∣a0j − µ̂n,ω

W
(Xnear

j (n−α))

∣∣∣∣] ≤W (x0j )
−1E

[∣∣ω0
j − µ̂n,ω(Xnear

j (n−α))
∣∣] (1 +H(r)n−α

)
+ a0jH(r)n−α

where H(r) is defined by (40). Proposition 3.1 gives E
[∣∣ω0

j − µ̂n,ω(Xnear
j (n−α))

∣∣] ≲ s
τd/2

√
nr2e

= s
τd/2n1/2−2α .

We choose re = n−1/6 to balance the terms.
With κ = ρn√

cps
: Choosing κ = ρn√

cps
, using (38) we get for n−1/6 ≤ r

E
[∣∣∣∣a0j − µ̂n,ω

W
(Xnear

j (n−1/6))

∣∣∣∣] ≲ (W (x0j )
−1

√
sτ−d/2 + a0j

)
n−1/6 . (42)
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G Proofs related to guarantees on the prediction

We will use the following lemma to go from controls of
∥∥L ◦ Φ(µ̂n − µ0)

∥∥2
L to controls on

∥∥Φ(µ̂n − µ0)
∥∥2
L2(Rd)

.

Lemma G.1 (Control of the high frequencies). Assume that X ⊂ Rd × [umin,+∞)d. Let τ > 0. We work with

Λ(ξ) = e−
1
2 τ

2∥ξ∥2
2 . Let µ1, µ2 ∈ M(X ). Then

∥Φ(µ1 − µ2)∥2L2 ≤ e ∥L ◦ Φ(µ1 − µ2)∥2L +
2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

τddd/2

2d/2u2dmin

e−2
u2
min
τ2 .

Proof. Let T > 0. First write

∥Φ(µ1 − µ2)∥2L2 =
1

(2π)d

∫
[− 1

T , 1
T ]

d
|F [Φ(µ1 − µ2)] |2 +

1

(2π)d

∫
Rd\[− 1

T , 1
T ]

d
|F [Φ(µ1 − µ2)] |2 .

Then, remark that

1

(2π)d

∫
[− 1

T , 1
T ]

d
|F [Φ(µ1 − µ2)] |2 =

1

(2π)d

∫
[− 1

T , 1
T ]

d

Λ

Λ
|F [Φ(µ1 − µ2)] |2 ,

≤ e
dτ2

2T2
1

(2π)d

∫
[− 1

T , 1
T ]

d
Λ|F [Φ(µ1 − µ2)] |2 ,

≤ e
dτ2

2T2 ∥L ◦ Φ(µ1 − µ2)∥2L .

Concerning the high frequencies of Φ(µ1−µ2), recall that u1, . . . , ud ≥ umin for all ((t1, . . . , td), (u1, . . . , ud)) ∈ X .
Hence

1

(2π)d

∫
Rd\[− 1

T , 1
T ]

d
|F [Φ(µ1 − µ2)] |2 ≤ 2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

∫
Rd\[− 1

T , 1
T ]

d
e−u2

min∥ξ∥
2
2 dξ ,

≤ 2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

(
T

u2min

e−
u2
min
T2

)d

using ∫
R\[− 1

T , 1
T ]
e−u2

minz
2

dz = 2
1

T

∫
[1,+∞)

e−u2
min

z2

T2 dz ≤ 2
1

T

∫
[1,+∞)

ze−u2
min

z2

T2 dz =
T

u2min

e−
u2
min
T2 . (43)

So

∥Φ(µ1 − µ2)∥2L2(Rd) ≤ e
dτ2

2T2 ∥L ◦ Φ(µ1 − µ2)∥2L +
2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

(
T

u2min

e−
u2
min
T2

)d

.

Taking T = τ
√
d√
2
, we get

∥Φ(µ1 − µ2)∥2L2 ≤ e ∥L ◦ Φ(µ1 − µ2)∥2L +
2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

τddd/2

2d/2u2dmin

e−2
u2
min
τ2 .

G.1 Proof of Proposition 4.1

We do not make any assumption on the existence of dual certificates in this proof. From JW (µ̂n,ω) ≤ JW (µ0
ω),

we have ∥∥L ◦ Φ(µ̂n − µ0)
∥∥2
L ≤ 2

∥∥∥L ◦ f̂n − L ◦ Φµ̂n

∥∥∥2
L
+ 2

∥∥∥L ◦ f̂n − L ◦ Φµ0
∥∥∥2
L
,

≤ 4 ∥Γn∥2L + 4κ
∥∥µ0

ω

∥∥
TV

.

Combining this inequality with Lemma G.1, we get

∥∥Φ(µ̂n − µ0)
∥∥2
L2 ≤ e

(
4 ∥Γn∥2L + 4κ

∥∥µ0
ω

∥∥
TV

)
+

2

(2π)d
(∥µ1∥2TV + ∥µ2∥2TV)

τddd/2

2d/2u2dmin

e−2
u2
min
τ2 .
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Remark that for µ ∈ M(X ) we have
∥∥ µ
W

∥∥
TV

≤ ∥µ∥TV supX
1
W ≤ (2π)d/4(2u2max + τ2)d/4 ∥µ∥TV, and in the

same way ∥µ∥TV ≤ (2π)−d/4(2u2min + τ2)−d/4
∥∥ µ
W

∥∥
TV

. As JW (µ̂n,ω) ≤ JW (µ0
ω) implies that ∥µ̂n,ω∥TV ≤

1
2κ ∥Γn∥2L +

∥∥µ0
ω

∥∥
TV

, we deduce that

2

(2π)d
(∥µ̂n∥2TV +

∥∥µ0
∥∥2
TV

) ≤ 2

(2π)d

(
(2π)d/2(2u2max + τ2)d/2

(
1

2κ2
∥Γn∥4L + 2

∥∥µ0
ω

∥∥2
TV

)
+
∥∥µ0

∥∥2
TV

)
,

≤ (2π)−d/2(2u2max + τ2)d/2

κ2
∥Γn∥4L +

2

(2π)d

(
2

(
2u2max + τ2

2u2min + τ2

)d/2

+ 1

)∥∥µ0
∥∥2
TV

,

≤ (2π)−d/2(2u2max + τ2)d/2

κ2
∥Γn∥4L +

2

(2π)d

(
2

(
umax

umin

)d

+ 1

)∥∥µ0
∥∥2
TV

(44)

using that τ ∈ R+ 7→ 2u2
max+τ2

2u2
min+τ2 is decreasing. Hence

∥∥Φ(µ̂n − µ0)
∥∥2
L2 ≤ e

(
4 ∥Γn∥2L + 4κ(2π)−d/4(2u2min + τ2)−d/4

∥∥µ0
∥∥
TV

)
+

(
(2π)−d/2(2u2max + τ2)d/2

κ2
∥Γn∥4L +

2

(2π)d

(
2

(
umax

umin

)d

+ 1

)∥∥µ0
∥∥2
TV

)
τddd/2

2d/2u2dmin

e−2
u2
min
τ2 .

With Lemma 3.1, choosing τ =
√
2umin√
lnn

and κ = ρ2n it comes

E
[∥∥Φ(µ̂n − µ0)

∥∥2
L2

]
≤ 4eρ2n

(
1 + (2π)−d/4(

√
2umin)

−d/2

(
1 +

1

lnn

)−d/4 ∥∥µ0
∥∥
TV

)

+

(
C̃Γπ

−d/2

(
u2max +

u2min

lnn

)d/2

+ 2(2π)−d
∥∥µ0

∥∥2
TV

(
2

(
umax

umin

)d

+ 1

))
dd/2

(lnn)d/2udminn
,

≲
(lnn)d/2

n
.

G.2 Prediction with Kernel Density Estimation

Lemma G.2. With X ⊂ Rd × [umin,+∞)d, setting τ = 1
√
lnnn

1
4+d

, omitting the dependence on d we have

E
[∥∥∥L ◦ f̂n − Φµ0

∥∥∥2
L2

]
≲

(lnn)d/2

n
4

d+4ud+4
min

.

Proof. Control of
∥∥L ◦ Φµ0 − Φµ0

∥∥2
L2 : As |F

[
Φµ0

]
(ξ)|2 ≤

∥∥µ0
∥∥2
TV

e−u2
min∥ξ∥

2
2 for ξ ∈ Rd and using (43), it

comes that for T > 0,∥∥L ◦ Φµ0 − Φµ0
∥∥2
L2 =

1

(2π)d

∫
Rd

|Λ(ξ)− 1|2|F
[
Φµ0

]
(ξ)|2 dξ ,

≤ 1

(2π)d

∫
Rd\[− 1

T , 1
T ]

d
|F
[
Φµ0

]
(ξ)|2 dξ + 1

(2π)d
d2τ4

4T4

∫
[− 1

T , 1
T ]

d
|F
[
Φµ0

]
(ξ)|2 dξ ,

≤
∥∥µ0

∥∥2
TV

(2π)d

(
Td

u2dmin

e−
du2

min
T2 +

2d

Td

τ4d2

4T4

)
,

where we used that for ξ ∈ Rd, |Λ(ξ)− 1|2 = |e− τ2

2 ∥ξ∥2
2 − 1| ≤ 1 and

|Λ(ξ)− 1|2 ≤ |e−
dτ2

2T2 − 1| ≤ d2τ4

4T4
∀ ξ ∈

[
− 1

T
,
1

T

]d
.

Control of E
[∥∥∥L ◦ f̂n − Φµ0

∥∥∥2
L2

]
: Using Lemma 3.1, we have

E
[∥∥∥L ◦ f̂n − Φµ0

∥∥∥2
L2

]
≤ 2ρ2n + 2

∥∥L ◦ Φµ0 − Φµ0
∥∥2
L2 ≤ 8

(2π)d/2τdn
+

2
∥∥µ0

∥∥2
TV

(2π)d

(
Td

u2dmin

e−
du2

min
T2 +

2d

Td

τ4d2

4T4

)
.
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To balance these terms, we choose T = umin

√
d√

lnn
and τ = 1

√
lnnn

1
4+d

. It comes

E
[∥∥∥L ◦ f̂n − Φµ0

∥∥∥2
L2

]
≤ 8(lnn)d/2

(2π)d/2n
4

d+4

+
2
∥∥µ0

∥∥2
TV

(2π)d

(
dd/2

udmin(lnn)
d/2n

+
2d(lnn)d/2

4dd/2ud+4
minn

4
d+4

)
.

G.3 Proof of Theorem 4.1

Equation (28) gives ∥∥L ◦ Φ(µ̂n − µ0)
∥∥
L ≤ 2 ∥Γn∥L + 2κ ∥p∥L

from which we deduce, using Lemma 3.1 and ∥p∥L ≤ √
cps, that

E
[∥∥L ◦ Φ(µ̂n − µ0)

∥∥2
L

]
≤ 4(ρn + κ

√
cps)

2 .

To go from a control of E
[∥∥L ◦ Φ(µ̂n − µ0)

∥∥2
L

]
to a bound on E

[∥∥Φµ̂n − Φµ0
∥∥2
L2(Rd)

]
, we use (44) with Lemmas

G.1 and 3.1. We get

E
[∥∥Φµ̂n − Φµ0

∥∥2
L2(Rd)

]
≤ eE

[∥∥L ◦ Φ(µ̂n − µ0)
∥∥2
L

]
+

2

(2π)d

(
E
[
∥µ̂n∥2TV

]
+
∥∥µ0

∥∥2
TV

) τddd/2

2d/2u2dmin

e−2
u2
min
τ2 ,

≤ 4e(ρn + κ
√
cps)

2

+

(
(2π)d/2(2u2max + τ2)d/2C̃Γρ

4
n

κ2
+ 2

(
2

(
umax

umin

)d

+ 1

)∥∥µ0
∥∥2
TV

)
(2π)−dτddd/2

2d/2u2dmin

e−2
u2
min
τ2 ,

≤ 4e(ρn + κ
√
cps)

2

+

(
4

(
u2max

u2min

+
1

lnn

)d/2

C̃Γ
(lnn)d/2ρ2n

nκ2
+ 2

(
2

(
umax

umin

)d

+ 1

)∥∥µ0
∥∥2
TV

)
(2π)−ddd/2

udmin(lnn)
d/2n

.

With the choice κ = ρn√
cp
, it comes

E
[∥∥Φµ̂n − Φµ0

∥∥2
L2(Rd)

]
≤ 4eρ2n(1 +

√
s)2

+

(
4

(
u2max

u2min

+
1

lnn

)d/2

C̃Γcp
(lnn)d/2

n
+ 2

∥∥µ0
∥∥2
TV

(
2

(
umax

umin

)d

+ 1

))
(2π)−ddd/2

udmin(lnn)
d/2n

.

This concludes the proof of Theorem 4.1. With the choice κ = ρn√
cps

, we get

E
[∥∥Φµ̂n − Φµ0

∥∥2
L2(Rd)

]
≤ 16eρ2n +

(
4

(
u2max

u2min

+
1

lnn

)d/2

C̃Γcp
s(lnn)d/2

n
+ 2

∥∥µ0
∥∥2
TV

(
2

(
umax

umin

)d

+ 1

))
(2π)−ddd/2

udmin(lnn)
d/2n

,

≲

(
s

n(lnn)d/2
+ 1

)
(lnn)d/2

n
(45)

keeping only the dependence on n and s.

H Properties of the Fisher-Rao metric

We present properties associated with the Fisher-Rao metric g, defined at point x ∈ Rd × [umin,+∞)d by
gx = ∇1∇2Knorm(x, x) (see also (20)). Note that this metric depends on the smoothing parameter τ > 0
through Knorm. We recall the definition of the Riemannian norm: for v ∈ R2d and x ∈ Rd × [umin,+∞)d, we

define ∥v∥x =
√
vT gxv.

H.1 Christoffel symbols

The non-zero Christoffel symbols associated with g are

Γtk
uktk = Γtk

tkuk
=

−2uk
2u2k + τ2

,

Γuk
tktk =

1

uk
,

Γuk
ukuk

=
τ2 − 2u2k

uk(2u2k + τ2)
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with k = 1, . . . , d (see [Giard, 2025, Section I.1]). We define

Γtk =

(Γtk
tltm)1≤l,m≤d (Γtk

tlum
)1≤l,m≤d

(Γtk
ultm)1≤l,m≤d (Γtk

ulum
)1≤l,m≤d

 and Γuk =

(Γuk
tltm)1≤l,m≤d (Γuk

tlum
)1≤l,m≤d

(Γuk
ultm)1≤l,m≤d (Γuk

ulum
)1≤l,m≤d

 . (46)

H.2 Geodesics and geodesic distance

The next lemmas provide the parametrization of the geodesics associated with the Fisher-Rao metric. We denote
γ̃ a geodesic parametrized by arc length connecting the points x = γ̃(0), x′ = γ̃(l) ∈ Rd × [umin,+∞)d. The
parameter l is the geodesic distance between x and x′, denoted by dg(x, x

′). We also denote γ : y ∈ [0, 1] 7→ γ̃(ly)
(it is the geodesic such that x = γ(0), x′ = γ(1)) and γ̇ its derivative.

We do not use the formula of the geodesic distance dg in this paper, but we give it in the next lemmas for
information.

Lemma H.1 (Geodesics of the Poincaré half-plane model). The Poincaré half-plane is {x = (t, u) ∈ R×R∗
+},

on which we consider the metric defined by hx =

 1
u2 0

0 1
u2

 for all x = (t, u) ∈ R× R∗
+. The associated norm

is defined by ∥v∥x =
√
vT hxv for v ∈ R2.

The Poincaré geodesics are circular arcs whose origin is on the axis {u = 0} and straight vertical lines
(parallel to {t = 0}).

A Poincaré geodesic parametrized by arc-length, denoted by h̃ = (h̃t, h̃u), is of the form

h̃ : y ∈ [0, l] 7→
(
tanh(C2 + y)

C1
+ C3,

1

cosh(C2 + y)|C1|

)
(semicircle) or

h̃ : y ∈ [0, l] 7→ (C3, |C1|ey) or h̃ : y ∈ [0, l] 7→ (C3, |C1|e−y)

(straight line), where C1 ∈ R∗, C2, C3 ∈ R, l ∈ R+.
Moreover, writing dh the Poincaré distance,

dh(x, x
′) = ln

(√
(t− t′)2 + (u+ u′)2 +

√
(t− t′)2 + (u− u′)2√

(t− t′)2 + (u+ u′)2 −
√
(t− t′)2 + (u− u′)2

)
∀x, x′ ∈ R× R∗

+ .

Proof. The fact that the Poincaré geodesics are semicircles whose origin is on the axis {u = 0} and straight
lines parallel to {t = 0} is well-known (see for instance [Stahl, 1993, Theorem 4.2.1]). The formula for dh can
be found in [Beardon, 1983, Theorem 7.2.1].

We can check that the parametrizations given for the geodesics verify the geodesic equations
(
˙̃
ht)

2+(
˙̃
hu)

2

h̃2
u

= 1

¨̃
ht − 2

˙̃
ht

˙̃
hu

h̃u
= 0

¨̃
hu − (

˙̃
hu)

2

h̃u
+ (

˙̃
ht)

2

h̃u
= 0

,

as done in [Giard, 2025, Section I.2]. We found all the geodesics, because all the portions of Poincaré semicircles
and straight lines can be obtained with appropriate choices of C1, C2, C3, l.

Lemma H.2 (Geodesics for d = 1). Let x, x′ ∈ R× [umin,+∞).

• If t = t′, the geodesic is of the form

γ̃(y) =

(
c3,

√
c21
2
e
√
8y − τ2

2

)
∀ y ∈ [0, l] or γ̃(y) =

(
c3,

√
c21
2
e−

√
8y − τ2

2

)
∀ y ∈ [0, l] (47)

where c1, c3 ∈ R. It is a portion of a straight line parallel to {t = 0}.

• If t ̸= t′, the geodesic is of the form

γ̃(y) =

c3 + √
2 tanh

(
c2
2 +

√
2y
)

2c1
,

√
−τ

2

2
+

1− tanh2
(
c2
2 +

√
2y
)

2c21

 ∀ y ∈ [0, l] (48)
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where c1 ̸= 0, c2, c3 ∈ R. It is a portion of a semicircle with center (c3, 0) and radius√
1

2c21
− τ2

2
=

√
1

4

(
−(t− t′)2 + u2 − u′2

t′ − t

)2

+ u2 . (49)

Moreover, the Fisher-Rao distance between x and x′ is

dg(x, x
′) =

√
2 ln


√
(t− t′)2 +

(√
u2 + τ2

2 −
√
u′2 + τ2

2

)2

+

√
(t− t′)2 +

(√
u2 + τ2

2 +
√
u′2 + τ2

2

)2

√
2(2u2 + τ2)1/4(2u′2 + τ2)1/4

 .

Proof. Link with the Poincaré half-plane model: Recall that the variational formulation of a (Fisher-Rao) geodesic
γ = (γt, γu) connecting x, x

′ is

inf
γ(0)=x,γ(1)=x′

∫ 1

0

√
γ̇t(y)2

1

2γu(y)2 + τ2
+ γ̇u(y)2

2γu(y)2

(2γu(y)2 + τ2)2
dy .

We use the change of variable h = (ht, hu) =

(
γt,
√
γ2u + τ2

2

)
. Noticing that (ḣu)

2 = γ̇u(y)
2γu(y)

2

γ2
u+

τ2

2

, it comes that

the variational formulation is equivalent to the problem

inf

{
1√
2

∫ 1

0

√
(ḣt(y))2

1

hu(y)2
+ (ḣu(y))2

1

hu(y)2
dy : h(0) =

(
t,

√
u2 +

τ2

2

)
, h(1) =

(
t′,

√
u′2 +

τ2

2

)}
,

and we recognize the Poincaré metric tensor (dt
2+du2

u2 ) in this formulation. So h is the geodesic for the Poincaré

half-plane metric connecting

(
t,
√
u2 + τ2

2

)
and

(
t′,
√
u′2 + τ2

2

)
.

Geodesic distance: In particular, using the formula for dh in Lemma H.1, we have

dg(x, x
′) =

1√
2
dh

((
t,

√
u2 +

τ2

2

)
,

(
t′,

√
u′2 +

τ2

2

))
,

=
1√
2
ln


√
(t− t′)2 +

(√
u2 + τ2

2 +
√
u′2 + τ2

2

)2

+

√
(t− t′)2 +

(√
u2 + τ2

2 −
√
u′2 + τ2

2

)2

√
(t− t′)2 +

(√
u2 + τ2

2 +
√
u′2 + τ2

2

)2

−

√
(t− t′)2 +

(√
u2 + τ2

2 −
√
u′2 + τ2

2

)2

 ,

=
√
2 ln


√
(t− t′)2 +

(√
u2 + τ2

2 −
√
u′2 + τ2

2

)2

+

√
(t− t′)2 +

(√
u2 + τ2

2 +
√
u′2 + τ2

2

)2

√
2(2u2 + τ2)1/4(2u′2 + τ2)1/4

 .

Parametrization by arc-length: We saw that

(
γt,
√
γ2u + τ2

2

)
is a geodesic for the Poincaré half-plane model.

Lemma H.1 gives its parametrization by arc-length, h̃. For the h-norm,
∥∥∥ ˙̃ht(y), ˙̃hu(y)∥∥∥

h̃(y)
= 1. We deduce

that for the g-norm, writing g(y) =

(
h̃t(y),

√
h̃u(y)2 − τ2

2

)
, we have ∥ġt(y), ġu(y)∥g(y) = 1√

2
. So defining

γ̃(y) = g(
√
2y), it comes that

∥∥ ˙̃γt(y), ˙̃γu(y)∥∥γ(y) = 1 for the g-norm: γ̃ is a geodesic parametrized by arc-length.

The geodesics we provide are of this form.
Radius of the semicircle connecting x and x′: The parametrization of the semicircle gives

(γ̃t − c3)
2 + γ̃2u =

1

2c21
− τ2

2

which is the square of the radius of the semicircle. We also have

1

2c21
− τ2

2
= (t− c3)

2 + u2 = (t′ − c3)
2 + u′2 ,
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from which we deduce that c3 = t′2+u′2−(t2+u2)
2(t′−t) along with

1

2c21
− τ2

2
=

1

4

(
−(t− t′)2 + u2 − u′2

t′ − t

)2

+ u2.

We can extend this result to higher dimensions. By abuse of notation, dg(xk, x
′
k) will refer to the Fisher-Rao

distance in dimension 1 between xk and x′k, for all k ∈ {1, . . . , d}. The notation gxk
follows the same principle.

Lemma H.3 (Geodesics in dimension d ≥ 1). Let x, x′ ∈ Rd× [umin,+∞)d. For k = 1, . . . , d, we denote γ̄k the
geodesic in dimension 1, parametrized by arc length connecting xk = (tk, uk) and x′k = (t′k, u

′
k). The geodesic

connecting x and x′ is of the form

γ̃ = (γ̃t1 , . . . , γ̃td , γ̃u1
, . . . , γ̃ud

) where (γ̃tk(y), γ̃uk
(y)) = γ̄k(

√
gky) with gk ≥ 0 and

d∑
i=1

gi = 1 .

Moreover,

dg(x, x
′) =

√√√√ d∑
k=1

dg(xk, x′k)
2 .

Proof. For all k ∈ {1, . . . , d}, we denote dk = dg(xk, x
′
k)

2 and γ̃k(y) = γ̄k

( √
dk√∑
j dj

y

)
. Then, for all v ∈ R2d

and x ∈ Rd × [umin,+∞)d, we have

∥v∥2x = vT gxv =

d∑
k=1

(vk, vk+d)gxk
(vk, vk+d)

T ,

where (vk, vk+d) represents the k-th component of v in Rd× [umin,+∞)d. Using this, the geodesic γ̃ connecting
x and x′ can be expressed as:

γ̃ = (γ̃t1 , . . . , γ̃td , γ̃u1 , . . . , γ̃ud
),

where each (γ̃tk , γ̃uk
) corresponds to the geodesic γ̃k in dimension 1 connecting xk = (tk, uk) and x

′
k = (t′k, u

′
k).

This ensures that γ̃ is the geodesic connecting x and x′ in Rd × [umin,+∞)d.

H.3 Compatibility with the semi-distance

H.3.1 Proof of Lemma 5.2

Let r > 0 and x0 ∈ Rd × [umin,+∞)d. Let γ be a geodesic between x0 = γ(0) and x = γ(1) ∈ Rd × [umin,+∞)d

for the metric g.

Lower bound on the variance We write γ = (γt1 , . . . , γtd , γu1 , . . . , γud
). Recall that (γtk , γuk

) is a portion
of a straight line parallel to {tk = 0} or of a semicircle with center on {uk = 0}. As x0, x1 ∈ Rd × [umin,+∞)d,
we deduce that umin ≤ γuk

(y) for all k = 1, . . . , d, y ∈ [0, 1].

The function y ∈ [0, 1] 7→ d (x0, γ(y)) is non-decreasing We can reduce the problem to the case d = 1.
Indeed, for each k ∈ {1, . . . , d}, γk := (γtk , γuk

) is the geodesic in dimension 1 connecting x0,k = γk(0) and

xk = γk(1) (see Lemma H.3). Furthermore, d (x0, γ(y))2 =
∑d

k=1 d (x0,k, γk(y))2, where, by abuse of notation,
d (x0,k, γk(y)) denotes the semi-distance in dimension 1 between x0,k and γk(y). Hence, if the function y ∈
[0, 1] 7→ d (x0,k, γk(y)) is increasing for all k, then y ∈ [0, 1] 7→ d (x0, γ(y)) is also increasing.

Until the end of the proof, we therefore concentrate our attention on the case d = 1. Let x0, x ∈ R ×
[umin,+∞), and let γ and γ̃ be the geodesic connecting x0 and x, parametrized by [0, 1] and by arc-length,
respectively. Proving that y ∈ [0, 1] 7→ d (x0, γ(y)) is increasing is equivalent to proving that h : y ∈ [0, l] 7→
d (x0, γ̃(y))2 is increasing, where l = dg(x0, x). We will consider alternatively the cases where the geodesic γ
is a straight line and a semicircle. It suffices to show that h′ ≥ 0 in both cases.
Proof for straight lines, d = 1: See [Giard, 2025, Section II.2]. Using the form of the geodesic given in Lemma
H.2, we can show that if γ̃ is a straight line,

h(y) = ln(cosh(
√
2y)) .

We obtain this formula by deducing from γ̃(0) = (t0, u0) in (47) that c21 = 2u20 + τ2 (the two formulas of (47)
give the same result). This function is non-decreasing on R+.
Proof for semicircles, d = 1: See [Giard, 2025, Section II.1]. If γ̃ is a semicircle, then

h(y) = ln

(
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
)

2 cosh
(
c2
2

)
cosh

(
c2
2 +

√
2y
) )

+
sinh2

(√
2y
)

cosh2
(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
) .
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We obtain this formula by deducing from γ̃(0) = (t0, u0) in (48) that c3 = t0 −
√
2 tanh( c2

2 )
2c1

and c1 =

± 1√
τ2+2u2

0 cosh( c2
2 )

. Let y ≥ 0. We have h(y) = A(y) +B(y) with

A(y) =
sinh2

(√
2y
)

cosh2
(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
) .

and

B(y) = ln

(
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
)

2 cosh
(
c2
2

)
cosh

(
c2
2 +

√
2y
) )

.

Then,

A′(y) =

√
2 sinh(

√
2y)
(
cosh(c2 +

√
2y) + cosh(

√
2y)(2 + cosh(c2))

)(
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
))2 ≥ 0

and

B′(y) =

√
2 sinh

(
c2
2 +

√
2y
) (

cosh2
(
c2
2 +

√
2y
)
− cosh2

(
c2
2

))
cosh

(
c2
2 +

√
2y
) (

cosh2
(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
)) .

If c2 ≥ 0, then as y ≥ 0, cosh2
(
c2
2 +

√
2y
)
≥ cosh2

(
c2
2

)
so B′ ≥ 0, hence d (x0, γ̃(y))2 is increasing on R+. We

now deal with the case c2 < 0. Remark that B′(y) > 0 if and only if y /∈
[
−c2
2
√
2
, −c2√

2

]
. We want to show that

A′ +B′ ≥ 0 on the interval
[
−c2
2
√
2
, −c2√

2

]
. First, using that for y ∈

[
−c2
2
√
2
, −c2√

2

]
, we have

cosh2
(c2
2

+
√
2y
)
≤ cosh2

(c2
2

)
, sinh(

√
2y) ≥ sinh

(
−c2
2

)
,

cosh(
√
2y) ≥ cosh

(c2
2

)
and 2 + cosh(c2) ≥ 2 cosh2

(c2
2

)
,

we obtain a lower bound for A′ on
[
−c2
2
√
2
, −c2√

2

]
:

A′(y) ≥
√
2 sinh

(−c2
2

) (
cosh(c2 +

√
2y) + cosh(

√
2y)(2 + cosh(c2))

)
2 cosh2

(
c2
2

) (
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
)) ,

≥
√
2 sinh

(−c2
2

)
cosh

(
c2
2

)
(2 + cosh(c2))

2 cosh2
(
c2
2

) (
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
)) ,

≥
√
2 sinh

(−c2
2

)
cosh

(
c2
2

)
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
) .

It follows that

A′(y)+B′(y) ≥
√
2 cosh

(
c2
2 +

√
2y
)
sinh

(−c2
2

)
cosh

(
c2
2

)
+
√
2 sinh

(
c2
2 +

√
2y
) (

cosh2
(
c2
2 +

√
2y
)
− cosh2

(
c2
2

))(
cosh2

(
c2
2

)
+ cosh2

(
c2
2 +

√
2y
))

cosh
(
c2
2 +

√
2y
) .

The positivity of A′ +B′ follows, since

cosh
(c2
2

+
√
2y
)
sinh

(
−c2
2

)
cosh

(c2
2

)
+ sinh

(c2
2

+
√
2y
)(

cosh2
(c2
2

+
√
2y
)
− cosh2

(c2
2

))
=

1

4

(
sinh

(
3c2
2

+ 3
√
2y

)
− 2 sinh

(
3c2
2

+
√
2y

)
− sinh

(c2
2

+
√
2y
))

,

≥ 1

2

(
sinh

(c2
2

+
√
2y
)
− sinh

(
3c2
2

+
√
2y

))
,

≥ 0 ,

where we used

sinh

(
3c2
2

+ 3
√
2y

)
= sinh

(c2
2

+
√
2y
)
cosh(c2 + 2

√
2y) + cosh

(c2
2

+
√
2y
)
sinh(c2 + 2

√
2y) ,

≥ sinh
(c2
2

+
√
2y
)
+ sinh(c2 + 2

√
2y) ,
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sinh
(
c2 + 2

√
2y
)
= 2 sinh

(c2
2

+
√
2y
)
cosh

(c2
2

+
√
2y
)
≥ 2 sinh

(c2
2

+
√
2y
)

and c2 < 0 together with the fact that sinh is increasing.

We have just proved the following statement: if d (x0, x) ≤ r, then

∀ y ∈ [0, 1], γ(y) ∈ {x′ ∈ Rd × [umin,+∞)d : d (x0, x′) ≤ r} .

This concludes the proof of Lemma 5.2.

H.3.2 Proof of Lemma 5.3

Let r,∆ > 0. Assume that X ⊂ Rd × [umin, umax]
d. The semi-distance d is defined by (11).

Control of the variance of the geodesics: Let x0j ∈ X . For x ∈ Bd (x
0
j , r)∩Rd× [umin, umax]

d, we have |tk−t0j,k| ≤
r
√
2u2max + τ2 for all k ∈ {1, . . . , d}. We deduce that

Bd (x
0
j , r) ∩ (Rd × [umin, umax]

d) ⊂

(
d×

k=1

[t0j,k ± r
√
2u2max + τ2]

)
× [umin, umax]

d

where×d

k=1
denotes the d-ary Cartesian product.

For any k ∈ {1, . . . , d}, the semicircle γk = (γtk , γuk
) (geodesic in dimension 1) connecting the points

(t0j,k − r
√
2u2max + τ2, umax) and (t0j,k + r

√
2u2max + τ2, umax) satisfies γuk

(y)2 ≤ u2max + r2(2u2max + τ2). This

follows because the square of the radius of the semicircle is u2max + r2(2u2max + τ2) (see Lemma H.2). This is
the geodesic achieving the largest variance, i.e. all the portions of semicircles between points of the rectangle
[t0j,k − r

√
2u2max + τ2 , t0j,k + r

√
2u2max + τ2] × [umin, umax] are below this geodesic. To see why it is the case,

one can note that 2 geodesics in our model have at most 1 intersection point, or their union is a geodesic. So
a geodesic of [t0j,k − r

√
2u2max + τ2 , t0j,k + r

√
2u2max + τ2] × [umin, umax] cannot cross two times the semicircle

connecting (t0j,k − r
√
2u2max + τ2, umax) and (t0j,k + r

√
2u2max + τ2, umax).

Using Lemma H.3, we deduce that

G(Bd (x
0
j , r) ∩ (Rd × [umin, umax]

d)) ⊂ Rd × [umin,
√
u2max + r2(2u2max + τ2)]d .

Pseudo-quasi triangle inequality: Let x, x′, x̃ ∈ Rd × [umin, ũmax]
d, where ũmax is not necessarily equal to umax.

We have
u2k + u′2k + τ2√

2u2k + τ2
√
2u′2k + τ2

≤ 2ũ2max + τ2

2u2min + τ2
≤ ũ2max

u2min

using that τ ∈ R+ 7→ 2ũ2
max+τ2

2u2
min+τ2 is decreasing (because umin ≤ ũmax). Moreover, using the triangle inequality for

the ℓ2-norm in dimension d and that u2k + ũ
2
k + τ

2 and u′2k + ũ2k + τ
2 are smaller than

ũ2
max

u2
min

(u2k +u
′2
k + τ2), we get√√√√ d∑

k=1

(tk − t′k)
2

u2k + u′2k + τ2
≤

√√√√ d∑
k=1

(tk − t̃k)2

u2k + u′2k + τ2
+

√√√√ d∑
k=1

(t′k − t̃k)2

u2k + u′2k + τ2
,

≤ ũmax

umin


√√√√ d∑

k=1

(tk − t̃k)2

u2k + ũ2k + τ2
+

√√√√ d∑
k=1

(t′k − t̃k)2

u′2k + ũ2k + τ2

 ,

≤ ũmax

umin
(d (x, x̃) + d (x′, x̃)) .

Hence

d (x, x′) ≤ ũmax

umin
(d (x, x̃) + d (x′, x̃)) +

√
d ln

(
ũ2max

u2min

)
.

So d (x, x̃) ≥ umin

ũmax

(
d (x, x′)−

√
d ln

(
ũ2
max

u2
min

))
− d (x′, x̃).

Conclusion: Let x0j , x
0
i ∈ X . Firstly, replacing ũmax by umax in the pseudo-quasi triangle inequality, for x̃ ∈

Bd (x
0
j ,∆) ∩ X , if umin

umax

(
d (x0i , x

0
j )−

√
d ln

(
u2
max

u2
min

))
− d (x̃, x0j ) > ∆ we have d (x0i , x̃) > ∆. Note also that

d (x̃, x0j ) < ∆, hence it suffices that d (x0j , x
0
i ) ≥ 2umax

umin
∆+

√
d ln

(
u2
max

u2
min

)
for the open balls B̊d (x

0
j ,∆) ∩X to be

disjoint.

38



Secondly, for x̃ ∈ G(Bd (x
0
j , r) ∩ X ), taking ũmax =

√
u2max + r2(2u2max + τ2) we have d (x0i , x̃) ≥ ∆ as soon

as umin

ũmax

(
d (x0i , x

0
j )−

√
d ln

(
ũ2
max

u2
min

))
≥ ∆ + r. We used that G(Bd (xj , r)) ⊂ Bd (xj , r), so d (x̃, xj) ≤ r (see

Lemma 5.2). This condition can be rewritten as d (x0i , x
0
j ) ≥ ũmax

umin
(∆ + r) +

√
d ln

(
u2
max

u2
min

)
. We proved that if

min
i ̸=j

d (x0i , x
0
j ) ≥ max

{√
u2max + r2(2u2max + τ2)

umin
(∆ + r) , 2

umax

umin
∆

}
+

√
d ln

(
u2max

u2min

)
=: ∆τ ,

then the open balls B̊d (x
0
j ,∆) ∩ X are disjoint, and for all j ̸= i, the ball G(Bd (x

0
j , r) ∩ X ) does not intersect

B̊d (x
0
i ,∆).

H.3.3 Local control with the semi-distance

Lemma H.4 (Local control of dg with the semi-distance, lower bound, d = 1). Let x0, x ∈ R× [umin,+∞). If
d (x0, x) ≤ r, then

dg(x0, x)
2 ≥ d (x0, x)2

ε̃3

for ε̃3 ≥ 1 + 1
R(r) with R(r) defined by (57) below.

Proof. Let x0 = (t0, u0), x = (t, u) ∈ R × [umin,+∞) such that re := d (x0, x) ≤ r. Without loss of generality,
we assume that u0 ≤ u.

We examine the case where u is “far” from u0, and then the case where t is far from t0 and u, u0 are close.

Bounds on Bd (x0, r), exhibition of 2 cases: Since d (x0, x)2 = (t0−t)2

u2+u2
0+τ2 + ln

(
u2+u2

0+τ2

√
2u2+τ2

√
2u2

0+τ

)
= r2e , we have

that for all 0 < w < 1,
(t0 − t)2

u2 + u20 + τ2
≥ wr2e (50)

(first case) or
u2 + u20 + τ2√

2u2 + τ2
√
2u20 + τ2

≥ e(1−w)r2e

(second case). The second case can be rewritten as√
u2 +

τ2

2
≥
√
u20 +

τ2

2
(e(1−w)r2e +

√
e2(1−w)r2e − 1) (51)

(see (34)).
Assuming the first case holds and the second case does not: Provided that (50) holds, then t0 ̸= t and the
geodesic connecting x and x0 is a semicircle (see Lemma H.2). We suppose additionally that we are not in
the second case, namely that√

u2 +
τ2

2
≤
√
u20 +

τ2

2
(e(1−w)r2e +

√
e2(1−w)r2e − 1) .

In particular, using (35) we have
|u20 − u2|

u20 + u2 + τ2
≤
√
e2(1−w)r2e − 1 . (52)

Denoting l the arc length (i.e. l = dg(x, x0)), using (48) and (49) we have

| tanh( c22 +
√
2l)− tanh( c22 )|√
2

= |c1||t− t0| (53)

for some c2 and c1 verifying

1

2c21
− τ2

2
=

1

4

(
−(t− t0)

2 + u20 − u2

t− t0

)2

+ u20 .
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According to (50) and (52),

1

|c1||t− t0|
=

√
1

2

(
−1 +

u20 − u2

(t− t0)2

)2

+
2u20 + τ2

(t− t0)2
,

=

√
1

2
+

1

2

(u20 − u2)2

(t− t0)4
+
u20 + u2 + τ2

(t− t0)2
, (54)

≤

√
1

2
+
e2(1−w)r2e − 1

2w2r4e
+

1

wr2e
,

≤ 1√
wre

√
r2

2
+

1− w

w

e2r2 − 1

2r2
+ 1

where we used that y 7→ e2y − 1 is convex along with (1− w)r2e ≤ r2, and wr2e ≤ r2.
So as tanh is 1-Lipschitz,

dg(x, x0) = l ≥ |c1||t− t0| ,

≥ re
√
w√

1 + r2

2 + 1−w
w

e2r2−1
2r2

. (55)

Assuming the second case holds: If (51) holds, we must consider the 2 possible geodesics (c.f . Lemma H.2).

If t = t0, the geodesic is of the form

(
c3,

√
− τ2

2 +
c21
2 e

√
8y

)
. As γ̃(0) = x0 we have c21 = 2u20 + τ2. Since

γ̃u(l) = u, we have e
√
8l = 2u2+τ2

2u2
0+τ2 from which we deduce that

dg(x0, x) = l =
1√
2
ln


√
u2 + τ2

2√
u20 +

τ2

2

 ≥ 1√
2
ln
(
e(1−w)r2e +

√
e2(1−w)r2e − 1

)
.

If t ̸= t0, γ̃u is of the form

√
− τ2

2 + 1

2 cosh2 ( c2
2 +

√
2y)c21

. Using that γ̃u(0) = u0 and γ̃u(l) = u, we get

cosh2 ( c2
2 )

cosh2 ( c2
2 +

√
2l)

= 2u2+τ2

2u2
0+τ2 , from which we deduce using (51) that

cosh
(
c2
2

)
cosh

(
c2
2 +

√
2l
) ≥ e(1−w)r2e +

√
e2(1−w)r2e − 1 .

As
cosh

(
c2
2

)
cosh

(
c2
2 +

√
2l
) = cosh(

√
2l)−

sinh
(
c2
2

)
sinh(

√
2l)

cosh
(
c2
2

) ≤ cosh(
√
2l) + | sinh(

√
2l)| = e|

√
2l| ,

it comes that e
√
2l ≥ e(1−w)r2e +

√
e2(1−w)r2e − 1 leading again to

l ≥ 1√
2
ln
(
e(1−w)r2e +

√
e2(1−w)r2e − 1

)
.

As 1√
2
ln
(
ey

2

+
√
e2y2 − 1

)
≥ y for all y ∈ R, we get for this second case

dg(x, x0) ≥
√
1− wre . (56)

Conclusion: We now choose 0 < w < 1 depending only on r to balance the bounds of the two cases (namely,
(55) and (56)). Writing X = 1−w

w , we want to pick w such that

√
1− w =

√
w√

1 + r2

2 + 1−w
w

e2r2−1
2r2

⇐⇒ e2r
2 − 1

2r2
X2 +

(
1 +

r2

2

)
X − 1 = 0 .
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This polynomial has exactly 1 positive root

R(r) =
−
(
1 + r2

2

)
+

√(
1 + r2

2

)2
+ 2 e2r2−1

r2

e2r2−1
r2

. (57)

We can take wr = 1
R(r)+1 . Then

dg(x0, x) ≥
√
1− wrre =

√
R(r)

1 +R(r)
re .

Lemma H.5 (Local control of dg with the semi-distance, lower bound, d ≥ 1). Let x0, x ∈ Rd × [umin,+∞)d.
If d (x0, x) ≤ r, then

dg(x0, x)
2 ≥ d (x0, x)2

ε̃3

for ε̃3 ≥ 1 + 1
R(r) with R(r) defined by (57).

Proof. Let x0, x ∈ Rd × [umin,+∞)d such that d (x0, x) ≤ r. For all k ∈ {1, . . . , d}, d (x0,k, xk) ≤ r. Lemma H.4

gives dg(xk, x0,k)
2 ≥ d (x0,k,xk)

2

1+ 1
R(r)

. We conclude using that

dg(x, x0)
2 =

d∑
k=1

dg(xk, x0,k)
2 ≥

d∑
k=1

d (x0,k, xk)2

1 + 1
R(r)

=
d (x0, x)2

1 + 1
R(r)

.

Lemma H.6 (Local control of dg with the semi-distance, upper bound, d = 1). Let x, x0 ∈ R× [umin,+∞). If
d (x, x0) <

√
2, then dg(x, x0)

2 ≤ F (d (x, x0)) (F defined by (62) below).

Proof. Let x, x0 ∈ R × [umin,+∞). Without loss of generality, we can assume that u0 ≤ u. We denote
l = dg(x, x0) and re = d (x, x0). The proof is close to that of Lemma H.4.
First case: If t ̸= t0, the geodesic connecting x and x0 is a semicircle. Recalling (53) and (54), we have

| tanh( c22 +
√
2l)− tanh( c22 )|√
2|c1|

= |t− t0|

for some c2 and c1 verifying

1

|c1||t− t0|
=

√
1

2
+

1

2

(u20 − u2)2

(t− t0)4
+
u20 + u2 + τ2

(t− t0)2
,

≥ 1

re
.

Hence ∣∣∣tanh(c2
2

+
√
2l
)
− tanh

(c2
2

)∣∣∣ ≤ √
2re . (58)

Furthermore, using
u2
0+u2+τ2

√
2u2+τ2

√
2u2

0+τ2
≤ er

2
e together with (34) and recalling that u0 ≤ u, we have

1 ≤
cosh

(
c2
2

)
cosh

(
c2
2 +

√
2l
) =

√
2u2 + τ2

2u20 + τ2
≤ er

2
e +

√
e2r

2
e − 1 . (59)

Using (59) along with the equality cosh(A+B)
cosh(A) = cosh(B) + tanh(A) sinh(B), we deduce that

cosh
(√

2l
)
+ tanh

(c2
2

)
sinh

(√
2l
)
≤ 1

and that
cosh

(√
2l
)
− tanh

(c2
2

+
√
2l
)
sinh

(√
2l
)
≤ er

2
e +

√
e2r

2
e − 1 .

It comes
2 cosh

(√
2l
)
+
(
tanh

(c2
2

)
− tanh

(c2
2

+
√
2l
))

sinh
(√

2l
)
≤ er

2
e +

√
e2r

2
e − 1 + 1 ,
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so
2 cosh

(√
2l
)
− sinh

(√
2l
)√

2re ≤ er
2
e +

√
e2r

2
e − 1 + 1

where we have used (58). As cosh ≥ 0 and sinh(
√
2l)

cosh(
√
2l)

≤ 1, we get

cosh(
√
2l)

(
1− 1√

2
re

)
≤ 1

2

(
er

2
e +

√
e2r

2
e − 1 + 1

)
.

For re <
√
2 we get

l2 ≤ 1

2
arcosh

 1
2

(
er

2
e +

√
e2r

2
e − 1 + 1

)
1− 1√

2
re

2

. (60)

Second case: If t0 = t, using (47) we get e
√
8l = 2u2+τ2

2u2
0+τ2 ≤ (er

2
e +

√
e2r

2
e − 1)2 so

l2 ≤ 1

2
ln(er

2
e +

√
e2r

2
e − 1)2 =

1

2
arcosh(er

2
e )2 . (61)

Comparison of the bounds found, conclusion: Let 0 ≤ re <
√
2. As 1− 1√

2
re ≤ 1 and

√
e2r

2
e − 1 ≥ er

2
e − 1, the

bound found for the first case (see (60)) is larger than the one found for the second case (see (61)).
So if d (x, x0) <

√
2, dg(x, x0)

2 ≤ F (d (x, x0)) with

F : y ∈ R+ 7→ 1

2
arcosh

 1
2

(
ey

2

+
√
e2y2 − 1 + 1

)
1− 1√

2
y

2

. (62)

Lemma H.7 (Local control of dg with the semi-distance, upper bound, d ≥ 1). Let x, x0 ∈ Rd × [umin,+∞)d.
If d (x, x0) <

√
2, then dg(x, x0)

2 ≤ dF (d (x, x0)) (F defined by (62)).

Proof. Let x, x0 ∈ Rd×[umin,+∞)d such that d (x, x0) = re <
√
2. As for all k = 1, . . . , d, d (xk, x0,k) ≤ d (x, x0),

by Lemma H.6 it comes that

dg(x, x0)
2 =

d∑
k=1

dg(xk, x0,k)
2

≤
d∑

k=1

F (d (xk, x0,k)) ,

≤ dF (d (x, x0))

where we used that F is non-decreasing.

H.4 Proof of Lemma 5.4

We use Lemma H.5. It comes that we can choose ε̃3 = 1+ 1

R
(

0.3025√
d

) with R defined by (57) in the appendix. We

aim to find a more interpretable parameter. Remark that r ∈ R+ 7→ e2r
2
−1

r2 is increasing, along with e2r
2
−1

r2 ≥ 2.

We deduce that for all 0 < r ≤ 0.3025, R(r) ≥
−
(
1+ 0.30252

2

)
+
√
5

e2×0.30252−1

0.30252

. So 1 + 1

R
(

0.3025√
d

) ≤ 2.84 (see [Giard, 2025,

Section III]).

I Proof of Theorem 5.2

Construction of the certificates by solving a linear system We give explicit formulas for η, ηj of
Theorem 5.2. These certificates are of the form (18). In the following, we write η = ηα,β and ηj = ηαj ,βj .
Recalling Definitions 3.2 and 3.3, we want that for all j = 1, . . . , s, ηα,β(x

0
j ) = 1 and ∇ηα,β(x0j ) = 02d. We also

want ηαj ,βj (x0j ) = 1, ηαj ,βj (x0l ) = 0 for all l ̸= j, and ∇ηαj ,βj (x0l ) = 02d.
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These constraints translate to linear systems. Writing ej the vector of size s containing a 1 at position j,
and zeros elsewhere, along with 1s =

∑s
j=1 ej , we want to solve

Υ

α
β

 =

 1s

0s2d

 =: us and Υ

αj

βj

 =

 ej

0s2d

 =: uj
s ∀ j = 1, . . . , s

where Υ =

 (Knorm(x
0
i , x

0
j ))i,j=1,...,s (∇1Knorm(x

0
i , x

0
j ))

T
i,j=1,...,s

(∇2Knorm(x
0
i , x

0
j ))i,j=1,...,s (∇1∇2Knorm(x

0
i , x

0
j ))i,j=1,...,s

 ∈ Rs(1+2d)×s(1+2d) .

(63)

The following lemma entails that these linear systems admit a solution provided that a minimal separation
condition holds.

Lemma I.1. Let {x0j}sj=1 ⊂ Rd×[umin,+∞)d. Assume that Knorm verifies Definition 5.2. If mini ̸=j d (x0i , x
0
j ) ≥ ∆,

then Υ (see (63)) is invertible.

Moreover,

α
β

 = Υ−1us and

αj

βj

 = Υ−1uj
s are well-defined and verify, for all j = 1, . . . , s,

∥α∥∞ ∨
∥∥αj

∥∥
∞ ≤ 1

1− 2h
,

max
l=1,...,s

∥βl∥x0
l
∨ max

l=1,...,s

∥∥∥βj
l

∥∥∥
x0
l

≤ 4h

and ∥α− 1s∥∞ ∨ |αj
j − 1| ∨max

l ̸=j
|αj

l | ≤
2h

1− 2h
,

(64)

where h = 1
64 min

(
ε̄0(r)
B0

, ε̄2(r)B2

)
.

The proof can be found in [Poon et al., 2023, pp. 269-270]. This proof explicitly requires to handle normalized
kernels. This motivates the introduction of W in (Pκ).

Controlling the certificates via the kernel We provide controls on the certificates we constructed in
Lemma I.1 on the far and near regions, in order to show that they are non-degenerate (Definitions 3.2 and 3.3).
To do so, we use Taylor expansions on Fisher-Rao geodesics along with bounds on the kernel stemming from
the LPC (Definition 5.2).

Lemma I.2. Let r > 0 and x0 ∈ X ⊂ Rd × [umin,+∞)d. We define

Xnear
0 (r) := {x′ ∈ X : d (x′, x0) ≤ r} .

Assume that there exists ε̄2 > 0 such that, for all x ∈ G(Xnear
0 (r)) and v ∈ R2d,

−K(02)
norm(x0, x)[v, v] ≥ ε̄2 ∥v∥2x and

∥∥∥K(02)
norm(x0, x)

∥∥∥
x
≤ B02 .

Let η : Rd × [umin,+∞)d → R be a C2 function. Then the following holds:

(i) If η(x0) = 0, ∇η(x0) = 0 and ∥D2[η](x)∥x ≤ δ for all x ∈ G(Xnear
0 (r)), then |η(x)| ≤ δdg(x, x0)

2 for all
x ∈ Xnear

0 (r).

(ii) Let a ∈ {−1, 1}. If η(x0) = a, ∇η(x0) = 0 and
∥∥∥aD2[η](x)−K

(02)
norm(x0, x)

∥∥∥
x
≤ δ for all x ∈ G(Xnear

0 (r)),

for some δ < ε̄2, then

1− B02 + δ

2
dg(x, x0)

2 ≤ aη(x) ≤ 1− ε̄2 − δ

2
dg(x, x0)

2 ∀x ∈ Xnear
0 (r) .

Proof. This proof is based on [Poon et al., 2023, Lemma 2]. We only show (ii), as the proof for (i) is similar.
Let x ∈ Xnear

0 (r). We denote by γ the geodesic for the metric g between x0 and x, parametrized between 0
and 1. We refer to Section H.2 for a description of the geodesic properties and related notations. By definition,
γ(y) ∈ G(Xnear

0 (r)) for all y ∈ [0, 1]. Hence, for all y ∈ [0, 1],∥∥∥aD2[η](γ(y))−K(02)
norm(x0, γ(y))

∥∥∥
γ(y)

≤ δ and −K(02)
norm(x0, γ(y))[γ̇(y), γ̇(y)] ≥ ε̄2 ∥γ̇(y)∥2γ(y) ,
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from which we deduce that

aD2[η](γ(y))[γ̇(y), γ̇(y)] ≤ (−ε̄2 + δ) ∥γ̇(y)∥2γ(y) .

By a Taylor expansion, we get

aη(x) = aη(x0) + a∇η(x0)T γ̇(0) +
∫ 1

0

(1− y)aD2[η](γ(y))[γ̇(y), γ̇(y)] dy ,

= 1 +

∫ 1

0

(1− y)aD2[η](γ(y))[γ̇(y), γ̇(y)] dy ,

≤ 1− (ε̄2 − δ)

∫ 1

0

(1− y) ∥γ̇(y)∥2γ(y) dy ,

= 1− ε̄2 − δ

2
dg(x, x0)

2 .

Using the same reasoning, we also have aη(x) ≥ 1− B02+δ
2 dg(x, x0)

2.

Note that we do not have (unlike in [Poon et al., 2023, Lemma 2]) the bound aη(x) ≥ −1 + ε̄2−δ
2 dg(x, x0)

2.
This is not a problem in our framework: as we work with nonnegative measures, we do not need to control the
negative part of the certificate.

Theorem I.1. Let {x0j}sj=1 ⊂ X ⊂ Rd × [umin, umax]
d. Assume that Knorm verifies Definition 5.2.

If mini ̸=j d (x0i , x
0
j ) ≥ ∆τ (defined in Lemma 5.3), then the certificates constructed in Lemma I.1 are non-

degenerate. The global certificate ηα,β is ( 78 ε̄0,
15
32 ε̄2, r)-non-degenerate and the local certificate ηαj ,βj is ( 78 ε̄0,

B02+ε̄2/16
2 , r)-

non-degenerate.

Proof. This proof is largely based on [Poon et al., 2023, pp. 270-241]. First remark that Lemmas I.1 and 5.3

hold under these assumptions. We denote h = 1
64 min

(
ε̄0(r)
B0

, ε̄2(r)B2

)
.

Control on the far region: Let x ∈ X far(r). As the open balls B̊d (x
0
i ,∆) ∩ X are disjoint (Lemma 5.3), there

exists at most one index j such that d (x, x0j ) < ∆ and for all i ̸= j, d (x, x0i ) ≥ ∆. So using bounds displayed
in Lemma I.1 (see (64)),

|ηα,β(x)| =

∣∣∣∣∣∣αjKnorm(x
0
j , x) +

∑
j ̸=i

αiKnorm(x
0
i , x) + βT

j K
(10)
norm(x

0
j , x) +

∑
j ̸=i

βT
i K

(10)
norm(x

0
i , x)

∣∣∣∣∣∣ ,
≤ ∥α∥∞

|Knorm(x
0
j , x)|+

∑
j ̸=i

|Knorm(x
0
i , x)|

+max
i

∥βi∥x0
i

∥∥∥K(10)
norm(x

0
j , x)

∥∥∥
x0
j

+
∑
j ̸=i

∥∥∥K(10)
norm(x

0
i , x)

∥∥∥
x0
i

 ,

≤ 1

1− 2h
(1− ε̄0 + h) + 4h(B10 + h) ,

≤ 1− ε̄0 − 3h

1− 2h
+ 4h(B10 + h) ,

≤ 1− ε̄0 + 3h+ 4h(B10 + h) ,

≤ 1− ε̄0 + 3
ε̄0
64

+ 4
ε̄0
64

+ 4
ε̄0
642

,

≤ 1− 7

8
ε̄0 .

We can apply the same reasoning to show that |ηαj ,βj (x)| ≤ 1− 7
8 ε̄0.

Controls on the near regions: Let x ∈ G(Xnear
j (r)). We have

D2[ηα,β ](x) = K(02)
norm(x

0
j , x)+(αj−1)K(02)

norm(x
0
j , x)+

∑
i ̸=j

αiK
(02)
norm(x

0
i , x)+[βj ]K

(12)
norm(x

0
j , x)+

∑
i ̸=j

[βi]K
(12)
norm(x

0
i , x) .

As G(Bd (x
0
j , r)∩X ) is disjoint from B̊d (x

0
i ,∆) for i ̸= j (Lemma 5.3), we have d (x, x0i ) ≥ ∆ for all i ̸= j. Using

Lemma I.1, it comes∥∥∥D2[ηα,β ](x)−K(02)
norm(x

0
j , x)

∥∥∥
x
≤ |αj − 1|B02 + ∥α∥∞ h+max

i
∥βi∥x0

i
(B12 + h) ,

≤ 2h

1− 2h
B02 +

h

1− 2h
+ 4h(B12 + h) ,

≤ ε̄2
16
.
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Using Lemma I.2 with δ = ε̄2
16 , we deduce that for all x ∈ Xnear

j (r), ηα,β(x) ≤ 1− 15
32 ε̄2dg(x, x

0
j )

2.

With the same reasoning, for all x ∈ G(Xnear
j (r)) we can obtain

∥∥∥D2[ηαj ,βj ](x)−K
(02)
norm(x0j , x)

∥∥∥
x
≤ ε̄2

16 . So

from Lemma I.2, for all x ∈ Xnear
j (r) we have |1− ηαj ,βj (x)| ≤ B02+ε̄2/16

2 dg(x, x
0
j )

2. We used that B02 ≥ ε̄2.
We also have, for i ̸= j, and x ∈ G(Xnear

i (r)),

∥∥D2[ηαj ,βj ](x)
∥∥
x
=

∥∥∥∥∥∥αj
iK

(02)
norm(x

0
i , x) +

∑
l ̸=i

αj
lK

(02)
norm(x

0
l , x) + [βj

i ]K
(12)
norm(x

0
i , x) +

∑
l ̸=i

[βj
l ]K

(12)
norm(x

0
l , x)

∥∥∥∥∥∥
x

,

≤ |αj
i |B02 +

∥∥αj
∥∥
∞ h+max

i

∥∥∥βj
i

∥∥∥
x0
i

(B12 + h) ,

≤ 2h

1− 2h
B02 +

h

1− 2h
+ 4h(B12 + h) ,

≤ ε̄2
16
.

Lemma I.2 ensures that for all x ∈ Xnear
i (r), |ηαj ,βj (x)| ≤ ε̄2

16dg(x, x
0
i )

2. This concludes the proof.

Norm of the certificates We use bounds on the norm of the certificates to get the controls in estimation
and in prediction (cp in Assumption 1). The construction of certificates presented in Lemma I.1 allows us to
obtain the bounds displayed in the following proposition.

Proposition I.1. The certificates constructed in Lemma I.1 verify, for all x ∈ Rd × [umin,+∞)d, for all
j ∈ {1, . . . , s},

ηα,β(x) = ⟨Ψδx, pα,β⟩L and ηαj ,βj (x) =
〈
Ψδx, pαj ,βj

〉
L with ∥pα,β∥L ≤

√
2s ,

∥∥pαj ,βj

∥∥
L ≤

√
2 .

Proof. From Lemma 5.1, for all j ∈ {1, . . . , s},

pα,β =

s∑
i=1

αiΨδx0
i
+

s∑
i=1

βi∇x

(
Ψδx0

i

)
and

pαj ,βj =

s∑
i=1

αj
iΨδx0

i
+

s∑
i=1

βj
i∇x

(
Ψδx0

i

)
.

So recalling (63) and defining

Dg :=


Ids

g
− 1

2

x0
1

. . .

g
− 1

2

x0
s

 ∈ Rs(d+1)×s(d+1) , Υ̃ := DgΥDg ,

using the results of [Poon et al., 2023, p. 268] we have ∥pα,β∥2L =

α
β

T

Υ

α
β

 = uT
s Υ̃

−1us. We can apply

[Poon et al., 2023, Lemma 3] that gives
∥∥∥Υ̃−1

∥∥∥
2
≤ 2. So ∥pα,β∥2L ≤

∥∥∥Υ̃−1
∥∥∥
2
∥us∥22 ≤ 2s. We repeat the same

reasoning to bound
∥∥pαj ,βj

∥∥
L: we have

∥∥pαj ,βj

∥∥2
L = (uj

s)
T Υ̃−1uj

s ≤
∥∥∥Υ̃−1

∥∥∥
2

∥∥uj
s

∥∥2
2
≤ 2.

The combination of Theorem I.1 and Proposition I.1 concludes the proof of Theorem 5.2.
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J Proof of Theorem 5.3

Lemma J.1. Let x, x′ ∈ Rd × [umin,+∞)d. We can establish that∥∥∥K(00)
norm(x, x

′)
∥∥∥
x,x′

= |Knorm(x, x
′)| ,∥∥∥K(10)

norm(x, x
′)
∥∥∥
x,x′

=
∥∥∥g−1/2

x ∇1Knorm(x, x
′)
∥∥∥
2
,∥∥∥K(11)

norm(x, x
′)
∥∥∥
x,x′

=
∥∥∥g−1/2

x ∇1∇2Knorm(x, x
′)g

−1/2
x′

∥∥∥
2
,∥∥∥K(02)

norm(x, x
′)
∥∥∥
x,x′

=
∥∥∥g−1/2

x′ Hg
2Knorm(x, x

′)g
−1/2
x′

∥∥∥
2
,∥∥∥K(12)

norm(x, x
′)
∥∥∥
x,x′

≤
√
2d max

k=1,...d

{∥∥∥g−1/2
tktk

g
−1/2
x′ ∂tkH

g
2Knorm(x, x

′)g
−1/2
x′

∥∥∥
2
,∥∥∥g−1/2

ukuk
g
−1/2
x′ ∂uk

Hg
2Knorm(x, x

′)g
−1/2
x′

∥∥∥
2

}
.

Proof. To get the simplified expressions for the operator norms (Definition 5.1), we use that ∥v∥2x := vT gxv.

The result for
∥∥∥K(10)

norm(x, x′)
∥∥∥
x,x′

,
∥∥∥K(11)

norm(x, x′)
∥∥∥
x,x′

,
∥∥∥K(02)

norm(x, x′)
∥∥∥
x,x′

is stated by [Poon et al., 2023, Equation

(27)].

To deal with
∥∥∥K(12)

norm(x, x′)
∥∥∥
x,x′

, we also use that our metric is diagonal. Denoting q̃ =
√
gxq, Ṽ1 =

√
gx′V1,

Ṽ2 =
√
gx′V2, we have

∥∥∥K(12)
norm(x, x

′)
∥∥∥
x,x′

= sup
∥V1∥x′ ,∥V2∥x′≤1
∥q=(q1,...q2d)∥x≤1

d∑
k=1

qkV
T
1 ∂tkH

g
2Knorm(x, x

′)V2 +

d∑
k=1

qk+dV
T
1 ∂uk

Hg
2Knorm(x, x

′)V2 ,

= sup
∥Ṽ1∥

2
, ∥Ṽ2∥

2
≤1 , ∥q̃∥2≤1

( d∑
k=1

q̃kṼ
T
1 g

−1/2
tktk

g
−1/2
x′ ∂tkH

g
2Knorm(x, x

′)g
−1/2
x′ Ṽ2

+

d∑
k=1

q̃k+dṼ
T
1 g−1/2

ukuk
g
−1/2
x′ ∂uk

Hg
2Knorm(x, x

′)g
−1/2
x′ Ṽ2

)
,

≤
√
2d max

k=1,...d

 sup
∥Ṽ1∥

2
,∥Ṽ2∥

2
≤1

∣∣∣Ṽ T
1 g

−1/2
tktk

g
−1/2
x′ ∂tkH

g
2Knorm(x, x

′)g
−1/2
x′ Ṽ2

∣∣∣ ,
sup

∥Ṽ1∥
2
,∥Ṽ2∥

2
≤1

∣∣∣Ṽ T
1 g−1/2

ukuk
g
−1/2
x′ ∂uk

Hg
2Knorm(x, x

′)g
−1/2
x′ Ṽ2

∣∣∣
 ,

giving the desired result.

Global controls To check the first condition of Definition 5.2, we give global controls for the Riemannian
derivatives of the kernel. We take advantage of the metric used, which allows us to have uniform bounds on
Rd × [umin,+∞)d.

Lemma J.2 (Global controls). For (i, j) ∈ {0, 1} × {0, 1, 2} we have

sup
x,x′∈Rd×[umin,+∞)d

∥∥∥K(ij)
norm(x, x

′)
∥∥∥
x,x′

≤ Bij

with

B00 = 1 ,

B10 = B01 =
√
2d ,

B11 = 2d ,

B02 = B20 =
√
4d2 + 10d ,

B12 = B21 =
√
2dB02 .
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Proof. The bounds are based on the expressions given in Lemma J.1. We make use of the relation between the
Frobenius norm and the 2-norm:

∀M = (mij) 1≤i≤n
1≤j≤m

∈ Rn×m , ∥M∥2 ≤
√√√√ ∑

1≤i≤n
1≤j≤m

m2
ij ≤

√
nmmax

i,j
m2

ij .

Let x, x′ ∈ Rd × [umin,+∞)d.
B00: Using Cauchy-Schwarz and since the kernel is normalized, we have

|Knorm(x, x
′)| = | ⟨Ψδx,Ψδx′⟩L | ≤ sup

x∈Rd×[umin,+∞)d
∥Ψδx∥2L = sup

x∈Rd×[umin,+∞)d
Knorm(x, x) = 1 .

B10: We use that gx is diagonal, and name its diagonal elements by diag(gt1t1 , . . . , gtdtd , gu1u1 , . . . , gudud
) = gx.

Remark that ∇1Knorm(x, x
′) = ⟨∇Ψδx,Ψδx′⟩L along with, for all k ∈ {1, . . . d}, ∥∂tkΨδx∥L = g

1/2
tktk

and

∥∂uk
Ψδx∥L = g

1/2
ukuk . We use Cauchy-Schwarz to write

∥∥∥g−1/2
x ∇1Knorm(x, x

′)
∥∥∥
2
=

√√√√ d∑
k=1

g−1
tktk

⟨∂tkΨδx,Ψδx′⟩2L +

d∑
k=1

g−1
ukuk ⟨∂uk

Ψδx,Ψδx′⟩2L ,

≤

√√√√ d∑
k=1

∥Ψδx′∥2L +

d∑
k=1

∥Ψδx′∥2L ,

≤
√
2d .

B11: We use the same reasoning. With g
−1/2
x ∇1∇2Knorm(x, x

′)g
−1/2
x′ =: (mij)1≤i,j≤2d, we have mij of the form

g
−1/2
bkbk

g
−1/2
blbl

⟨∂bkΨδx, ∂blΨδx′⟩L where bm stands for um or tm, 1 ≤ m ≤ d. So

m2
ij ≤ g−1

bkbk
g−1
blbl

∥∂bkΨδx∥
2
L ∥∂blΨδx′∥2L ≤ 1 ,

from which we conclude that ∥M∥2 ≤
√
4d2 = 2d.

B02: Here, we denote (mij)1≤i,j≤2d = g
−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ . Recall that

Hg
2Knorm(x, x

′) = ∇2
2Knorm(x, x

′)−
d∑

k=1

Γt′k∂t′kKnorm(x, x
′)−

d∑
k=1

Γu′
k∂u′

k
Knorm(x, x

′) .

Using that Γbk
blbm ̸= 0 implies that bk = bl = tk, bm = uk or bk = bm = tk, bl = uk or bk = uk, bl = bm = tk or

bk = bl = bm = uk, we can treat the 4d terms mii,mi2i,m2ii,m2i2i (i ∈ {1, . . . d}) separately from the rest of
the matrix.

The other terms are of the form
g
−1/2
b′kb

′
k
g
−1/2
b′lb

′
l
∂b′kb′lKnorm(x, x

′)

where k ̸= l (i.e. the derivatives are associated with different dimensions). By abuse of notation, we denote
Knorm(xm, x

′
m) an evaluation of the kernel in dimension d = 1 at points xm = (tm, um), x′m = (t′m, u

′
m), and we

consider in a similar way Ψδxm
. Remark that gbmbm = ∥∂bmΨδxm

∥2L. As Knorm(x, x
′) =

∏d
m=1Knorm(xm, x

′
m),

for k ̸= l we have

∂b′kb′lKnorm(x, x
′) = ∂b′kKnorm(xk, x

′
k)∂b′lKnorm(xl, x

′
l)

∏
m/∈{k,l}

Knorm(xm, x
′
m) . (65)

So using Cauchy-Schwarz, for mij such that i ̸= j and i ̸= 2j, j ̸= 2i,

m2
ij ≤ g−1

b′kb
′
k
g−1
b′lb

′
l

(
∂b′kKnorm(xk, x

′
k)
)2 (

∂b′lKnorm(xl, x
′
l)
)2 ∏

m/∈{k,l}

Knorm(xm, x
′
m)2 ≤ 1 .

This quantity bounds (2d)2 − 4d squared coefficients of M .
The terms mii, mi2i and m2ii, m2i2i (i ∈ {1, . . . d}) are of the form

g−1
t′kt

′
k

(
∂t′kt′kKnorm(x, x

′)− Γu′
k
t′kt

′
k
∂u′

k
Knorm(x, x

′)
)

(66)

or g
−1/2
t′kt

′
k
g
−1/2
u′
ku

′
k

(
∂t′ku′

k
Knorm(x, x

′)− Γt′k
t′ku

′
k
∂t′kKnorm(x, x

′)
)

(67)

or g−1
u′
ku

′
k

(
∂u′

ku
′
k
Knorm(x, x

′)− Γu′
k
u′
ku

′
k
∂u′

k
Knorm(x, x

′)
)
. (68)
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These forms concern respectively d, 2d, d coefficients. We can again reduce the problem to dimension 1 using
the decomposition of the kernel:

∂t′kt′kKnorm(x, x
′)− Γu′

k
t′kt

′
k
∂u′

k
Knorm(x, x

′) =
(
∂t′kt′kKnorm(xk, x

′
k)− Γu′

k
t′kt

′
k
∂u′

k
Knorm(xk, x

′
k)
)∏

l ̸=k

Knorm(xl, x
′
l) ,

∂t′ku′
k
Knorm(x, x

′)− Γt′k
t′ku

′
k
∂t′kKnorm(x, x

′) =
(
∂t′ku′

k
Knorm(xk, x

′
k)− Γt′k

t′ku
′
k
∂t′kKnorm(xk, x

′
k)
)∏

l ̸=k

Knorm(xl, x
′
l) ,

∂u′
ku

′
k
Knorm(x, x

′)− Γu′
k
u′
ku

′
k
∂u′

k
Knorm(x, x

′) =
(
∂u′

ku
′
k
Knorm(xk, x

′
k)− Γu′

k
u′
ku

′
k
∂u′

k
Knorm(xk, x

′
k)
)∏

l ̸=k

Knorm(xl, x
′
l) .

(69)

So for the first form (66),

m2
ii = g−2

t′kt
′
k

〈
Ψδx, ∂t′kt′kΨδx′ − Γu′

k
t′kt

′
k
∂u′

k
Ψδx′

〉2
L
,

≤ g−2
t′kt

′
k

∥∥∥∂t′kt′kΨδx′
k
− Γu′

k
t′kt

′
k
∂u′

k
Ψδx′

k

∥∥∥2
L
,

= g−2
t′kt

′
k

(
∂tktkt′kt′kKnorm(x

′
k, x

′
k) + Γu′

k2
t′kt

′
k
∂uku′

k
Knorm(x

′
k, x

′
k)− 2Γu′

k
t′kt

′
k
∂tktku′

k
Knorm(x

′
k, x

′
k)
)
,

= 1

where ∂tkKnorm (resp. ∂t′kKnorm) denotes a derivative w.r.t. the first (resp. the second) variable of the kernel.
We can calculate this quantity, which is constant equal to 1 (see [Giard, 2025, Section IV]). In a similar way,
for the second form (67) we have

m2
i2i,m

2
2ii ≤ g−1

t′kt
′
k
g−1
u′
ku

′
k

∥∥∥∂t′ku′
k
Ψδx′

k
− Γu′

k
t′ku

′
k
∂t′kΨδx′

k

∥∥∥2
L
,

= g−1
t′kt

′
k
g−1
u′
ku

′
k

(
∂tkukt′ku

′
k
Knorm(x

′
k, x

′
k) + Γt′k2

t′ku
′
k
∂tkt′kKnorm(x

′
k, x

′
k)− 2Γt′k

t′ku
′
k
∂tkukt′k

Knorm(x
′
k, x

′
k)
)
,

= 3 .

For the third one (68),

m2
2i2i ≤ g−2

u′
ku

′
k

(
∂ukuku′

ku
′
k
Knorm(x

′
k, x

′
k) + Γu′

k2
u′
ku

′
k
∂uku′

k
Knorm(x

′
k, x

′
k)− 2Γu′

k
u′
ku

′
k
∂ukuku′

k
Knorm(x

′
k, x

′
k)
)
,

= 7 .

Hence ∥M∥2 ≤
√
4d2 − 4d+ d+ 2× 3d+ 7d =

√
4d2 + 10d.

B12: Lemma J.1 gives∥∥∥K(12)
norm(x, x

′)
∥∥∥
x,x′

≤
√
2d max

tk,uk , k=1,...d

{∥∥∥g−1/2
tktk

g
−1/2
x′ ∂tkH

g
2Knorm(x, x

′)g
−1/2
x′

∥∥∥
2
,
∥∥∥g−1/2

ukuk
g
−1/2
x′ ∂uk

Hg
2Knorm(x, x

′)g
−1/2
x′

∥∥∥
2

}
.

For any k ∈ {1, . . . , d}, bk = tk or bk = uk, the coefficients of the matrixMk = g
−1/2
bkbk

g
−1/2
x′ ∂bkH

g
2Knorm(x, x

′)g
−1/2
x′

are of the form

g
−1/2
bmbm

g
−1/2
b′lb

′
l
g
−1/2
b′kb

′
k
∂bmb′lb

′
k
Knorm(x, x

′) where k ̸= l

or g
−1/2
bmbm

g−1
t′kt

′
k

(
∂bmt′kt

′
k
Knorm(x, x

′)− Γu′
k
t′kt

′
k
∂bmu′

k
Knorm(x, x

′)
)

or g
−1/2
bmbm

g
−1/2
t′kt

′
k
g
−1/2
u′
ku

′
k

(
∂bmt′ku

′
k
Knorm(x, x

′)− Γt′k
t′ku

′
k
∂bmt′k

Knorm(x, x
′)
)

or g
−1/2
bmbm

g−1
u′
ku

′
k

(
∂bmu′

ku
′
k
Knorm(x, x

′)− Γu′
k
u′
ku

′
k
∂bmu′

k
Knorm(x, x

′)
)
.

These forms correspond respectively to (2d)2 − 4d, d, 2d, d coefficients. We can bound them with the same

arguments as before. We obtain ∥Mk∥2 ≤ B02, so
∥∥∥K(12)

norm(x, x′)
∥∥∥
x,x′

≤
√
2dB02.

Controls when d (x, x′) is small

Lemma J.3 (Curvature constants in dimension d = 1). Let r > 0. Let x, x′ ∈ R× [umin,+∞). If d (x, x′) ≥ r,

then Knorm(x, x
′) ≤ 1− ε̄0(r) where ε̄0(r) ≤ 1− e−r2/2. Moreover, if d (x, x′) ≤ r where r ≤ 0.32, then

−vTHg
2Knorm(x, x

′)v ≥ ε̄2(r) ∥v∥2x′ ∀ v ∈ R2

where ε̄2(r) ≤ e−r2/2|G(r)| (G(r) defined by (76) below).
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Proof. Obtaining ε̄0: By definition of the semi-distance (see (21)), d (x, x′) ≥ r implies thatKnorm(x, x
′) ≤ e−r2/2.

Obtaining ε̄2, general overview: We use that

−vTHg
2Knorm(x, x

′)v ≥ ε̄2 ∥v∥2x′ ∀ v ∈ R2 ⇐⇒ −vT g−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ v ≥ ε̄2 ∥v∥22 ∀ v ∈ R2 .

Defining H̃02(x, x′) := Knorm(x, x
′)−1g

−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ , we have (see [Giard, 2025, Section V.1])

H̃02(x, x′) =

H̃02
t′t′(x, x

′) H̃02
t′u′(x, x′)

H̃02
t′u′(x, x′) H̃02

u′u′(x, x′)

 where

H̃02
t′t′(x, x

′) = −1 ,

H̃02
t′u′(x, x′) =

(t− t′)3(2u′2 + τ2)3/2√
2(u2 + u′2 + τ2)3

− 3(t− t′)(2u′2 + τ2)1/2(u′2 − u2)√
2(u2 + u′2 + τ2)2

,

H̃02
u′u′(x, x′) =

(t− t′)4(2u′2 + τ2)2

2(u2 + u′2 + τ2)4
+

3(t− t′)2(2u′2 + τ2)(u2 − u′2)

(u2 + u′2 + τ2)3
+

(u2 − u′2)2

2(u2 + u′2 + τ2)2
− (2u2 + τ2)(2u′2 + τ2)

(u2 + u′2 + τ2)2
.

(70)

If the maximal eigenvalue λ of H̃02(x, x′) is smaller than some c < 0, as Knorm(x, x
′) ≥ e−r2/2,

−vTHg
2Knorm(x, x

′)v ≥ −λKnorm(x, x
′) ∥v∥2L ≥ −ce−r2/2 ∥v∥2L

and we can take ε̄2(r) = −e−r2/2c. It remains to bound λ. We use that

λ ≤ max{H̃02
t′t′(x, x

′), H̃02
u′u′(x, x′)}+ |H̃02

t′u′(x, x′)| .

We will provide control of the three terms in the right-hand side of the previous inequality.
Basic inequalities: Using that d (x, x′) ≤ r, we have

|t− t′|√
u2 + u′2 + τ2

≤ r (71)

and
u2 + u′2 + τ2√

2u2 + τ2
√
2u′2 + τ2

≤ er
2

.

Using (35), we get

|u2 − u′
2|

u2 + u′2 + τ2
≤
√
e2r2 − 1 . (72)

From (36) we also have
2u′2 + τ2

u2 + u′2 + τ2
≤ er

2

+
√
e2r2 − 1 . (73)

Control of H̃02
t′u′ : Using (71), (72) and (73), we get from (70) that

|H̃02
t′u′(x, x′)| ≤ r3

(2u′2 + τ2)3/2√
2(u2 + u′2 + τ2)3/2

+ 3r
(2u′2 + τ2)1/2|u2 − u′2|√

2(u2 + u′2 + τ2)3/2
,

≤ 1√
2
r3(er

2

+
√
e2r2 − 1)3/2 +

3√
2
r
√
e2r2 − 1

√
er2 +

√
e2r2 − 1 . (74)

Control of H̃02
u′u′ : As

√
2u2+τ2

√
2u′2+τ2

u2+u′2+τ2 ≥ e−r2 ,

H̃02
u′u′(x, x′) ≤ r4

(2u′2 + τ2)2

2(u2 + u′2 + τ2)2
+ 3r2

(2u′2 + τ2)|u2 − u′2|
(u2 + u′2 + τ2)2

+
(u2 − u′2)2

2(u2 + u′2 + τ2)2
− (2u2 + τ2)(2u′2 + τ2)

(u2 + u′2 + τ2)2
,

≤ 1

2
r4(er

2

+
√
e2r2 − 1)2 + 3r2

√
e2r2 − 1(er

2

+
√
e2r2 − 1) +

1

2
(e2r

2

− 1)− e−2r2 (75)

where we have used (71), (72) and (73) again.

Conclusion: The previous bound is greater than H̃02
t′t′(x, x

′) = −1 (because −e−2r2 ≥ −1). It comes that

λ ≤ 1√
2
r3(er

2

+
√
e2r2 − 1)3/2 +

3√
2
r
√
e2r2 − 1

√
er2 +

√
e2r2 − 1

+
1

2
r4(er

2

+
√
e2r2 − 1)2 + 3r2

√
e2r2 − 1(er

2

+
√
e2r2 − 1) +

1

2
(e2r

2

− 1)− e−2r2 =: G(r) .

(76)
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The function G is non-decreasing on R+ as a sum of non-decreasing functions. It is negative for r ≤ 0.32
(see [Giard, 2025, Section V.2]). Then ε̄2(r) can be chosen as −e−r2/2G(r) = e−r2/2|G(r)| (or smaller) for
r ∈ [0, 0.32].

Lemma J.4 (Curvature constants in dimension d ≥ 1). Let r ≥ 0. Let x, x′ ∈ Rd×[umin,+∞)d. If d (x, x′) ≥ r,

then Knorm(x, x
′) ≤ 1−ε̄0(r) where ε̄0(r) ≤ 1−e− r2

2 . Moreover, if d (x, x′) ≤ r where r = r0√
d
with 0 < r0 ≤ 0.32,

then
−vHg

2Knorm(x, x
′)v ≥ ε̄2(r) ∥v∥2x′ ∀ v ∈ R2

where ε̄2(r) ≤ e−
r20
2d |G(r0)| (G(r0) defined by (76)).

Proof. To get ε̄0(r), remark again that d (x, x′) ≥ r implies that Knorm(x, x
′) ≤ e−r2/2 (see (21)).

Reduction to dimension 1: For ε̄2(r), we use the same reasoning as in Lemma J.3.

We denote H̃02(x, x′) := Knorm(x, x
′)−1g

−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ . Its maximum eigenvalue λ is smaller than

max1≤i≤2d{H̃02
ii (x, x

′) +
∑

j ̸=i |H̃02
ij (x, x

′)|}. We denote H̃02
ij (x, x

′) = H̃02
b′kb

′
l
(x, x′) to specify that this coefficient

corresponds to the derivatives w.r.t. b′k, b
′
l where 1 ≤ k, l ≤ d (b can be u or t).

We then remark that we can reduce the problem to dimension 1. First, according to (21), d (x, x′) ≤ r
implies that d (xk, x′k) ≤ r for all k = 1, . . . , d. Using (65), we get for l ̸= k

|H̃02
b′kb

′
l
(x, x′)| ≤ |g−1/2

b′kb
′
k
g
−1/2
b′lb

′
l
Knorm(xk, x

′
k)

−1Knorm(xl, x
′
l)
−1∂b′kKnorm(xk, x

′
k)∂b′lKnorm(xl, x

′
l)| ,

= |g−1/2
b′kb

′
k
Knorm(xk, x

′
k)

−1∂b′kKnorm(xk, x
′
k)||g

−1/2
b′lb

′
l
Knorm(xl, x

′
l)
−1∂b′lKnorm(xl, x

′
l)| . (77)

For l = k, using (69) we have

H̃02
t′kt

′
k
(x, x′) ≤ H̃02

t′kt
′
k
(xk, x

′
k) = −1 , H̃02

u′
ku

′
k
(x, x′) ≤ H̃02

u′
ku

′
k
(xk, x

′
k) , |H̃02

t′ku
′
k
(x, x′)| ≤ |H̃02

t′ku
′
k
(xk, x

′
k)| . (78)

Bounds for H̃02
b′kb

′
k
(x, x′): We use (78). From (74) and (75), we have

H̃02
t′kt

′
k
(x, x′) ∨ H̃02

u′
ku

′
k
(x, x′) ≤ 1

2
r4(er

2

+
√
e2r2 − 1)2 + 3r2

√
e2r2 − 1(er

2

+
√
e2r2 − 1) +

1

2
(e2r

2

− 1)− e−2r2

and

|H̃02
t′ku

′
k
(x, x′)| ≤ 1√

2
r3(er

2

+
√
e2r2 − 1)3/2 +

3√
2
r
√
e2r2 − 1

√
er2 +

√
e2r2 − 1 .

Bounds for H̃02
b′kb

′
l
(x, x′), l ̸= k: See [Giard, 2025, Section V.3]. We calculate

g−1/2
xk

Knorm(xk, x
′
k)

−1∇1Knorm(xk, x
′
k) =

 − (tk−t′k)
√

2u2
k+τ2

u2
k+u′2

k +τ2

(tk−t′k)
2(2u2

k+τ2)√
2(u2

k+u′2
k +τ2)2

+
u′2
k −u2

k√
2(u2

k+u′2
k +τ2)

 .

With (71), (72) and (73), it follows using (77) that for l ̸= k,

|H̃02
t′kt

′
l
(x, x′)| ≤

|t′k − tk|
√

2u′2k + τ2

u2k + u′2k + τ2
|tl − t′l|

√
2u′2l + τ2

u2l + u′2l + τ2
,

≤ r2(er
2

+
√
e2r2 − 1)

and

|H̃02
u′
kt

′
l
(x, x′)| ≤

|t′l − tl|
√
2u′2l + τ2

u2l + u′2l + τ2

(
(tk − t′k)

2(2u′2k + τ2)√
2(u2k + u′2k + τ2)2

+
|u2k − u′2k |√

2(u2k + u′2k + τ2)

)
,

≤ r

√
er2 +

√
e2r2 − 1× 1√

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)
along with

|H̃02
u′
ku

′
l
(x, x′)| ≤ 1

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)2
.
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Conclusion: The bound found for |H̃02
u′
ku

′
l
(x, x′)| is greater than the one found for |H̃02

t′kt
′
l
(x, x′)|. In fact, using

that er
2 ≥ 1 + r2,

1

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)2
≥ r2(er

2

+
√
e2r2 − 1)

√
e2r2 − 1 +

1

2
(e2r

2

− 1) ,

≥ r2
√
e2r2 − 1 +

1

2
(2r2 + 1)(e2r

2

− 1) ,

≥ r2
√
e2r2 − 1 +

1

2
(2r2 + 1)(er

2

(1 + r2)− 1) ,

≥ r2
√
e2r2 − 1 + r2er

2

+
1

2
(r2 + 1)er

2

− 1

2
(2r2 + 1) ,

≥ r2
√
e2r2 − 1 + r2er

2

.

Hence

λ ≤ 1

2
r4(er

2

+
√
e2r2 − 1)2 + 3r2

√
e2r2 − 1(er

2

+
√
e2r2 − 1) +

1

2
(e2r

2

− 1)− e−2r2

+ (d− 1)
1

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)2
+ (d− 1)r

√
er2 +

√
e2r2 − 1× 1√

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)
+

1√
2
r3(er

2

+
√
e2r2 − 1)3/2 +

3√
2
r
√
e2r2 − 1

√
er2 +

√
e2r2 − 1 ,

= −e−2r2 + 2r2
√
e2r2 − 1(er

2

+
√
e2r2 − 1) +

d

2

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)2
+
dr√
2

√
er2 +

√
e2r2 − 1

(
r2(er

2

+
√
e2r2 − 1) +

√
e2r2 − 1

)
+
√
2r
√
e2r2 − 1

√
er2 +

√
e2r2 − 1 =: Gd(r) .

Furthermore, r ∈ R+ 7→
√
e2r2 − 1 is convex. In fact, for r > 0, using that e2r

2 ≥ 1 + 2r2, we have

∂2

∂r2

√
e2r2 − 1 =

2e2r
2

(2r2e2r
2 − 4r2 + e2r

2 − 1)

(e2r2 − 1)3/2
≥ 2e2r

2

(2r2 − 4r2 + 1 + 2r2 − 1)

(e2r2 − 1)3/2
≥ 0 .

Let r0 > 0. As r := r0√
d
≤ r0,

√
e2r2 − 1 ≤

√
e2r

2
0−1√
d

and we deduce that Gd(r) ≤ G1(r0) = G(r0) (see (76).) If

r0 ≤ 0.32, this quantity is negative (proof of Lemma J.3). We can take ε̄2

(
r0√
d

)
= −e−

r20
2dG(r0). The choice of

the dependence on d for r = r0√
d
is intended to compensate for the term d(e2r

2 − 1) appearing in Gd(r).

Controls when d (x, x′) is large The constraint τ ≤ umin is used in the following lemma.

Lemma J.5 (Bounds under a large separation, in dimension d = 1). Let ∆ > 0. Let x, x′ ∈ R × [umin,+∞).
Assume that τ ≤ umin. If d (x, x′) ≥ ∆, then

max
(i,j)∈{0,1}×{0,1,2}

∥∥∥K(ij)
norm(x, x

′)
∥∥∥
x,x′

≤
√
2 153.05e−

∆2

4 .

Proof. The calculations in this proof are presented in [Giard, 2025, Sections VI.1 and VI.2]. Let x, x′ ∈
R× [umin,+∞) such that d (x, x′) ≥ ∆. The following bounds on the operator norms are based on the simplified
expressions from Lemma J.1. We will use the inequalities

√
2u2 + τ2

√
2u′2 + τ2

u′2 + u2 + τ2
∨ |u′2 − u2|
u′2 + u2 + τ2

≤ 1 ,
2u2 + τ2

u′2 + u2 + τ2
≤ 2 ,

2u2 + τ2

u2
≤ 3 , (79)

which holds since τ ≤ umin. As it holds yqe−
y2

4 ≤
(
2q
e

)q/2
for all y ≥ 0, q ≥ 1, we also have that for all

x, x′ ∈ R× [umin,+∞),

∀ q ≥ 1 ,
|t− t′|q

(u′2 + u2 + τ2)
q
2

√
Knorm(x, x′) ≤

(
2q

e

)q/2
(2u2 + τ2)1/8(2u′2 + τ2)1/8

(u′2 + u2 + τ2)
1
4

,

≤
(
2q

e

)q/2

. (80)
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We will also use that
√
Knorm(x, x′) ≤ e−∆2/4 for d (x, x′) ≥ ∆ (see (21)).

In what follows, we bound the 2-norm of a matrix M = (mij)ij by its Frobenius norm
√∑

i,j m
2
ij .∥∥∥K(00)

norm(x, x′)
∥∥∥: We have |Knorm(x, x

′)| ≤ e−∆2/2, which is an immediate consequence of (21).∥∥∥K(10)
norm(x, x′)

∥∥∥
x
: First,

H10
t (x, x′)

H10
u (x, x′)

 = H10(x, x′) :=
√
Knorm(x, x′)

−1
g−1/2
x ∇1Knorm(x, x

′) ,

=
√
Knorm(x, x′)

 (t−t′)
√
2u2+τ2

u2+u′2+τ2

(t−t′)2(2u2+τ2)√
2(u2+u′2+τ2)2

+ u′2−u2
√
2(u2+u′2+τ2)

 .

Using (80) and (79) along with
√
Knorm(x, x′) ≤ 1, it comes

|H10
t (x, x′)| ≤ 2√

e

and |H10
u (x, x′)| ≤

(
4
√
2

e
+

1√
2

)
,

(81)

hence
∥∥H10(x, x′)

∥∥
2
≤
√

4
e +

(
4
√
2

e + 1√
2

)2
and

∥∥∥K(10)
norm(x, x

′)
∥∥∥
x
=
√
Knorm(x, x′)

∥∥H10(x, x′)
∥∥
2
≤ e−∆2/4

√√√√4

e
+

(
4
√
2

e
+

1√
2

)2

.

∥∥∥K(11)
norm(x, x′)

∥∥∥
x,x′

: We have

H11(x, x′) :=
√
Knorm(x, x′)

−1
g−1/2
x ∇1∇2Knorm(x, x

′)g
−1/2
x′ =

√
Knorm(x, x′)

H̃11
tt′(x, x

′) H̃11
tu′(x, x′)

H̃11
tu′(x, x′) H̃11

uu′(x, x′)


where

H̃11
tt′(x, x

′) =

√
2u2 + τ2

√
2u′2 + τ2

u2 + u′2 + τ2
− (t− t′)2

√
2u2 + τ2

√
2u′2 + τ2

(u2 + u′2 + τ2)2
,

H̃11
tu′(x, x′) =

−(t− t′)3u′(2u2 + τ2)
√
2u′2 + τ2√

2u(u2 + u′2 + τ2)3
+

√
2(t− t′)u′(2u2 + τ2)

√
2u′2 + τ2

u(u2 + u′2 + τ2)2

+
(t− t′)u′(u′2 − u2)(2u2 + τ2)√
2u

√
2u′2 + τ2(u2 + u′2 + τ2)2

,

H̃11
tu′(x, x′) = H̃11

tu′(x′, x) ,

H̃11
uu′(x, x′) =

(t− t′)4(2u2 + τ2)(2u′2 + τ2)

2(u2 + u′2 + τ2)4
+

−2(t− t′)2(2u2 + τ2)(2u′2 + τ2)

(u2 + u′2 + τ2)3
+

(t− t′)2(u′2 − u2)2

(u2 + u′2 + τ2)3

+
(2u2 + τ2)(2u′2 + τ2)

(u2 + u′2 + τ2)2
− (u2 − u′2)2

2(u2 + u′2 + τ2)2
.

The constraint τ ≤ umin is used here, to control
√
2u2+τ2

u in H̃11
tu′ , H̃11

tu′ . Using again (80), (79) and the normal-

ization
√
Knorm(x, x′) ≤ 1, it comes

|H11
tt′(x, x

′)| ≤
(
1 +

4

e

)
,

|H11
ut′(x, x

′)| ∨ |H11
tu′(x, x′)| ≤

(√
3√
2

(
6

e

)3/2

+
2
√
3√
e

+

√
3√
e

)
,

|H11
uu′(x, x′)| ≤

(
1

2

(
8

e

)2

+
8

e
+

4

e
+ 1 +

1

2

)
.

(82)
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Hence
∥∥H(11)(x, x′)

∥∥
2
≤
√(

1 + 4
e

)2
+ 2

(√
3√
2

(
6
e

)3/2
+ 3

√
3√
e

)2
+
(
32
e2 + 12

e + 3
2

)2
and

∥∥∥K(11)
norm(x, x

′)
∥∥∥
x,x′

≤ e−∆2/4

√√√√(1 + 4

e

)2

+ 2

(√
3√
2

(
6

e

)3/2

+
3
√
3√
e

)2

+

(
32

e2
+

12

e
+

3

2

)2

.

∥∥∥K(02)
norm(x, x′)

∥∥∥
x′
: We use (70) to get the expression of

H02(x, x′) :=
√
Knorm(x, x′)H̃

02(x, x′) =
√
Knorm(x, x′)

−1
g
−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ .

Using the same techniques as before, we find
∥∥H02(x, x′)

∥∥
2
≤
√

1 + 2
(
3
√
2√
e
+ 2

(
6
e

)3/2)2
+
(
128
e2 + 24

e + 3
2

)2
so

∥∥∥K(02)
norm(x, x

′)
∥∥∥
x′

≤ e−∆2/4

√√√√1 + 2

(
3

√
2√
e
+ 2

(
6

e

)3/2
)2

+

(
128

e2
+

24

e
+

3

2

)2

.

∥∥∥K(12)
norm(x, x′)

∥∥∥
x,x′

: We denote

H12,1(x, x′) =
√
Knorm(x, x′)

−1
g
−1/2
tt g

−1/2
x′ ∂tH

g
2Knorm(x, x

′)g
−1/2
x′

and
H12,2(x, x′) =

√
Knorm(x, x′)

−1
g−1/2
uu g

−1/2
x′ ∂uH

g
2Knorm(x, x

′)g
−1/2
x′ .

We find H̃12,1 =
√
Knorm(x, x′)

H̃12,1
t′t′ (x, x′) H̃12,1

t′u′ (x, x′)

H̃12,1
t′u′ (x, x′) H̃12,1

u′u′ (x, x′)

 with

H̃12,1
t′t′ (x, x′) =

(t− t′)
√
2u2 + τ2

u2 + u′2 + τ2
,

H̃12,1
t′u′ (x, x

′) =
3(t− t′)2

√
2u2 + τ2(2u′2 + τ2)3/2√

2(u2 + u′2 + τ2)3
− (t− t′)4

√
2u2 + τ2(2u′2 + τ2)3/2√

2(u2 + u′2 + τ2)4

+
3(t− t′)2

√
2u2 + τ2

√
2u′2 + τ2(u′2 − u2)√

2(u2 + u′2 + τ2)3
+

3
√
2u2 + τ2

√
2u′2 + τ2(u2 − u′2)√

2(u2 + u′2 + τ2)2

and

H̃12,1
u′u′ (x, x

′) =
−(t− t′)5(2u′2 + τ2)2

√
2u2 + τ2

2(u2 + u′2 + τ2)5
+

2(t− t′)3(2u′2 + τ2)2
√
2u2 + τ2

(u2 + u′2 + τ2)4

+
3(t− t′)3(u′2 − u2)(2u′2 + τ2)

√
2u2 + τ2

(u2 + u′2 + τ2)4
− (t− t′)

√
2u2 + τ2(u2 − u′2)2

2(u2 + u′2 + τ2)3

+
(t− t′)(2u′2 + τ2)(2u2 + τ2)3/2

(u2 + u′2 + τ2)3
+

6(t− t′)(2u′2 + τ2)(u2 − u′2)
√
2u2 + τ2

(u2 + u′2 + τ2)3
.

Using the same ideas as before to bound the coefficients, we get

∥∥H12,1(x, x′)
∥∥
2
≤

√√√√4

e
+ 2

(
18
√
2

e
+
√
2
64

e2
+

3√
2

)2

+

(
√
2

(
10

e

)5/2

+ 7
√
2

(
6

e

)3/2

+
15√
e

)2

.
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We also have H̃12,2 =
√
Knorm(x, x′)

H̃12,1
t′t′ (x, x′) H̃12,1

t′u′ (x, x′)

H̃12,1
t′u′ (x, x′) H̃12,1

u′u′ (x, x′)

 with

H̃12,1
t′t′ (x, x′) =

−(t− t′)2(2u2 + τ2)√
2(u2 + u′2 + τ2)2

+
u2 − u′2√

2(u2 + u′2 + τ2)
,

H̃12,1
t′u′ (x, x

′) =
(t− t′)5(2u′2 + τ2)3/2(2u2 + τ2)

2(u2 + u′2 + τ2)5
+

(t− t′)3(2u′2 + τ2)1/2(2u2 + τ2)(u2 − u′2)

(u2 + u′2 + τ2)4

− 4(t− t′)3(2u′2 + τ2)3/2(2u2 + τ2)

(u2 + u′2 + τ2)4
+

(t− t′)3(2u′2 + τ2)1/2

(u2 + u′2 + τ2)2

+
3(t− t′)(2u′2 + τ2)1/2(2u2 + τ2)2

(u2 + u′2 + τ2)3
+

21(t− t′)(2u′2 + τ2)1/2(2u2 + τ2)(u′2 − u2)

2(u2 + u′2 + τ2)3

+
3(t− t′)(2u′2 + τ2)1/2(u2 − u′2)

2(u2 + u′2 + τ2)2

and

H̃12,1
u′u′ (x, x

′) =

√
2(t− t′)6(2u′2 + τ2)2(2u2 + τ2)

4(u2 + u′2 + τ2)6
+

5
√
2(t− t′)4(2u′2 + τ2)(2u2 + τ2)(u2 − u′2)

4(u2 + u′2 + τ2)5

− 2
√
2(t− t′)4(2u′2 + τ2)2(2u2 + τ2)

(u2 + u′2 + τ2)5
+

√
2(t− t′)4(2u′2 + τ2)(u2 − u′2)2

2(u2 + u′2 + τ2)5

− 5
√
2(t− t′)2(2u′2 + τ2)(u2 − u′2)2

4(u2 + u′2 + τ2)4
+

5
√
2(t− t′)2(2u2 + τ2)(2u′2 + τ2)2

2(u2 + u′2 + τ2)4

+

√
2(t− t′)2(u2 − u′2)3

2(u2 + u′2 + τ2)4
− 7

√
2(t− t′)2(2u2 + τ2)(2u′2 + τ2)(u2 − u′2)

(u2 + u′2 + τ2)4

+
7
√
2(2u′2 + τ2)(2u2 + τ2)(u2 − u′2)

2(u2 + u′2 + τ2)3
−

√
2(u2 − u′2)3

4(u2 + u′2 + τ2)3
.

We get

∥∥H12,2(x, x′)
∥∥
2
≤

√√√√√√√√√√

(
4
√
2

e
+ 1

)2

+ 2

(
1√
2

(
10

e

)5/2

+ 6
√
2

(
6

e

)3/2

+
36√
e

)2

+

(
432

√
2

e3
+

272
√
2

e2
+

60
√
2

e
+

15
√
2

4

)2
≤ 153.05 .

As this bound is greater than the one found for
∥∥H12,1(x, x′)

∥∥
2
, we deduce that∥∥∥K(12)

norm(x, x
′)
∥∥∥
x,x′

≤
√
2 153.05e−∆2/4 .

This bound is the largest we obtained for
∥∥∥K(ij)

norm(x, x′)
∥∥∥
x,x′

, hence it is an upper bound for all the derivatives

investigated by this lemma.

Lemma J.6 (Bounds under a large separation, in dimension d ≥ 1). Let ∆ > 0. Let x, x′ ∈ Rd × [umin,+∞)d.
Assume that τ ≤ umin. If d (x, x′) ≥ ∆, then

max
(i,j)∈{0,1}×{0,1,2}

∥∥∥K(ij)
norm(x, x

′)
∥∥∥
x,x′

≤
√
2d(170.5 + 25.78d)e−∆2/4 .

Proof. Let x, x′ ∈ Rd×[umin,+∞)d such that d (x, x′) ≥ ∆. We use the decomposition of the kernelKnorm(x, x
′) =∏d

k=1Knorm(xk, x
′
k) to reuse the results proven in dimension 1 (see Lemma J.5). As in Lemma J.4, we use the

expressions for the operator norms given in Lemma J.1 and we bound the 2-norm of a matrix M = (mij)ij by√∑
i,j m

2
ij . The calculations in this proof are presented in [Giard, 2025, Section VI.3].∥∥∥K(00)

norm(x, x′)
∥∥∥: According to (21), we still have |K(00)

norm(x, x′)| ≤ e−∆2/2.∥∥∥K(10)
norm(x, x′)

∥∥∥
x
: We recall that the notation ∂bkKnorm (resp. ∂b′kKnorm) refers to a derivative w.r.t. to the
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first (resp. the second) variable of the kernel, where bk is tk or uk. The decomposition of the kernel gives

∂bkKnorm(x, x
′) = ∂bkKnorm(xk, x

′
k)
∏d

l ̸=kKnorm(xl, x
′
l). Using (80) for Knorm(xk, x

′
k), we get that

∀ q ≥ 1 ,
|tk − t′k|q

(u′2k + u2k + τ2)
q
2

√
Knorm(xk, x′k) ≤

(
2q

e

)q/2

.

We have

|g−1/2
bkbk

∂bkKnorm(x, x
′)| ≤

√√√√ d∏
l=1

Knorm(xl, x′l)

∣∣∣∣√Knorm(xk, x′k)
−1

g
−1/2
bkbk

∂bkKnorm(xk, x
′
k)

∣∣∣∣ .
The term in the right-hand side has already been dealt with in Lemma J.5: (81) gives a bound for∣∣∣∣√Knorm(xk, x′k)

−1

g
−1/2
bkbk

∂bkKnorm(xk, x
′
k)

∣∣∣∣ = |H10
bk
(xk, x

′
k)| ,

that we denote by BH10
bk

(note that this bound does not depend on ∆). So

|g−1/2
bkbk

∂bkKnorm(x, x
′)| ≤ e−∆2/4BH10

bk

.

Hence
∥∥∥K(10)

norm(x, x′)
∥∥∥
x
≤

√
d
√
B2

H10
tk

+B2
H10

uk

e−∆2/4 ≤ 3.05
√
de−∆2/4.∥∥∥K(11)

norm(x, x′)
∥∥∥
x,x′

: We use in the same way as for B
H

(10)
bk

the notation B
H

(11)

bk,b′
k

, denoting the bound obtained in

Lemma J.5 for g
−1/2
xk ∂bk,b′kKnorm(xk, x

′
k)g

−1/2
x′
k

√
Knorm(xk, x′k)

−1
= |H11

bkb′k
(xk, x

′
k)| (see (82)). For k ̸= l,

|g−1/2
bkbk

∂bkb′lKnorm(xk, x
′
k)g

−1/2
b′lb

′
l
| ≤

√√√√ d∏
m=1

Knorm(xm, x′m)

∣∣∣∣√Knorm(xk, x′k)
−1

g
−1/2
bkbk

∂bkKnorm(xk, x
′
k)

∣∣∣∣
×
∣∣∣∣√Knorm(xl, x′l)

−1

g
−1/2
b′lb

′
l
∂b′lKnorm(xl, x

′
l)

∣∣∣∣ ,
≤ e−∆2/4BH10

bk

BH01
b′
l

= e−∆2/4BH10
bk

BH10
bl

.

For k = l, we have in the same way

|g−1/2
tktk

∂tkt′kKnorm(xk, x
′
k)g

−1/2
t′kt

′
k
| ≤ e−∆2/4BH11

tk,t′
k

,

|g−1/2
ukuk

∂ukt′k
Knorm(xk, x

′
k)g

−1/2
t′kt

′
k
| ≤ e−∆2/4BH11

uk,t′
k

,

|g−1/2
ukuk

∂uku′
k
Knorm(xk, x

′
k)g

−1/2
u′
ku

′
k
| ≤ e−∆2/4BH11

uk,u′
k

.

So

∥∥∥K(11)
norm(x, x

′)
∥∥∥
x,x′

≤ e−∆2/4

√√√√√d(d− 1)B4
H10

tk

+ d(d− 1)B4
H10

uk

+ 2d(d− 1)B2
H10

tk

B2
H10

uk

+ 2dB2
H11

tk,u′
k

+ dB2
H11

tk,t′
k

+ dB2
H11

uk,u′
k

,

≤ (9.25d+ 6.95)e−∆2/4 .∥∥∥K(02)
norm(x, x′)

∥∥∥
x′
: With the same arguments, the terms of g

−1/2
x′ Hg

2Knorm(x, x
′)g

−1/2
x′ corresponding to deriva-

tives taken in b′k, b
′
l with k ̸= l can be bounded by e−∆2/4BH10

bk

BH10
b′
l

. We bound the terms corresponding to

k = l with e−∆2/4BH02
t′
k
t′
k

or e−∆2/4BH02
t′
k
u′
k

or e−∆2/4BH02
u′
k
u′
k

, where BH02
b′
k
b′
k

denotes again the bound obtained

in Lemma J.5. We get

∥∥∥K(02)
norm(x, x

′)
∥∥∥
x′

≤ e−∆2/4

√√√√√d(d− 1)B4
H10

tk

+ d(d− 1)B4
H10

uk

+ 2d(d− 1)B2
H10

tk

B2
H10

uk

+ 2dB2
H02

t′
k
u′
k

+ dB2
H02

t′
k
t′
k

+ dB2
H02

u′
k
u′
k

,

≤ (9.25d+ 45.9)e−∆2/4 .
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∥∥∥K(12)
norm(x, x′)

∥∥∥
x,x′

: We denote Mbk = g
−1/2
bkbk

g
−1/2
x′ ∂bkH

g
2Knorm(x, x

′)g
−1/2
x′ . The terms at positions b′l, b

′
m where

l ̸= m and l,m ̸= k can be bounded by e−∆2/4BH10
bk

BH10
bl

BH10
bm

. The terms at positions b′l, b
′
k or b′k, b

′
l where l ̸= k

can be bounded by e−∆2/4BH11
bk,t′

k

BH10
bl

or e−∆2/4BH11
bk,u′

k

BH10
bl

. The terms at positions b′l, b
′
m where l = m ̸= k

can be bounded by e−∆2/4BH10
bk

BH02
b′
l
b′m

. The terms at positions b′l, b
′
m where l = m = k can be bounded by

e−∆2/4B
H

12,bk
t′
k
,t′

k

or e−∆2/4B
H

12,bk
t′
k
,u′

k

or e−∆2/4B
H

12,bk
u′
k
,u′

k

. Writing Mbk = (mb′lb
′
m
)b′l,b′m∈{t′1,...,t′d,u

′
1,...u

′
d}, we use the

following bound for its 2-norm: ∥Mbk∥2 ≤ maxl
√
m2

t′lt
′
l
+m2

t′lu
′
l
+m2

u′
lt

′
l
+m2

u′
lu

′
l
+
√∑

l ̸=mm2
b′kb

′
l
. It comes that

∥Mtk∥2 ≤ e−∆2/4

(
max

{√
B2

H10
tk

B2
H02

t′
k
t′
k

+ 2B2
H10

tk

B2
H02

t′
k
u′
k

+B2
H10

tk

B2
H02

u′
k
u′
k

,
√
2B2

H12,1

t′
k
,u′

k

+B2
H12,1

t′
k
,t′

k

+B2
H12,1

u′
k
,u′

k

}

+

√√√√√√√
(d2 − 3d+ 2)B2

H10
tk

(
B4

H10
tk

+ 2B2
H10

tk

B2
H10

uk

+B4
H10

uk

)
+ 2(d− 1)

(
B2

H11
tkt′

k

B2
H10

tk

+B2
H11

tkt′
k

B2
H10

uk

+B2
H11

tku′
k

B2
H10

tk

+B2
H11

tku′
k

B2
H10

uk

)


and

∥Muk
∥2 ≤ e−∆2/4

(
max

{√
B2

H10
uk

B2
H02

t′
k
t′
k

+ 2B2
H10

uk

B2
H02

t′
k
u′
k

+B2
H10

uk

B2
H02

u′
k
u′
k

,
√
2B2

H12,2

t′
k
,u′

k

+B2
H12,2

t′
k
,t′

k

+B2
H12,2

u′
k
,u′

k

}

+

√√√√√√√
(d2 − 3d+ 2)B2

H10
uk

(
B4

H10
tk

+ 2B2
H10

tk

B2
H10

uk

+B4
H10

uk

)
+ 2(d− 1)

(
B2

H11
ukt′

k

B2
H10

tk

+B2
H11

ukt′
k

B2
H10

uk

+B2
H11

uku′
k

B2
H10

tk

+B2
H11

uku′
k

B2
H10

uk

)
 ,

≤ e−∆2/4(170.5 + 25.78d) .

As this last bound is greater than the previous one,
∥∥∥K(12)

norm(x, x′)
∥∥∥
x,x′

≤
√
2d(170.5 + 25.78d)e−∆2/4.

Choice of r,∆ for the LPC

Proposition J.1 (Knorm satisfies the LPC, d = 1). Let s ≥ 2. Assume that X ⊂ R × [umin, umax] and that
τ ≤ umin. Then Knorm satisfies the LPC (see Definition 5.2) with parameters s, ∆(s) = 2

√
13.88 + ln(s− 1),

r = 0.3025, ε̄2(0.3025) = 0.13139, ε̄0(0.3025) = 0.04472.

Proof. To establish that Knorm satisfies the LPC, we first determine the size of the near regions r, giving the
constraint on the minimal separation ∆ (see Definition 5.2).

We want to pick r such that ε̄0(r), ε̄2(r) exist and
1
64 min

{
ε̄0(r)
B0

, ε̄2(r)
B2

}
is maximal, using Lemmas J.3 and

J.2. This allows us to get the smallest ∆ (see item 3 of Definition 5.2). Graphically, we choose r = 0.3025 (see
[Giard, 2025, Section VII.1]). We can take ε̄2(0.3025) = 0.13139 and ε̄0(0.3025) = 0.04472. Then

1

64
min

(
0.04472

B0
,
0.13139

B2

)
≥ 0.000204618 =: cr

(see [Giard, 2025, Section VII.1]).
Let s ≥ 2. The minimal separation ∆(s) must satisfy item 3 of Definition 5.2. Using Lemma J.5 , it suffices

that

(s− 1)
√
2 153.05e−

∆(s)2

4 ≤ cr ,

i.e. that ∆(s) ≥ 2
√
c∆ + ln(s− 1) where c∆ = 13.88 ≥ ln

(√
2153.05
cr

)
(see [Giard, 2025, Section VII.1]).

Proposition J.2 (Knorm satisfies the LPC, d ≥ 1). Let s ≥ 2. Assume that X ⊂ Rd × [umin, umax]
d and

that τ ≤ umin. Then Knorm satisfies the LPC with parameters s, r = 0.3025√
d

, ε̄2(r) = 0.13139, ε̄0(r) =
0.0894

2d ,

∆(s) = 2
√
11.9 + 3 ln(d+ 6.62) + ln(s− 1).

Proof. We take Proposition J.1 as a starting point. We make use of Lemmas J.2, J.4 and J.6. Setting r = 0.3025√
d

,

we can take ε̄2(r) = 0.13139 (as in dimension d = 1) because d ∈ N∗ 7→ e−
r20
2d |G(r0)| with r0 = 0.3025 is non-

decreasing.
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Furthermore, for r ≤ 0.3025 we have 1− e−r2/2 ≥ 0.977 r2

2 . In fact, for 0 < c < 1, denoting

□c : r ∈ R+ 7→ 1− e−r2/2 − c
r2

2
,

we have ∂
∂r□c(r) = r(e−r2/2 − c) so □c is increasing then decreasing. Then remark that □c(0) = 0 and

□0.977(0.3025) ≥ 0. So we can take ε̄0(r) =
0.0894

2d ≤ 0.977 0.30252

2d (see [Giard, 2025, Section VII.2]).

Moreover, ε̄0(r)
1+B00+B10

≤ ε̄2(r)
1+B02+B12

(see [Giard, 2025, Section VII.2]). So

1

64
min

(
ε̄0(r)

1 +B00 +B10
,

ε̄2(r)

1 +B02 +B12

)
≥ 1

64

ε0(r)

1 +B00 +B10
≥ 1

64

0.0894

2d(2 +
√
2d)

=: cd,r .

The minimal separation should verify (s− 1)
√
2d(170.5 + 25.78d)e−∆(s)2/4 ≤ cd,r, i.e.

∆(s) ≥ 2

√
ln

(
64

0.0894

)
+ ln

(
(170.5 + 25.78d)2d(2 +

√
2d)

√
2d
)
+ ln(s− 1) .

It suffices that ∆(s) ≥ 2
√
11.9 + 3 ln(d+ 6.62) + ln(s− 1) (see [Giard, 2025, Section VII.2]).

K Proofs of Section 6

K.1 Proof of Lemma 6.1

We construct ηNDSC in the same way as in Theorem 5.2, but we do not track the constants and dependence
on d. We first determine rNDSC such that ηNDSC can satisfy (NDSC). Then we prove that Knorm verifies the
LPC (Definition 5.2) with r = rNDSC and a sufficiently large minimal separation, showing the existence of the
non-degenerate certificate ηNDSC.
Choice of rNDSC: Given rNDSC > 0, according to Lemma I.2 it suffices that

1− B02 + ε̄2(rNDSC)/16

2
dg(x, x

0
j )

2 > −1 ∀x ∈ Xnear
j (rNDSC) (83)

to have ηNDSC > −1 (the existence of this certificate is proven later). Lemma J.2 gives B02 =
√
4d2 + 10d. To

bound dg(x, x
0
j )

2, we use Lemma H.7. If d (x, x0j ) <
√
2, we have dg(x, x

0
j )

2 ≤ dF (d (x, x0j )) where F is defined

by (62) in the appendix. We remark that F is continuous on [0,
√
2[ and that F (0) = 0. Furthermore, if r ≤ 0.32√

d

we can take ε̄2(r) = e−
0.322

2 |G(0.32)| (see Lemma J.4). This quantity does not depend on r. So there exists
0 < rNDSC ≤ 0.32√

d
(that depends only on d) such that (83) is satisfied.

LPC and existence of ηNDSC: It remains to show the existence of ηNDSC, a global non-degenerate certificate of
the form (18) satisfying Definition 3.2 where the near regions are of radius rNDSC. We first prove the LPC with
this choice of radius, choosing ∆ large enough, and then make use of Theorem 5.2.

The curvature constants ε̄0(rNDSC) and ε̄2(rNDSC) are given by Lemma J.4. The separation ∆(s) should
satisfy

(s− 1)
√
2 153.05e−

∆(s)2

4 ≤ 1

64
min

(
ε̄0(rNDSC)

B0
,
ε̄2(rNDSC)

B2

)
.

Such a ∆(s) exists as e−
∆(s)2

4 −→
∆(s)→+∞

0. It depends only on d (through ε̄0(rNDSC) and ε̄2(rNDSC)) and s. Then

Knorm satisfies the LPC (Definition 5.2) with these parameters.
Finally, Theorem 5.2 applies. The minimal separation ∆NDSC follows from Lemma 5.3. It depends on d,

umin, umax, τ , rNDSC, ∆(s). Under this separation, we can construct a non-degenerate certificate ηNDSC verifying
ηNDSC > −1. We can also construct local non-degenerate certificates ηj,NDSC for j = 1, . . . , s.
Negative definiteness of ∇2ηNDSC(x

0
j ): Let j ∈ {1, . . . , s}. To show that ∇2ηNDSC(x

0
j ) is negative-definite, first

remark that ∇2ηNDSC(x
0
j ) = D2[ηNDSC](x

0
j ) because ∇ηNDSC(x

0
j ) = 0 (equality of the Riemannian and Euclidean

hessians, see Definition 5.1). Then, for v ∈ R2 such that ∥v∥x0
j
= 1, using the control on the near regions (proof

of Theorem 5.2) we deduce that

D2[ηNDSC](x
0
j )[v, v] ≤ K(02)

norm(x
0
j , x

0
j )[v, v] +

∥∥∥D2[ηNDSC](x
0
j )−K(02)

norm(x
0
j , x

0
j )
∥∥∥
x0
j

≤ −ε̄2 +
ε̄2
16

= − ε̄2
15
.

So for all v ∈ R2d \ {0},
vT∇2ηNDSC(x

0
j )v ≤ −∥v∥x0

j

ε̄2
15

< 0 .
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K.2 Proof of Theorem 6.1

We begin with a preliminary result.

Lemma K.1. Under the hypothesis of Lemma 6.1, GS0
is full-rank, where

GS0
: (α1, . . . , αs), (β1, . . . , βs) ∈ Rs × R2d×s 7→

s∑
j=1

αjΨδx0
j
+

s∑
j=1

βT
j ∇x(Ψδx0

j
) . (84)

Moreover, B := maxk=0,1,2 supx∈X
∥∥∇k

xΨ(δx)
∥∥
L,k <∞ where∥∥∇0

x(Ψδx)
∥∥
L,0 = ∥Ψδx∥L ,∥∥∇1

x(Ψδx)
∥∥
L,1 =

∥∥((∥∂tk(Ψδx)∥L)k=1,...,d, (∥∂uk
(Ψδx)∥L)k=1,...,d

)∥∥
2
,

∥∥∇2
x(Ψδx)

∥∥
L,2 =

∥∥∥∥∥∥
(
∥∥∂2tktl(Ψδx)∥∥L)1≤k,l≤d (

∥∥∂2tkul
(Ψδx)

∥∥
L)1≤k,l≤d

(
∥∥∂2tkul

(Ψδx)
∥∥
L)1≤k,l≤d (

∥∥∂2ukul
(Ψδx)

∥∥
L)1≤k,l≤d

∥∥∥∥∥∥
2

.

Proof. GS0
is full-rank: We used the invertibility of Υ (see (63)) to construct ηNDSC: we already know that

s∑
j=1

αjKnorm(x
0
j , •) +

s∑
j=1

βT
j ∇1Knorm(x

0
j , •) = 0 =⇒ αj = 0 , βj = 0R2 ∀j = 1, . . . s .

B <∞: It can be deduced from the fact that x 7→ Ψδx is C∞ on the compact X (Remark 5.1).

Below we present the main steps of the proof of Theorem 6.1, adapted from [Duval and Peyré, 2015, Lemma
2, Proposition 7] and [Poon, 2019, Section 4.3]. We work under the assumptions of Lemma 6.1: there exists
ηNDSC of the form (18) that verifies |ηNDSC| ≤ 1, |ηNDSC(x)| = 1 ⇐⇒ x ∈ {x0j}j and ∇2ηNDSC(x

0
j ) ≺ 0 for all

j = 1, . . . , s (Non Degenerate Source Condition, or NDSC).

Dual, noisy and noiseless problems We denote Dκ,b the dual problem with regularization κ and noise b.
More precisely:

argmax
p∈L,∥Ψ∗p∥∞≤1

〈
Ψµ0

ω, p
〉
L (D0,0)

is the dual problem of
argmin
µ∈M(X )

∥µ∥TV such that Ψµ = Ψµ0
ω . (P0,0)

For κ > 0, the dual problem is

argmin
p∈L,∥Ψ∗p∥∞≤1

∥∥∥y
κ
− p
∥∥∥2
L
, (Dκ,b)

where we observe y = Ψµ0
ω + b (i.e. b = Γn). Its solution is unique. It is the dual problem of

argmin
µ∈M(X )

1

2
∥y −Ψµ∥2L + κ ∥µ∥TV . (Pκ,b)

We use the notation pκ,b for the solution of the dual problem, and ηκ,b = Ψ∗pκ,b. For κ = 0, we choose the
particular dual solution defined by (p0,0).

The dual and primal solutions are connected via the subdifferential of the TV-norm: we recall that for
η ∈ C(X ) and µ ∈ M(X ),

η ∈ ∂ ∥µ∥TV ⇐⇒
(
∥η∥∞ ≤ 1 , supp(µ−) ⊂ {η = −1} , supp(µ+) ⊂ {η = 1}

)
.

Strong duality ensures that for µκ,b a solution of the primal problem, ηκ,b ∈ ∂ ∥µκ,b∥TV. Moreover, for κ > 0
we have pκ,b = − 1

κ (Ψµκ,b −Ψµ0
ω − b).

Lemma K.2. Under the assumptions of Lemma 6.1, µ0
ω is the unique solution of (P0,0). Moreover, η0,0 :=

ηNDSC|X = Ψ∗p0,0 where p0,0 is the solution of (D0,0) with minimal norm, i.e.

p0,0 = argmin
p∈L

{
∥p∥L : Ψ∗p ∈ ∂

∥∥µ0
ω

∥∥
TV

}
.
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Proof. As ηNDSC|X ∈ ∂
∥∥µ0

ω

∥∥
TV

, we deduce that p0,0 is a solution of (D0,0), linked to any solution µ0,0 of (P0,0)

by Ψ∗p0,0 = ηNDSC|X ∈ ∂ ∥µ0,0∥TV. So supp(µ0,0) ⊂ {|ηNDSC|X | = 1} = {x0j}sj=1. Using the injectivity of GS0

(Lemma K.1), we have µ0,0 = µ0
ω.

Moreover, as ηNDSC (which is of the form (18)) verifies the NDSC, [Duval and Peyré, 2015, Proposition 7] shows
that p0,0 is of minimal norm.

Lemma K.3 (Convergence of the dual solutions). It holds that ∥pκ,0 − p0,0∥L →
κ→0

0.

Moreover, ∥pκ,b − pκ,0∥L ≤ ∥b∥L
κ .

Proof. ∥pκ,0 − p0,0∥L →
κ→0

0: Using that pκ,0 is the solution of (Dκ,b) for b = 0 and p0,0 is a solution of (D0,0),

writing y = Ψµ0
ω we have

⟨y, pκ,0⟩L − κ

2
∥pκ,0∥2 ≥ ⟨y, p0,0⟩L − κ

2
∥p0,0∥2 and ⟨y, p0,0⟩L ≥ ⟨y, pκ,0⟩L .

We deduce that ∥pκ,0∥L is bounded by ∥p0,0∥L. Given κn → 0, as the closed unit ball of a Hilbert space is
weakly sequentially compact, we can extract pκnk

,0 that converges weakly towards p∗ ∈ L.
We show that p∗ = p0,0. We have ⟨y, p∗⟩L ≥ ⟨y, p0,0⟩L so〈

µ0
ω,Ψ

∗p∗
〉
≥
〈
µ0
ω,Ψ

∗p0,0
〉
=
∥∥µ0

ω

∥∥
TV

.

We also have that Ψ∗ is weakly continuous from L to C(X ) so

∥Ψ∗p∗∥∞ ≤
∥∥∥Ψ∗pκnk

,0

∥∥∥
∞

= 1 ,

hence p∗ ∈ ∂
∥∥µ0

ω

∥∥
TV

. Finally,

∥p0,0∥L ≥ lim inf
∥∥∥pκnk

,0

∥∥∥
L
≥ ∥p∗∥L

as if hn ⇀ h in L, then ∥h∥2L ≤ lim inf ∥hn∥2L. Hence p∗ = p0,0.

Then pκnk
,0 → p0,0 strongly because

∥∥∥pκnk
,0

∥∥∥
L
→ ∥p0,0∥L and pκnk

,0 ⇀ p0,0. Finally, pκ,0 −→
nk→∞

p0,0 strongly

because any convergent subsequence of (pκ,0)κ has limit p0,0.

∥pκ,b − pκ,0∥L ≤ ∥b∥L
κ : The mapping P : y

κ → pκ,b is the projection onto a close convex set so it is non expansive:

for h1, h2 ∈ L,

⟨h1 − P (h1), P (h2)− P (h1)⟩ ≤ 0 and ⟨h2 − P (h2), P (h1)− P (h2)⟩ ≤ 0 .

Subtracting the two and applying Cauchy-Schwarz leads to

⟨P (h1)− P (h2), P (h1)− P (h2)⟩ ≤ ⟨h1 − h2, P (h1)− P (h2)⟩ ≤ ∥h1 − h2∥ ∥P (h1)− P (h2)∥ .

Hence

∥pκ,b − pκ,0∥ ≤
∥∥∥∥Ψµ0

ω + b−Ψµ0
ω

κ

∥∥∥∥ =
∥b∥
κ
.

Proposition K.1 (Sparsity of the solution). Under the assumptions of Lemma 6.1, there exists κ̃0 > 0, γ0
such that for all κ ≤ κ̃0 and b such that ∥b∥L ≤ γ0κ, the solution µκ,b of (Pκ,b) is a discrete measure and has
at most 1 particle in each Xnear

j (rNDSC).

Proof. Using NDSC, the fact that X is compact and that diam(Xnear
j (re)) →

re→0
0, we deduce that there

exists ε > 0, rε ∈]0, rNDSC] such that |η0,0(x)| < 1 − ε for all x /∈
⋃
Xnear

j (rε) and ∇2η0,0(x) ≺ −εI for all
x ∈

⋃
Xnear

j (rε).
In light of Lemma K.3, we can choose κ̃0 such that for all κ ≤ κ̃0, B ∥pκ,0 − p0,0∥L ≤ ε

4 (where B is defined in
Lemma K.1). For ∥b∥L ≤ γ0κ with γ0 = ε

4B , using Cauchy-Schwarz we get that for all x ∈ X ,∥∥∇kηκ,b(x)−∇kη0,0(x)
∥∥
L,k ≤ ∥pκ,b − p0,0∥L

∥∥∇k
xΨ(δx)

∥∥
L,k ,

≤ B

(
∥b∥L
κ

+ ∥pκ,0 − p0,0∥L

)
,

≤ ε

2
.

So |ηκ,b(x)| < 1 for all x /∈
⋃
Xnear

j (rε) and ∇2ηκ,b(x) is negative-definite for all x ∈
⋃

Xnear
j (rε). Hence there

exists at most 1 point in each Xnear
j (rε) such that ηκ,b(x) = 1. As ηκ,b ∈ ∂ ∥µκ,b∥TV, we deduce that µκ,b is a

discrete measure and that it has at most 1 particle in each Xnear
j (rε).
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Lemma K.4. Under the assumptions of Lemma 6.1, there exists κ0 > 0, γ0 such that for all κ ≤ κ0 and b
such that ∥b∥L ≤ γ0κ, µκ,b is a discrete measure and has exactly 1 particle in each Xnear

j (rNDSC).

Proof. We take Proposition K.1 as a starting point. We show that µκ,b(Xnear
j (rε)) > 0 for ∥b∥L ≤ γ0κ and

κ ≤ κ0 with κ0 ≤ κ̃0 small enough.
It suffices to show the weak* convergence of µκ,b towards µ

0
ω as κ→ 0 and for ∥b∥L ≤ γ0κ (this result is also

stated in [Duval and Peyré, 2015, Proposition 4]). We have

1

2

∥∥Ψµ0
ω + b−Ψµκ,b

∥∥2
L + κ ∥µκ,b∥TV ≤ 1

2
∥b∥2L + κ

∥∥µ0
ω

∥∥
TV

since µκ,b minimizes

Jκ,b : µ 7→ 1

2

∥∥Ψµ0
ω + b−Ψµ

∥∥2
L + κ ∥µ∥TV .

Dividing by κ, it follows that ∥µκ,b∥TV is bounded by
γ2
0

2 κ+
∥∥µ0

ω

∥∥
TV

. So we can extract µk a weak* convergent
subsequence of µκ,b as κ, b → 0 with ∥b∥ ≤ γ0κ. Let µ∗ be its limit. By the lower semi-continuity of the TV
norm for the weak* convergence, ∥µ∗∥TV ≤ lim inf ∥µk∥TV ≤

∥∥µ0
ω

∥∥
TV

. To establish µ∗ = µ0
ω, it remains to show

that Ψµ∗ = Ψµ0
ω (because µ0

ω is the only solution of (P0,0), see Lemma K.2). Recall that ∥pκ,b − pκ,0∥L ≤ ∥b∥L
κ

and that pκ,b = − 1
κ (Ψµκ,b −Ψµ0

ω − b), giving ∥Ψµκ,b − b−Ψµ̂κ,0∥L ≤ ∥b∥. As
∥∥Ψµκ,0 −Ψµ0

ω

∥∥2
L ≤ 2κ

∥∥µ0
ω

∥∥
TV

(because Jκ,0(µκ,0) ≤ Jκ,0(µ
0
ω)), it comes∥∥Ψµκ,b −Ψµ0

ω

∥∥
L ≤ ∥Ψµκ,b −Ψµ̂κ,0∥L +

∥∥Ψµκ,0 −Ψµ0
ω

∥∥
L ,

≤ 2 ∥b∥L +
√
2κ ∥µ0

ω∥TV .

As Ψ is weak* to weak continuous from M(X ) to L, for all p ∈ L we have

|
〈
p,Ψ(µk − µ0

ω)
〉
L | → |

〈
p,Ψ(µ∗ − µ0

ω)
〉
L | .

Applying Cauchy-Schwarz, we have |
〈
p,Ψ(µk − µ0

ω)
〉
L | → 0 from which we conclude that

〈
p,Ψ(µ∗ − µ0

ω)
〉
L = 0.

So Ψµ∗ = Ψµ0
ω, and µκ,b converges towards µ

0
ω as κ→ 0 and ∥b∥L ≤ γ0κ for the weak* topology. This concludes

the proof.

K.3 Proof of Corollary 6.1

If n ≥ c2κ
κ2
0(2π)

d/2τd , choosing κ = cκ
(2π)d/4τd/2

√
n

we have κ ≤ κ0. Moreover, it holds that ∥Γn∥ ≤ γ0κ with

probability greater than 1 − CΓe
−
(

γ0cκ
CΓ

)2

(c.f . Lemma 3.1 where we took ρ =
γ2
0c

2
κ

C2
Γ
). Theorem 6.1 applies:

µ⋆
n,ω =

∑s
j=1 ω

⋆
j δx⋆

j
where ω⋆

j > 0 and x⋆j ∈ Xnear
j (rNDSC) for all j = 1, . . . , s.

From (28), using ∥Γn∥L ≤ γ0κ and ∥pNDSC∥L ≤
√
2s (see Lemma 6.1), we have

DηNDSC
(µ⋆

n,ω, µ
0
ω) ≤

κ

2
(γ0 + ∥pNDSC∥L)

2 ,

≤ cκ
2(2π)d/4τd/2

√
n
(γ0 +

√
2s)2 . (85)

Bound for |ω0
j − ω⋆

j |: Recalling (32), as µ⋆
n,ω(X far(rNDSC)) = 0 we have

|ω0
j − ω⋆

j | ≤ ∥pj,NDSC∥L (2 ∥Γn∥L + 2κ ∥pNDSC∥L) +
ε̃2,NDSC

ε2,NDSC

DηNDSC

(
µ⋆
n,ω, µ

0
ω

)
,

≤ 2κ ∥pj,NDSC∥L (γ0 + ∥pNDSC∥L) +
ε̃2,NDSC

ε2,NDSC

DηNDSC

(
µ⋆
n,ω, µ

0
ω

)
,

≤ cκ
(2π)d/4τd/2

√
n

(
2
√
2(γ0 +

√
2s) +

1

2
(γ0 +

√
2s)2

ε̃2,NDSC

ε2,NDSC

)
.

The second factor of this product only depends on X , τ and µ0.
Control of d (x⋆j , x

0
j ): Using (85) together with (31), we get

s∑
j=1

ω⋆
j dg(x

⋆
j , x

0
j )

2 ≤ 1

ε2,NDSC

cκ
2(2π)d/4τd/2

√
n
(γ0 +

√
2s)2 .
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To control the proximity between x0j and x⋆j with the semi-distance, we use Lemma H.5. It comes that

s∑
j=1

ω⋆
j d (x⋆j , x

0
j )

2 ≤ ε̃3,NDSC

ε2,NDSC

cκ
2(2π)d/4τd/2

√
n
(γ0 +

√
2s)2

where ε̃3,NDSC only depends on rNDSC. As ω∗
j ≥ ω0

j − |ω0
j − ω∗

j |, if |ω0
j − ω∗

j | < ω0
j then

d (x⋆j , x
0
j )

2 ≤ 1

ω0
j − |ω0

j − ω∗
j |
ω∗
j d (x⋆j , x

0
j )

2 ,

≤ 1

ω0
j − |ω0

j − ω∗
j |
ε̃3,NDSC

ε2,NDSC

cκ
2(2π)d/4τd/2

√
n
(γ0 +

√
2s)2 .

Recalling (23) and the condition n
c2κ

≥ 1
κ2
0(2π)

d/2τd , if cκ is chosen as cκ,n = o
n→+∞

(
√
n), there exists n0 ∈ N

depending on (cκ,n)n, µ
0, X , τ and c̃0 > 0 that depends on µ0, X , τ (through γ0, ω

0
j , s etc.) such that for all

n ≥ n0, |ω0
j − ω∗

j | < ω0
j and

ε̃3,NDSC

ε2,NDSC

(γ0+
√
2s)2

2(2π)d/4τd/2(ω0
j−|ω0

j−ω∗
j |)

≤ c̃0 with probability at least 1 − CΓe
−
(

γ0cκ,n
CΓ

)2

.

Then d (x⋆j , x
0
j )

2 ≤ c̃0
cκ,n√

n
.
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