Latest News

Quick Overview

Activities

  • Head of Site: Elected head of the École Centrale Lyon site of the Camille Jordan Institute.
  • Board Member: Statutory member of the ICJ laboratory council and the ECL management committee.
  • Associate Researcher: CERMICS, École Ponts ParisTech.
  • External Collaborator: OCKHAM Team, INRIA Lyon.

Teaching Duties

  • Course on Machine Learning (2A @ECL).
  • Course on Convexity and Parsimony (3A @ECL joint with Masters 2 MeA and Maths Avancées, Lyon 1/ENSL).

Research

My complete list of publications is available on HAL (Open Archives).

Filter by Theme:
  • Gaussian random field's anisotropy using excursion sets.
    J.-M. Azaïs, Y. De Castro, F. Dalmao.
    Under review, 2025.
    Probability Geometry PDF Code
  • Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test.
    J.-M. Azaïs, Y. De Castro, F. Dalmao.
    Under review, 2025.
    Probability Geometry PDF Code
  • Gaussian Mixture Model with unknown diagonal covariances via continuous sparse regularization.
    Y. De Castro, R. Giard, C. Marteau.
    Under review, 2025.
    Learning Optimization PDF Zenodo
  • Effective regions and kernels in continuous sparse regularization.
    Y. De Castro, R. Gribonval, N. Jouvin.
    Under review, 2025.
    Learning Optimization PDF
  • Node Regression on Latent Position Random Graphs via Local Averaging
    Martin Gjorgjevski, Nicolas Keriven, Simon Barthelmé, Yohann De Castro.
    Under review, 2025.
    Graph Optimization PDF
  • Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems
    Pierre-Cyril Aubin-Frankowski, Yohann De Castro, Axel Parmentier, Alessandro Rudi.
    Under review, 2025.
    Learning Optimization PDF
  • FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse optimisation on Measures.
    Y. De Castro, S. Gadat, C. Marteau.
    ArXiv Preprint, 2023 (Revised 2025).
    Optimization Probability PDF ArXiv
  • Exact recovery of the support of piecewise constant images via total variation regularization.
    Y. De Castro, V. Duval, R. Petit.
    Inverse Problems, 40(10), 2024.
    Inverse Problems PDF Code
  • SIGLE: valid Selective Inference procedure for Generalized Linear Lasso.
    Y. De Castro, Q. Duchemin.
    Under review.
    Learning Probability PDF Code
  • Neural Networks beyond explainability: Selective inference for sequence motifs.
    Y. De Castro, A. Villié, P. Veber, L. Jacob.
    Transactions on Machine Learning Research (TMLR), 2023.
    Learning Probability PDF OpenReview
  • Random Geometric Graph: Some recent developments and perspectives.
    Q. Duchemin, Y. De Castro.
    High Dimensional Probability IX, pp 347–392, 2023.
    Graphs Probability PDF
  • Minimax Estimation of Partially-Observed Vector AutoRegressions.
    Guillaume Dalle, Yohann De Castro.
    Electronic Journal of Statistics, 2025.
    Graphs Probability PDF Code
  • Markov Random Geometric Graph (MRGG): A Growth Model for Temporal Dynamic Networks.
    Y. De Castro, Q. Duchemin.
    Electronic Journal of Statistics, 16, 671-699, 2022.
    Graphs Probability PDF Code
  • Towards off-the-grid algorithms for total variation regularized inverse problems.
    Y. De Castro, R. Petit, V. Duval.
    Journal of Mathematical Imaging and Vision (JMIV), 2022.
    Inverse Problems PDF Code
  • Multiple Testing and Variable Selection along Least Angle Regression's path.
    Y. De Castro, J-M Azaïs.
    Information & Inference, 2022.
    Learning Probability PDF Code
  • Three rates of convergence or separation via U-statistics in a dependent framework.
    Y. De Castro, Q. Duchemin, C. Lacour.
    Journal of Machine Learning Research, 23(201), 1-59, 2022.
    Probability Learning PDF
  • Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains.
    Y. De Castro, Q. Duchemin, C. Lacour.
    Bernoulli Journal, 2022.
    Probability Learning PDF
  • SuperMix: Sparse Regularization for Mixtures.
    Y. De Castro, S. Gadat, C. Marteau, C. Maugis-Rabusseau.
    Annals of Statistics, 49(3), 1779-1809, 2021.
    Learning Optimization PDF
  • Dual optimal design and the Christoffel-Darboux polynomial.
    Y. De Castro, F. Gamboa, D. Henrion, J.-B. Lasserre.
    Optimization Letters, 15, 3-8, 2021.
    Design Optimization PDF
  • Forecasting Nonnegative Time Series via Sliding Mask Method (SMM).
    Y. De Castro, L. Mencarelli.
    ArXiv Preprint, 2021.
    Learning Probability PDF
  • Testing Gaussian Process with Applications to Super-Resolution.
    Y. De Castro, J.-M. Azaïs, S. Mourareau.
    ACHA, 48, 445-481, 2020.
    Learning Probability PDF Code
  • Latent distance estimation for random geometric graphs.
    Y. De Castro, E. Araya.
    NeurIPS, 2019.
    Geometry Probability PDF PMLR
  • On Representer Theorems and Convex Regularization.
    Y. De Castro, C. Boyer, A. Chambolle, V. Duval, F. de Gournay, P. Weiss.
    SIAM Journal on Optimization, 29(2), 2019.
    Optimization Learning PDF
  • Approximate Optimal Designs for Multivariate Polynomial Regression.
    Y. De Castro, F. Gamboa, D. Henrion, R. Hess, J.-B. Lasserre.
    Annals of Statistics, 47(1), 127–155, 2019.
    Algebra Optimization PDF Code
  • Nonnegative Matrix Factorization with Side Information for Time Series Recovery.
    Y. De Castro, J-M Azaïs, Y. Goude, G. Hébrail, J. Mei.
    IEEE Trans. Knowledge and Data Engineering, 31(3), 2019.
    Learning Probability PDF
  • Sparse Recovery from Extreme Eigenvalues Deviation Inequalities.
    Y. De Castro, S. Dallaporta.
    ESAIM P&S, 23, 430-463, 2019.
    Probability Learning PDF
  • A short introduction to Moment-SoS hierarchies
    Y. De Castro.
    Deuxième Congrès National de la SMF, 2018.
    Algebra Optimization PDF
  • Adaptive Estimation of Nonparametric Geometric Graphs.
    Y. De Castro, C. Lacour, T. M. Pham Ngoc.
    Mathematical Statistics and Learning, 2(3/4), 2019.
    Graphs Probability PDF
  • Nonnegative Matrix Factorization for Time Series Recovery From a Few Temporal Aggregates.
    Jiali Mei, Yohann De Castro, Yannig Goude, Georges Hébrail.
    ICML, 2017.
    Optimization Learning PDF PMLR
  • Power of the Spacing test for Least-Angle Regression.
    Y. De Castro, J.-M. Azaïs, S. Mourareau.
    Bernoulli Journal, 24(1), 2018.
    Probability Learning PDF
  • Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions.
    Y. De Castro, F. Gamboa, D. Henrion, J.-B. Lasserre.
    IEEE Trans. Info. Theory, 63(1), 2017.
    Algebra Optimization PDF Code
  • Adapting to Unknown Noise Level in Sparse Deconvolution.
    Y. De Castro, C. Boyer, J. Salmon.
    Information & Inference, 6(3), 2017.
    Optimization Learning PDF
  • Reconstructing undirected graphs from eigenspaces.
    Y. De Castro, T. Espinasse, P. Rochet.
    JMLR, 18(51), 2017.
    Graphs Algebra PDF
  • A Rice method proof of the Null-Space Property over the Grassmannian.
    Y. De Castro, J.-M. Azaïs, S. Mourareau.
    Annales de l'Institut Henri Poincaré, 53(4), 2017.
    Probability Geometry PDF
  • Minimax adaptive estimation of non-parametric Hidden Markov Models.
    Y. De Castro, É. Gassiat, C. Lacour.
    JMLR, 17(111), 2016.
    Probability Learning PDF Code
  • Non-uniform spline recovery from small degree polynomial approximation
    Yohann De Castro and Guillaume Mijoule.
    Journal of Mathematical Analysis and Applications, Pages 971-992, 2015.
    Optimization Learning PDF
  • Spike Detection from Inaccurate Samplings.
    Y. De Castro, J.-M. Azaïs, F. Gamboa.
    ACHA, 38(2), 2015.
    Optimization Learning PDF
  • Randomized pick-freeze for sparse Sobol indices estimation in high dimension.
    Y. De Castro, A. Janon.
    ESAIM P&S, 19, 2015.
    Probability Learning PDF
  • Optimal designs for Lasso and Dantzig selector using Expander Codes.
    Y. De Castro.
    IEEE Trans. Info. Theory, 60(11), 2014.
    Design Optimization PDF
  • Exact Reconstruction using Beurling Minimal Extrapolation.
    Y. De Castro, F. Gamboa.
    JMAA, 395(1), 2012.
    Learning Optimization PDF

Supervision

Ph.D. Students

  • Bruna ARAUJO (ShapeMed, Start Oct 2025) with Kaniav Kamary and Vivian Viallon;
    Variational methods for causal inference in epidemiology.
  • Romane GIARD (ECL, Start Oct 2024) with Clément Marteau;
    Towards optimal statistical bounds and algorithms for Unsupervised Learning.
  • Martin GJORGJEVSKI (ANR GrandMa, 2022-2025) with Simon Barthelmé and Nicolas Keriven;
    On Statistical Learning Theory for Random Graphs.
  • Guillaume DALLE (IPEF, 2019-2022) with Axel Parmentier;
    OR and ML. Now Researcher at Ponts ParisTech.
  • Quentin DUCHEMIN (DIM Math Innov, 2019-2022) with Claire Lacour;
    Random Graphs and Post-Selection Inference. Now Researcher at SDSC (EPFL).
  • Romain PETIT (DIM Math Innov, 2019-2022) with Vincent Duval;
    Off-the-grid methods. Now Post-Doc at DMI ENS Paris.
  • Antoine VILLIÉ (LBBE, 2019-2022) with Laurent Jacob;
    Kernel Post-Selection Inference. Senior Researcher at Aurobac Therapeutics.
  • Ernesto ARAYA (Orsay grant, 2017-2020);
    Random Graphs. Post-Doc in Machine Learning.
  • Jiali MEI (ÉDF CIFRE, 2014-2017) with Jean-Marc Azaïs, Yannig Goude and Georges Hébrail;
    "Time series recovery and prediction with regression-enhanced nonnegative matrix factorization applied to electricity consumption".
    Prix Paul Caseau de l'académie des sciences, 2018. Senior Researcher at BNP Paribas.

Post-Docs

  • Gaël Poux (2025-2026), Bio-Statistics at IARC, WHO.
  • Nicolas Jouvin (2021), Sparse regularization on measures. Now Chargé de Recherche @INRAE.
  • Luca Mencarelli (2018-2020), Matrix factorization for Time Series.
  • Guillaume Mijoule (2018-2019), Semi-discrete Optimal Transport. Now Data Scientist in Paris Greater Area.

Teaching

Office Hours: Monday 1pm-3pm, Room E6203.

Vitae

Spring 2023 Full Professor (Promoted by CNU)
2022 - 2027 Junior Member, Institut Universitaire de France (IUF)
Since 2019 Professor, Institut Camille Jordan, École Centrale Lyon
2018-2019 Senior Researcher, CERMICS, École Ponts ParisTech
2017-2018 Invited Researcher, Inria Paris (MOKAPLAN Team)
Nov 2016 Habilitation (H.D.R)
2012-2016 Associate Professor, Institut de Mathématique d'Orsay
Dec 2011 Ph.D. Thesis
2008-2012 Ph.D. Student, Institut de Mathématiques de Toulouse
2004-2009 Student, École Normale Supérieure

Contact

  • Institut Camille Jordan
    École Centrale de Lyon
    36 Avenue Guy de Collongue
    69134 Écully, France
  • Locate on Map